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Abstract. This article introduces the Stata menu-driven program steppedwedge,
which calculates detectable differences and power for stepped-wedge randomized
trials. The command permits continuous, binary, and rate outcomes (with normal
approximations) for comparisons using two-sided tests. The command allows spec-
ification of the number of clusters randomized at each step, the number of steps
and the average cluster (cell) size, or an incomplete design in which the user spec-
ifies the design pattern (a matrix with one row per cluster, one column per time
point, and entries indicating exposure and observable data). Cluster heterogeneity
can be parameterized using either the intracluster correlation or the coefficient of
variation (of the outcome). The command is illustrated via examples.

Keywords: st0341, steppedwedge, stepped wedge, sample size, cluster-randomized
controlled trials, power, detectable difference

1 Introduction

The stepped-wedge design is a modification of the conventional cluster-randomized trial
(CRT), in which all clusters initiate as control clusters with sequential but random rollout
of the intervention at various points in time so that by the end of the study, all clusters
have crossed over to become intervention clusters (Brown and Lilford 2006; Mdege et al.
2011). With increasing frequency, stepped-wedge studies are being used across different
settings while evaluating a range of interventions (Mdege et al. 2011).

Calculation of sample size for CRTs is a relatively straightforward modification
to that required under individually randomized designs and usually requires inflation
of the number of participants by a variance inflation factor (VIF) known as the de-
sign effect (Hemming et al. 2011). Currently, there are several options available to
Stata users planning a CRT: these include the two-step procedure using the sampclus

command (Garrett 2001) and the one-step procedure using the clsampsi command
(Batistatou, Roberts, and Roberts 2014). Lately, these have been supplemented by the
command clustersampsi (Hemming and Marsh 2013), which will compute power, sam-
ple size, and detectable difference under a range of scenarios for CRTs. For basic power
and sample-size calculations, see the power command.

c© 2014 StataCorp LP st0341
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There is a dearth of literature on the theoretical underpinnings of similar calculations
for stepped-wedge studies, with only one well-known publication (Hussey and Hughes
2007). This is compounded by the fact that power calculations for stepped-wedge studies
are more complex because they require the use of matrix algebra (Hussey and Hughes
2007). Currently, there are no Stata commands that allow computation of sample size,
power, or detectable difference for stepped-wedge studies. Therefore, we have developed
a Stata command, steppedwedge, that we believe will be very practical for applied
health care researchers involved in the design of stepped-wedge studies. This command
will compute power and detectable difference for stepped-wedge studies of known sample
size.

2 Background

In a conventional, parallel, individually randomized controlled trial (RCT) with contin-
uous outcomes, the power, 1− β, to detect a systematic difference in outcome between
two arms of a study is obtained from the equation

zβ =
δ

σ

√
n

2
− zα/2

where δ = µ1 − µ2 is the systematic difference (in means µ1 and µ2), σ
2 is the variance

of an individual observation such that σ2/2n is the variance of the estimated difference,
n is the sample size per arm, and α is the significance level (for a two-sided comparison).
In a conventional RCT, all observations are independent of one another. Cluster trials
differ because individual observations from the same cluster may be positively correlated
with one another (though observations from different clusters are not). The correlation
structure is characterized by the intracluster correlation coefficient (ICC), which may be
defined either as the correlation between two observations in the same cluster or, equiv-
alently, as the proportion of the individual variance attributable to cluster membership.
The individual variance is written as σ2 = τ2 + σ2

w, where τ2 is the variance of the
cluster means, and σ2

w is the within-cluster variance (that is, the conditional variance
of an observation given the cluster to which the individual belongs). Then the ICC is

ρ =
τ2

τ2 + σ2
w

In such a trial with equal numbers of individuals (m) in each cluster, the variance of
the estimated treatment-effect estimate is inflated by a factor known as the VIF,

VIF = 1 + (m− 1)ρ

compared with an individually randomized trial with the same number of observations.
To achieve the same power as an individually randomized study, we must increase the
sample size in a cluster trial by the VIF, which in this context is usually referred to as
the “design effect”. Thus the power for a CRT is given by the equation

zβ =
δ

σ

√
n

2VIF
− zα/2
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In Stata, this calculation can be accomplished by the clustersampsi command (Hem-
ming and Marsh 2013), which can also determine the minimum sample size at given
power and difference and the minimum detectable difference at given power and sample
size. These results strictly apply to normally distributed outcomes. Data on counts
or proportions are handled by the command using appropriate normal approximations
(Armitage, Berry, and Matthews 2002; Hayes and Bennett 1999).

