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in regression models with a sigmoid
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Abstract. We consider how to represent sigmoid-type regression relationships in a
practical and parsimonious way. A pure sigmoid relationship has an asymptote at
both ends of the range of a continuous covariate. Curves with a single asymptote
are also important in practice. Many smoothers, such as fractional polynomials
and restricted cubic regression splines, cannot accurately represent doubly asymp-
totic curves. Such smoothers may struggle even with singly asymptotic curves.
Our approach to modeling sigmoid relationships involves applying a preliminary
scaled rank transformation to compress the tails of the observed distribution of a
continuous covariate. We include a step that provides a smooth approximation to
the empirical cumulative distribution function of the covariate via the scaled ranks.
The procedure defines the approximate cumulative distribution transformation of
the covariate. To fit the substantive model, we apply fractional polynomial regres-
sion to the outcome with the smoothed, scaled ranks as the covariate. When the
resulting fractional polynomial function is monotone, we have a sigmoid function.
We demonstrate several practical applications of the approximate cumulative dis-
tribution transformation while also illustrating its ability to model some unusual
functional forms. We describe a command, acd, that implements it.

Keywords: st0339, acd, continuous covariate, sigmoid function, fractional polyno-
mials, regression models

1 Introduction

Selecting “good” models to represent the effect of continuous covariates in regression
models is challenging. We do not intend to review these challenges and possible solutions
here. Instead, we focus on a particular issue: how to represent sigmoid-type regression
relationships in a practical and parsimonious way.

Pure sigmoid relationships have an asymptote at both ends of the range of a contin-
uous covariate, x, notionally as x → ±∞. Curves with a single asymptote, usually as
x → +∞, are also important in practice (for example, the relationship between body
height and age from infancy to adulthood). Popular general smoothers, such as frac-
tional polynomials (FPs) (Royston and Sauerbrei 2008) and restricted cubic regression

c© 2014 StataCorp LP st0339



330 Modeling sigmoid dose–response functions

splines (RCS), cannot accurately represent doubly asymptotic curves. Such smoothers
may struggle even with singly asymptotic curves. Specialized “growth curve” types of
models, such as logistic or Gaussian functions, have been developed to model asymptotic
relationships; they are often used, for example, in laboratory assay systems. However,
because the latter models are nonlinear in some of their parameters, they require non-
linear optimization tools to fit them and often need specially written software specific
to each model. Even then, their functional forms may be insufficiently flexible to pro-
vide an adequate fit to a range of singly or doubly asymptotic relationships that may
be found in practice. Furthermore, we envisage not only univariable but multivariable
settings, where more than one continuous x is modeled simultaneously.

Our approach to modeling sigmoid relationships is to apply a preliminary rank trans-
formation, scaled by the sample size, to compress the tails of the observed distribution
of a continuous x. We then apply FP regression to the scaled ranks as a covariate. When
the FP model is monotone, the result is a sigmoid function. However, because the rank
transformation is specific to the observed distribution of x, the resulting function is
not very useful because it cannot be easily transported to other settings. For example,
it cannot be directly applied to an identical covariate in a different dataset. For this
reason, we incorporate an additional step that provides a smooth approximation to the
empirical cumulative distribution function (ECDF) of x via the scaled ranks. This ap-
proach is described in section 2, The ACD transformation. We illustrate our proposal
in a simple simulation example and in the analyses of three real datasets, all of which
feature time-to-event (survival) response variables.

2 The ACD transformation

2.1 Method

LetX be a continuous random variable to appear as a covariate in some regression model
of interest. Instead of modeling X directly, we first approximate its ECDF. We thereby
obtain a smooth function called ACD (X). The approximate cumulative distribution
(ACD) is included in the regression model instead of X. We define ACD (·) as follows.
Let x1, . . . , xn be a sample of size n from the distribution of X and rank(xi) be its
rank within the sample, with ranks 1 and n denoting the lowest and highest values,
respectively. Define

zi = Φ−1 [{rank (xi)− 0.5} /n] (1)

ẑi = β̂0 + β̂1 (xi + shift)
p

ACD (xi) = ai = Φ(ẑi)

where Φ (·) is the standard normal cumulative distribution function (normal() in Stata),
Φ−1 (·) is its inverse (invnormal() in Stata), and p is the best-fitting power in a one-
term FP regression model zi = β0 + β1 (xi + shift)

p
. Ordinary least-squares regression

of the zi on the (xi + shift)
p
is used to fit the latter model. By convention, p = 0 means

log transformation. If any of the original xi values is ≤ 0, all the xi are shifted by a
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constant, shift, chosen to ensure that (xi + shift) > 0 for all i; otherwise, shift = 0.
See, for example, Royston and Sauerbrei (2008, 84–85) for details of how shift may be
determined. See also the scale() option of the fp command in Stata 13. If desired,
users can supply their own value of shift in the shift() option of the acd command
(see section 3.1).