While in CRTs it has become the convention to specify the magnitude of hetero-
geneity between clusters by the ICC, the coefficient of variation (CV) of the outcome
is perhaps a more intuitive method of specification for positive or binary outcomes
(Hayes and Bennett 1999). The choice between ICC and CV is largely one of conve-
nience. For example, if the CV (of the outcome) in arm 1 is

CV =
τ

µ1

the corresponding ICC is

ρ =
CV2µ2

1

CV2µ2
1 + σ2

w

3 The steppedwedge command

The new Stata command steppedwedge computes power and detectable difference for
both complete and incomplete stepped-wedge designs. A complete design is a design in
which at each of a fixed number of points in time a block of a fixed number of clusters
initiate (by random selection) the intervention. An incomplete design is a design in
which the number of clusters randomized to the intervention differs between the time
points; or in which at some time points, no clusters are initiated on the intervention;
or in which at some time points, no observations of data are taken. These concepts are
described in more detail below.

Binary, continuous, and count outcomes are supported with normal approximations
made throughout. Between-cluster heterogeneity can be specified either using the ICC

or the CV of outcomes (note: this is not to be confused with the CV of cluster sizes,
which is a parameter sometimes used in the design of cluster trials but not considered
here). An additional option is included to allow the user to specify whether the variance
specified is the total variance or the within-cluster variance.

We outline essential formula in the main text, but details have been presented else-
where (Hussey and Hughes 2007). Of note is that the command computes only power
and detectable difference for fixed sample size and does not permit the calculation of
sample size for fixed power and detectable difference.

3.1 Stepped-wedge designs

The conventional stepped-wedge design assumes the following: that at each of a fixed
number of points in time, a block of clusters are sequentially randomized to receive the
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intervention; that they remain exposed to the intervention for all subsequent points in
time; and that observations are made at each of these time points and at baseline to
form the data for analysis. We refer to the number of observations made on each cluster
at each point in time as the cell size. This is a complete design. A design-pattern matrix
(of size number of time points by number of clusters) can be used to quantify the design
of the stepped-wedge study. Each cell of this design-pattern matrix is an indicator of
exposure to the intervention (1 for exposed; 0 for not exposed) and observable data
(. for no observable data). The design-pattern matrix is not to be confused with the
traditional “design matrix” (see section 3.2).

Figure 1 illustrates the design pattern for a complete design with six time points
(including a baseline point) and clusters randomized to the intervention at each of
the five steps, with an additional time point for baseline data collection. Cells with
a 1 indicate that the clusters within that block at that time point are exposed to the
intervention, and cells with a 0 indicate that clusters within that block at that time
point are not exposed to the intervention. These blocks may or may not consist of more
than one cluster, but it is conventional to assume that an equal number of clusters are
contained within each block.

Figure 1. Illustrative example of the stepped-wedge study of a complete design

In practice, the design may not be complete. Figure 2 illustrates an incomplete
design in which, at a particular time, a cluster may be exposed (1), not exposed (0),
or not contribute to the analysis (·). Here the clusters are randomized sequentially, but
observations are made right before the intervention is introduced and at the two time
points immediately afterward. In figure 3, we illustrate a design-pattern matrix where
data are collected throughout the observation period except for the time in which the
intervention is being implemented. We refer to this as a transition period; a design is
once again incomplete.
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Figure 2. Illustrative example of the stepped-wedge study of incomplete design with
one before and two after measurements

Figure 3. Illustrative example of the stepped-wedge study of incomplete design with an
implementation period

To use the steppedwedge command, paste these design patterns into the Stata Data
Editor. This can simply be done either by hand or by writing a short code. For example,
the design-pattern matrix illustrated in figure 2 could be constructed using the simple
Stata commands:

. set obs 4
obs was 0, now 4

. forvalues i=0/5 {
2. generate x`i´ = (_n<=`i´) if (_n<`i´+2) & (_n>=`i´-2)
3. }

(output omitted )

3.2 Power for complete stepped-wedge designs

Now consider the complete design with k clusters (assume blocks of size 1 initially) and
(t+1) time points (note that for the complete case, k = t). Following Hussey and Hughes
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(2007), we adopt a linear mixed model to describe the data with time as a fixed factor
at (t + 1) levels and with a random effect for intercluster variation. Thus there are
(t+ 2) fixed-effects parameters in the model. This linear model may be represented as

yijs = zjsθI + θs + αj + eijs

αj ∼ N(0, τ2)

eijs ∼ N(0, σ2
w)

where yijs is the outcome for individual i (i = 1, . . . ,m) in cluster j (j = 1, . . . , k) at
time point s (s = 1, . . . , t+ 1); zjs denotes exposure to the intervention with treatment
effect θI (the notation I refers to the intervention); θs is a fixed effect for time; and αj

represents a random effect for cluster j (j = 1, . . . , k). Note that here m refers to the cell
size, which is the number of observations per cluster at each point in time. Whereas in
a CRT, m conventionally refers to the total number of observations within each cluster.

For power calculations, it is convenient to reparameterize this model in matrix for-
mat. To this end, the data vector y, of cell means, is ordered by time within clusters—
that is according to the rows of the pattern matrix. So the data of cell means (for the
t clusters at the t+ 1 time points) are described as a t× (t+ 1) by 1 vector y (one row
per cluster per time point) with expected value

E(y) = Xθ

where X (of size t × [t + 1] by [t + 2]) is the conventional design matrix (not to be
confused with the design-pattern matrix) that may be derived from the model, and θ is
the (t+2) vector of the parameters. For convenience, we suppose that the intervention
effect is the first element of the vector θ. Let V denote the variance–covariance matrix
of y, then V is a t(t + 1) by t(t + 1) block-diagonal matrix with identical (t + 1) by
(t+ 1) blocks of the form




σ2
w

m
+ τ2

σ2
w

m
· · · σ2

w

m

σ2
w

m

σ2
w

m
+ τ2 · · · σ2

w

m
...

...
. . .

...
σ2
w

m

σ2
w

m
· · · σ2

w

m
+ τ2




The variance of the treatment-effects estimate is the leading element of the variance–
covariance matrix for the (fixed-effects) parameter estimates, that is, (X′V−1X)−1[1, 1],
where the notation [1, 1] refers to the matrix cell in the first column and first row.
Hussey and Hughes (2007) use this expression to develop a Wald test for the treatment
effect (assuming known variances) with power computed from

zβ =
δ√

{(X′V−1X)−1}[1, 1]
− zα/2
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This formula may be easily rearranged to determine detectable difference for fixed power.
This formula can be easily modified to accommodate more than one cluster randomized
at each step (that is, blocks of size more than one).

3.3 Power for incomplete stepped-wedge designs

The above formula can be modified for incomplete designs and blocks of varying sizes,
simply by taking the appropriate design matrix for the incomplete design and the ap-
propriate block-diagonal matrix, V, which will remain a block-diagonal matrix and
contain the same number of blocks as clusters. However, this time, each block will vary
depending on the observations taken for cluster k.

3.4 The dialog box

The steppedwedge command has been designed to be used both with the command
window and with a drop-down dialog box. All the features available within the com-
mand (an ado-file) have been programmed into the dialog box (a .dlg file), and the
computations are carried out using the corresponding ado-file. The dialog box includes
three menu tabs.