An explanation of the three-step approach is as follows. In the first step, zi =
Φ−1 [{rank (xi)− 0.5} /n] yields the inverse normal (probit) transformation of the ECDF.
If the xi are all distinct, the zi resemble expected standard normal statistics in a sam-
ple of size n. The second step approximates the zi as a power-linear function of the
(xi + shift). If X is normally distributed, then the zi are linearly related to the xi (that
is, p = 1). For other distributions of X, a different value of p is likely to be appropriate,
for example, p = 0 if X is lognormally distributed. In the third step, the fitted values
ẑi are back-transformed to the interval (0, 1) so that ai approximates the ECDF of X at

xi. Note that 0 < ai < 1. Also note that ai = ACD (xi) = Φ{β̂0 + β̂1 (xi + shift)
p} no

longer directly involves rank (xi); it is a smooth function of xi.

2.2 Interpretation

The ACD transformation smoothly maps the observed distribution of a continuous co-
variate onto one scale, namely, that of an approximate uniform distribution on the
interval (0, 1). If the relationship between a response Y and ACD (X) is linear, say,
E (Y ) = β0 + β1ACD (X), the relationship between Y and X is nonlinear and is typi-
cally sigmoid in shape (see, for example, figure 1 in the next section). The parameters
β0 and β0 + β1 in such a model are interpreted as the expected values of Y at the min-
imum and maximum of X, that is, at ACD (X) = 0 and 1, respectively. The parameter
β1 represents the range of predictions of E(Y ) across the whole observed distribution
of X.

2.3 Example 1: Simulated distributions

Figure 1 shows the ECDF and ACD values for a normal distribution, X ∼ N (4, 1), and
a lognormal distribution, ln (X) ∼ N

(
0, 0.52

)
, in simulated samples of size n = 100.
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Figure 1. ECDF and ACD values for samples from a normal and a lognormal distribution,
n = 100. Solid line: fitted ACD curve; dots, ECDF.

The positive skewness of the lognormal sample is apparent from the asymmetric shape
of the ECDF curve. The upper-tail region of the lognormal distribution is compressed
by the ACD transformation, and the lower-tail region is much less compressed.

2.4 Example 2: Kidney cancer data

RE04 is a large randomized, controlled trial in metastatic kidney cancer conducted by
the UK Medical Research Council (Gore et al. 2010). Patients were randomized 1:1 to
standard immunotherapy (interferon-α) or triple therapy (interferon-α, interleukin-2,
5-fluorouracil). The primary outcome measure was time to death from any cause (that
is, overall survival). Of the 1,006 patients recruited to the trial, 691 died during the
follow-up phase. Triple therapy did not improve survival compared with standard im-
munotherapy (hazard ratio = 1.05, 95% confidence interval (CI) [0.90, 1.21]).

Several standard prognostic factors for the clinical course of the disease were mea-
sured at randomization. These included hemoglobin (haem), of which low values (sug-
gesting anemia) tend to predict shorter survival times. The dataset that we analyze
(re04 haem.dta) contains the 999 patients with follow-up at the time of analysis and
is limited to the survival data and haem. As an example of ACD analysis, we investigate
the functional form of the effect of haem on the log relative-hazard in univariate Cox
models. Because haem is only weakly correlated with other prognostic factors, we would
expect little confounding when ignoring the other factors.
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Figure 2 provides a rough guide to the shape of the functional form needed for haem.
A running-line smoother (Sasieni, Royston, and Cox 2005) on haem of the martingale
residuals from a null Cox model is shown. The plot was created as follows:

. stcox, estimate

. predict mg, mgale

. running mg haem, nopts span(0.5)
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Figure 2. Running-line smoother fit to the martingale residuals from a null Cox model
for the RE04 trial data

Because martingale residuals are generally “noisy”, the option span(0.5) was spec-
ified to increase the smoothness of the fitted line compared with the default span (for
these data, of 0.25).

The functional form appears distinctively sigmoid. Most of the prognostic effect of
haem occurs between about 10 and 15 g/dl, which are the 5th and 86th centiles of the
sample of haem values.

We now investigate the functional form according to recognized tools used with Cox
and many other regression models: FPs (fracpoly, or in Stata 13, the fp command) and
RCS (the uvrs command) (Royston and Sauerbrei 2007). Figure 3 shows the estimated
log relative-hazard, centered on the mean haem value of 13.0 g/dl, for the best-fitting
two-term FP (FP2) curve and for an RCS with 4 degrees of freedom (d.f.) (3 interior
knots).
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Figure 3. The fitted values (log relative-hazard) for three functions of haem. Vertical
lines delineate a region with the highest data density. See text for details.