The Main tab allows the user to specify whether the calculation to be performed
is a power calculation (default) or a detectable-difference calculation and whether this
calculation is for proportions, rates, or means (default). The Main tab also allows the
user to specify the significance level (default is 0.05) and the power (default is 0.8)
where appropriate.

On theClusters tab, the user specifies whether the design is complete or incomplete.
For complete designs, the user must specify the number of clusters per step (which we
refer to as the block size), the average cluster (cell) size (this is the size of each cluster
at each step), and the number of steps. For incomplete designs, the user must paste
the design pattern into the Stata Data Editor. Under both designs, the user can opt
to have the design-pattern matrix printed as part of the output provided (this option
additionally prints the design-pattern matrix into the current Data Editor). On the
Clusters tab, the user also specifies the estimated ICC or the CV.

On the Values tab, the user specifies the proportion, rate, or mean (and standard
deviation) values for the two arms. Depending on the calculations requested on the
Main tab (that is, power, detectable difference, binary rates, or continuous outcomes),
those values not relevant are shaded out. The user can also indicate whether the vari-
ances specified are the total variances (σ2) or the within-cluster variances (σ2

w).
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4 Examples

4.1 Example 1: Illustration of a complete design

In a real example, a stepped-wedge study is designed to evaluate the effectiveness of
an educational package for midwives to promote the practice of sweeping of the mem-
branes in women going postterm in pregnancy. Randomization is carried out at a single
point in time, randomizing the order with which the teams of midwives (the clusters)
cross over from standard care to the intervention. The trial is carried out within two
primary care trusts within Birmingham, UK, and the number of clusters is limited to
the 10 midwife teams delivering care within the region. The educational package is im-
plemented irrespective of the evaluation of effectiveness. However, local collaborations
for leadership in applied health research and care initiated plans for the evaluation of
effectiveness alongside implementation in the form of a stepped-wedge trial.

The primary outcome is the proportion of women accepting a membrane sweep in the
period following completion of the training within a team. The denominator population
consists of all women who give birth after 39 weeks and 3 days. It is estimated from
hospital data that within a week, approximately 12 women will give birth within each
team after 39 weeks plus 3 days gestation. It is further anticipated that the sequential
rollout of the training intervention will be at the rate of approximately one team per
week. So under a stepped-wedge design, there will be 10 steps, with 1 cluster randomized
at each step, with approximately 12 observations per cluster per time point. Estimates
of ICCs are limited, but to be conservative, we considered a range from 0.01 to 0.1.

A clinically important difference to detect is an increase in the rate of sweeping from
about 40% to 50%. Given this fixed sample size (this is a pragmatic study, and we are
not at liberty to increase the study population) and this clinically important, detectable
difference, we can then determine the level of power available. Using these values, we
illustrate how steppedwedge can be used to determine the power.

Figure 4 shows a screenshot of the Main dialog tab for this calculation, which
determines power available for a two-sample comparison of proportions and specifies a
significance level of 0.05. The value for power is shaded out on this dialog tab because
this is a power calculation, and power is therefore to be determined.



K. Hemming and A. Girling 371

Figure 4. Screenshot of the steppedwedge dialog box: Menu tab—set up for example 1

Figure 5 shows the corresponding Clusters tab with the method set to use a com-
plete design and with the option set to report the design-pattern matrix as part of the
command output. On this tab, the number of clusters randomized at each step is set to
1, the number of steps is set to 10, and the average cluster size is specified as 12. The
between-cluster heterogeneity is parameterized by the ICC and is set at 0.01.
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Figure 5. Screenshot of the steppedwedge dialog box: Clusters tab—set up for exam-
ple 1

Figure 6 shows the Values dialog tab for this calculation. Because this is a compar-
ison of binary proportions, the mean, standard deviation, and rate values are shaded
out. The value for Proportion 1 is set at 0.4 and Proportion 2 at 0.5. The variance is
specified as the total variance.
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Figure 6. Screenshot of the steppedwedge dialog box: Values tab—set up for example 1

The Stata output from the command is given below. The output also (for verifica-
tion) prints out sample-size parameters specified by the user (that is, the average cluster
size, number of clusters, number of time points, etc.). The computed power value of
0.70 shows that under the design as specified—detecting a change in proportions from
0.4 to 0.5, at 5% significance level; randomizing 1 cluster at a time to the intervention,
each of size 12; and collecting data for each of these 10 time points—the study will have
70% power.

. steppedwedge, binomial power complete(1) vartotal(1) p1(0.4) p2(0.5) m(12)
> k(1) rho(0.01) alpha(0.05) steps(10) dm(1)
Power calculation for a stepped wedge study.
For a two sample comparison of proportions (using normal approximations).
For the user specified variables:
Proportion 1: 0.4000
Proportion 2: 0.5000
The variance has been specified as being the total variance
Significance level: 0.05
Coefficient of variation (of clusters): 0.12
Intra Cluster Correlation (ICC): 0.0100
Between cluster variation (tau-squared): 0.0024
Average cluster (cell) size: 12
Number of clusters randomised per step: 1
Number of steps (not including baseline): 10

Steppedwedge estimated parameters:
Design pattern matrix:

Xtmp[10,11]
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c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11
r1 0 1 1 1 1 1 1 1 1 1 1
r2 0 0 1 1 1 1 1 1 1 1 1
r3 0 0 0 1 1 1 1 1 1 1 1
r4 0 0 0 0 1 1 1 1 1 1 1
r5 0 0 0 0 0 1 1 1 1 1 1
r6 0 0 0 0 0 0 1 1 1 1 1
r7 0 0 0 0 0 0 0 1 1 1 1
r8 0 0 0 0 0 0 0 0 1 1 1
r9 0 0 0 0 0 0 0 0 0 1 1

r10 0 0 0 0 0 0 0 0 0 0 1
number of observations will be reset to 10
Press any key to continue, or Break to abort
obs was 0, now 10
Total number of observations: 1320
Power: 0.6998

4.2 Example 2: Illustration of an incomplete design

In a variation of the example above, we illustrate how steppedwedge can be used to
compute detectable differences under an incomplete design. To determine efficacy, as
opposed to effectiveness, we limit the period of data collected after exposure to the
educational intervention to 12 weeks post exposure, thereby circumventing any waning
of treatment effect. Under this design variation, data are collected prospectively from
a fixed period in time (commencement of study) but limited to 12 weeks following
implementation of the training in each team, which will mean staggered data endpoints
and, hence, an incomplete design. This design pattern is illustrated in figure 7.

Figure 7. Illustration of an incomplete design-pattern matrix for example 2

This example also illustrates how steppedwedge can be used to determine the de-
tectable difference (for a given level of power).
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We have not illustrated the dialog tabs for this example, because they are simply
modified from those in example 1. So on the Menu tab, it is necessary to select
Compute Detectable Difference instead of Compute Power and set the Power of test to
0.8 (the default). On the Clusters tab, the design is set as Incomplete design rather
than Complete design, and the Print design pattern is unchecked. The user also needs
to specify the Average cluster size and not the No. time points or the Number of clusters
per step randomized at each step (because these are provided within the design pattern).
On the Values tab, it is only necessary to provide Proportion 1 and not Proportion 2.
Finally, the design pattern (illustrated in figure 7) must be pasted into the Data Editor.
The output for this calculation is provided below. Under this modification, with power
80%, it will be possible to detect a difference in proportions from 40% to 51%:

. steppedwedge, binomial detectabledifference incomplete(1) vartotal(1) p1(0.4)
> m(12) rho(0.01) alpha(0.05) beta(0.8)

Detectable difference calculation for stepped wedge study.
For a two sample comparison of proportions (using normal approximations)
without continuity correction.