The three functions were all estimated by Cox regression models. They agree closely
in the region between 10 and 15 g/dl, where the data density is highest. They differ
substantially at more extreme values of hemoglobin, where only the ACD approach
gives a sigmoid curve that agrees qualitatively with the picture in figure 2. The Akaike
information criterion values (−2 × log partial likelihood + 2 × model dimension) for
the three models are 8,508.3 (FP2), 8,502.08 (RCS) and 8,497.8 (linear function of ACD-
transformed haem). On this measure, the ACD-based model is preferred.

If the functional form is simplified by removing terms that are statistically insignif-
icant at the 5% level, the FP2 function is replaced by a straight line, and the spline
function is replaced by another line of similar shape to that in figure 3 but with one
fewer knot. The deviance (−2× log partial likelihood) of the ACD function is 9.5 lower
than that of the linear function. Nonnested model analysis shows that the ACD function
fits significantly better (P < 0.001) than a straight line.

For the ACD transformation, the best-fitting power p in (1) is 1, and the correspond-
ing parameters β0 and β1 are estimated to be −6.98 and 0.536, respectively. In this
example, no FP transformation of the resulting ai is needed to provide a good fit in
the Cox regression model, but this is not always the case. Figure 4 shows smoothed
martingale residuals from Cox models with linear, reduced RCS (3 d.f.), and ACD models
for haem. The linear function is a poor fit. The other two fits are good, but as we noted
in figure 3, the spline function is not sigmoid, which on substantive grounds may be
unsatisfactory here.
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Figure 4. Smoothed martingale residuals from three Cox models for the covariate haem.
(a) Linear; (b) RCS with 3 d.f.; (c) linear function of ACD(haem).

In the Cox regression on ACD(haem), the estimated regression coefficient is −1.44
(95% CI [−1.70,−1.18]). Thus the model-based estimate of the hazard ratio between
the minimum and maximum values of haem is 0.24 (CI [0.18, 0.31]). That represents
about a fourfold range.

2.5 Example 3: Melanoma thickness

The next example is more challenging than the others. Cutaneous malignant melanoma
is a type of skin cancer that is most prevalent in sunny countries with a substantial
proportion of fair-skinned people, such as Australia. The depth of invasion of the
tumor is the dominant prognostic factor determining the long-term survival chances of
the patient.

We consider a large dataset (n = 28656) of melanoma patients from the Queensland
Cancer Registry in northeastern Australia. Cancer-specific survival time and (among
several other known prognostic variables) tumor thickness (thick) in mm were recorded
in patients diagnosed from 1995 to 2008 (Baade et al. 2013). The 10-year cancer-specific
survival probability was 92.6%. For reasons of confidentiality, 5% of the observations
we analyze here have been slightly perturbed at random.

We analyze the univariate relationship between tumor thickness and survival. Fol-
lowing preliminary investigation of the appropriate scaling for covariate effects, we chose
a class of flexible parametric models (Royston and Lambert 2011) with a probit link.
The models are implemented through the scale(normal) option of the stpm2 command
(Lambert and Royston 2009).
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Logically, because a thicker tumor is more dangerous, we expect the relationship
between thickness and mortality to be monotone increasing. To ensure monotonicity, we
start by restricting ourselves to one-term FP (FP1) models for thickness. Figure 5 shows
a running-line smooth of the relationship between thick and the martingale residuals
from the null flexible parametric model with probit link. Because the distribution of
thick is a highly positively skew (coefficient of skewness = 8.5), we truncate thick at
20 mm (the 99.92 percentile) for better visualization of the lower values.
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Figure 5. Smoothed martingale residuals for a null flexible parametric model on trun-
cated tumor thickness

The functional form appears to be something like a straight line superimposed on a
doubly asymptotic curve. Clearly, no simple FP model can represent it accurately. In-
stead, we construct an FP model comprising thick and its ACD transformation, athick.
These variables are highly correlated. To reduce overfitting and instability, we allow
at most FP1 transformations. The two variables thick and athick need to be mod-
eled simultaneously. For this purpose, we apply the mfp command for multivariable FP

modeling to the variables, restricting each predictor to FP1 through the dfdefault(2)
option of mfp:
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. use melanoma
(Queensland melanoma data (5% random perturbation))

. acd athick=thick

. mfp, dfdefault(2): stpm2 thick athick, df(3) scale(normal)