For the user specified variables:

Proportion 1: 0.40
The variance has been specified as being the total variance
Significance level: 0.05
Power: 0.80
Average cluster (cell) size: 12
Intra Cluster Correlation (ICC): 0.0100
Coefficient of variation (of clusters): 0.12
Between cluster variation (tau-squared): 0.0024

Steppedwedge estimated parameters:
Total number of observations: 2100
Detectable difference: 0.1096
with corresponding (decreasing) proportion 2: 0.2904
or alternatively for (increasing) proportion 2: 0.5096

4.3 Example 3: Illustration of a stepped-wedge study with a transi-
tion period

A stepped-wedge study is designed to evaluate the effectiveness of a new educational
package in surgical theaters with the aim of reducing in-hospital mortality. It is envis-
aged that 12 hospitals (clusters) will participate and that the educational package will
be rolled out sequentially at a rate of 3 hospitals simultaneously. For each hospital, it is
further envisaged that there will be two periods (each three months in length) of data
collection, a transition period (again three months in length) in which the educational
package is delivered (and no data will be collected), and a further two periods (each
three months in length) of data collection post exposure. The design-pattern matrix is
illustrated in figure 8.
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Figure 8. Illustration of a design-pattern matrix for example 3

It is expected that there will be about 1,250 surgical procedures per hospital over
each 3-month period and that the mortality rate is currently about 12%. The between-
hospital variability in this example is parameterized by the CV, and we checked the
sensitivity to values between 0.1 and 0.4.

Assuming normal approximations and a binary outcome, we present the output for
this detectable-difference calculation below. Simple replications of this calculation show
that the difference detectable under this design ranges from a reduction of 9.5% to
10.0% depending on the CV (range 0.1 to 0.4). Output is provided below under the
assumption that the CV is 0.3.
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. steppedwedge, binomial detectabledifference incomplete(1) vartotal(1)
> p1(0.12) m(1250) cluster_cv(0.3) alpha(0.05) beta(0.8) dm(1)

Detectable difference calculation for stepped wedge study.
For a two sample comparison of proportions (using normal approximations)
without continuity correction.

For the user specified variables:

Proportion 1: 0.12
The variance has been specified as being the total variance
Significance level: 0.05
Power: 0.80
Average cluster (cell) size: 1250
Intra Cluster Correlation (ICC): 0.0123
Coefficient of variation (of clusters): 0.30
Between cluster variation (tau-squared): 0.0013

Steppedwedge estimated parameters:
Design pattern matrix:

Xtmp[12,8]
c1 c2 c3 c4 c5 c6 c7 c8

r1 0 0 . 1 1 . . .
r2 0 0 . 1 1 . . .
r3 0 0 . 1 1 . . .
r4 . 0 0 . 1 1 . .
r5 . 0 0 . 1 1 . .
r6 . 0 0 . 1 1 . .
r7 . . 0 0 . 1 1 .
r8 . . 0 0 . 1 1 .
r9 . . 0 0 . 1 1 .

r10 . . . 0 0 . 1 1
r11 . . . 0 0 . 1 1
r12 . . . 0 0 . 1 1
number of observations will be reset to 12
Press any key to continue, or Break to abort
obs was 0, now 12
Total number of observations: 60000
Detectable difference: 0.0241
with corresponding (decreasing) proportion 2: 0.0959
or alternatively for (increasing) proportion 2: 0.1441

4.4 Example 4: Illustration of a stepped-wedge study with a transi-
tion period and count outcome

An RCT across 20 wards evaluates the effectiveness of an alternative to the do-not-
resuscitate with another approach called the universal form of treatment. The trial
will be a CRT with each of the 20 wards acting as a cluster. The trial will run for 28
months, consisting of 12 10-week periods, with 2 wards randomized to the intervention
each period (that is, every 10 weeks). In every ward, data will be collected throughout
the trial apart from the 10-week period immediately following randomization to allow
for a transition period. During every 10-week period and in every ward (apart from
transition periods), data relating to harms will be collected on 27 patients. There is
also a 10-week period of baseline data collection (during which all wards are on the
standard-of-care, do-not-resuscitate arm) and a 10-week period at the end of the study
in which all wards are receiving the universal form of treatment intervention. The design
pattern is illustrated below.
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The effectiveness of the new approach will be evaluated using the outcome of the
number of harms. It is expected that in each ward, there will be about 21 harms per
1,000 patient days. Harms will be identified by reviewing patient notes for the duration
of their stay, and the average length of stay is about 10 days. The trial has been designed
to detect a 25% relative-risk reduction.

This power calculation is therefore used to illustrate the use of the steppedwedge

command for count outcomes. The current rate of harms is about 0.02 per person per
unit of time (here the unit of time is a day). We hope to reduce this by 25%, that
is, to 0.015. This is an incomplete design (because there is a transition period) with
20 clusters and an average cluster size of 270 (27 patients each with an average length
of stay of 10 days). We have assumed an ICC of 0.01 in illustrative calculations. The
output from this example is illustrated below.

. steppedwedge, rates power incomplete(1) vartotal(1) r1(0.021) r2(0.015)
> m(270) rho(0.007) alpha(0.05) dm(1)
Power calculation for a stepped wedge study.
For a two sample comparison of rates (using normal approximations).
For the user specified variables:
Rate 1: 0.0210
Rate 2: 0.0150
The variance has been specified as being the total variance
Significance level: 0.05
Coefficient of variation (of clusters): 0.53
Intra Cluster Correlation (ICC): 0.0070
Between cluster variation (tau-squared): 0.0001
Average cluster (cell) size: 270

Steppedwedge estimated parameters:
Design pattern matrix:

Xtmp[20,12]
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

r1 0 . 1 1 1 1 1 1 1 1 1 1
r2 0 . 1 1 1 1 1 1 1 1 1 1
r3 0 0 . 1 1 1 1 1 1 1 1 1
r4 0 0 . 1 1 1 1 1 1 1 1 1
r5 0 0 0 . 1 1 1 1 1 1 1 1
r6 0 0 0 . 1 1 1 1 1 1 1 1
r7 0 0 0 0 . 1 1 1 1 1 1 1
r8 0 0 0 0 . 1 1 1 1 1 1 1
r9 0 0 0 0 0 . 1 1 1 1 1 1

r10 0 0 0 0 0 . 1 1 1 1 1 1
r11 0 0 0 0 0 0 . 1 1 1 1 1
r12 0 0 0 0 0 0 . 1 1 1 1 1
r13 0 0 0 0 0 0 0 . 1 1 1 1
r14 0 0 0 0 0 0 0 . 1 1 1 1
r15 0 0 0 0 0 0 0 0 . 1 1 1
r16 0 0 0 0 0 0 0 0 . 1 1 1
r17 0 0 0 0 0 0 0 0 0 . 1 1
r18 0 0 0 0 0 0 0 0 0 . 1 1
r19 0 0 0 0 0 0 0 0 0 0 . 1
r20 0 0 0 0 0 0 0 0 0 0 . 1
number of observations will be reset to 20
Press any key to continue, or Break to abort
obs was 0, now 20
Total number of observations: 59400
(This is total length of exposure for rate comparisons)
Power: 0.8237
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5 Conclusion

Stepped-wedge trials are used with increasing frequency in the evaluation of health
care and service delivery interventions. Thus we have developed a Stata command,
steppedwedge, that will calculate power and detectable difference for stepped-wedge
studies, along with a dialog box (which makes this command accessible). A point of
particular flexibility is the functionality that allows incomplete designs, a feature that
we believe will be of particular use to designers of such pragmatic trials.

The command does, however, have several limitations, including the variance of two
proportions, assuming normality, not incorporating continuity corrections, and assuming
variance parameters are known. The command also assumes that cluster sizes are
equal. In CRTs, approximations to the design effect for unequal cluster sizes have been
developed. While not formally shown, we believe that the harmonic mean may be a
more useful measure of cluster sizes in the case of unequal clusters. Also, because there
is no individual random effect, the command and model described are limited to cross-
sectional designs only and cannot be used for cohort designs. It is assumed that at
each step in the study, a different cross-section of individuals is included. Perhaps most
importantly, the command will not calculate sample-size required for a given level of
power to detect a given difference. This, however, is a difficult calculation, and more
methodological research is needed before such a command can be programmed.
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