Deviance for model with all terms untransformed = 12153.785, 28027 observations

(output omitted )

Final multivariable fractional polynomial model for _t

Variable Initial Final
df Select Alpha Status df Powers

thickness 2 1.0000 0.0500 in 1 1
athick 2 1.0000 0.0500 in 2 3

Log likelihood = -6001.0779 Number of obs = 28027

Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb
Ithic__1 .0383586 .0060483 6.34 0.000 .0265042 .050213
Iathi__1 2.174268 .0600696 36.20 0.000 2.056534 2.292003

_rcs1 .3733268 .0078263 47.70 0.000 .3579876 .3886661
_rcs2 .0567674 .0070334 8.07 0.000 .0429823 .0705525
_rcs3 .0403051 .0051965 7.76 0.000 .0301202 .0504901
_cons -2.279906 .0235895 -96.65 0.000 -2.326141 -2.233671

Deviance:12002.156.

The selected model is linear in thick (variable Ithic 1, created by mfp) and FP1

with power 3 in athick (variable Iathi 1, also created by mfp). The resulting linear
predictor quantifies the difference in the probit of the cumulative probability of dying
from melanoma up to any given time point. The linear predictor and the smoothed
martingale residuals are shown in figure 6. In figure 6(a), a linear predictor value of 0
corresponds to patients with the smallest tumors and hence the lowest mortality.
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Figure 6. (a) Linear predictor from flexible parametric model; (b) smoothed martingale
residuals from the same model. Shaded areas represent 95% pointwise CIs. Tumor
thickness has been truncated at 20 mm.

The shape of the fitted linear predictor resembles that of the null-model martingale
residuals in figure 5. Because the two estimated curves are on different scales, they are
not numerically comparable. As shown in figure 6(b), the martingale residuals from the
model comprising thick and ACD(thick)3 show no discernible pattern or trend, which
suggests that we have an excellent fit to the data.

2.6 Example 4: Approximating an unusual functional form

Primary biliary cirrhosis (PBC) is a serious liver disease that usually results in liver
failure and death. A particular PBC dataset has been reanalyzed several times in the
literature to illustrate aspects of survival analysis. We use data on 312 patients (125
deaths from any cause, 187 censored observations) obtained in a randomized controlled
trial of two treatments for PBC that was performed at the Mayo Clinic between 1974
and 1984.

Several potentially prognostic variables were measured at baseline. Figure 7(a) shows
raw and smoothed martingale residuals from a null Cox model for one of the variables,
chol (serum cholesterol, mg/dl). The trench-shaped functional form shown in fig-
ure 7(a) is rather unusual and is not easy to model convincingly, for example, using
FPs. Figure 7(b) shows the same relation, except the residuals have been smoothed on
the ACD transformation of chol instead of on the untransformed chol. The shape is
now roughly quadratic and is much easier to model using FPs (results not shown).
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Figure 7. Raw and smoothed martingale residuals for chol in the PBC dataset: (a) on
the original scale of chol; (b) on ACD-transformed chol.

3 The acd command

3.1 Syntax

The syntax of acd is as follows:

acd newvar = exp
[
if

] [
in

] [
, all b(#1 #2) power(#) shift(#)

]

3.2 Description

acd transforms a variable or expression exp to newvar, a smooth approximation to
its cumulative distribution function. Such transformed covariates may be useful in
representing sigmoid relationships in regression models.

3.3 Options

all computes the ACD transformation over all available observations by using parameter
estimates derived only from observations in the if and in qualifiers.

b(#1 #2) specifies #1 to be the intercept (β0) and #2 to be the slope (β1) in the
model ẑ = β0 + β1 × (exp + shift)p. #1 and #2 are both required. If b() is not
specified (default case), #1 and #2 are determined from the data by fracpoly.
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power(#) specifies p = # in the regression of the transformed ranks, z, on (exp+shift)p.
By default, p is determined automatically by fracpoly from the data. If power()
is specified, then shift() must also be specified. A linear function is specified by
power(1) and a logarithmic function by power(0).

shift(#) specifies shift = # in the regression of the transformed ranks, z, on (exp +
shift)p. By default, shift is determined automatically by fracpoly from the data. If
shift() is specified, then power() must also be specified. The default is shift(0).

4 Conclusion

The acd program may provide a solution to the need for flexible parametric modeling
of a covariate effect whose functional form is singly or doubly asymptotic or which
has a sigmoid shape or component, as in the melanoma and PBC examples. We have
illustrated its use mainly in models with one predictor, but it is also appropriate to
use within multivariable modeling. More generally, the ACD transformation may play a
role in improving the accuracy of predictions from models that include covariates with
a markedly skew distribution.
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