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Abstract. In practice, parametric likelihood-ratio techniques are powerful statisti-
cal tools. In this article, we propose and examine novel and simple distribution-free
test statistics that efficiently approximate parametric likelihood ratios to analyze
and compare distributions of K groups of observations. Using the density-based
empirical likelihood methodology, we develop a Stata package that applies to a
test for symmetry of data distributions and compares K-sample distributions.
Recognizing that recent statistical software packages do not sufficiently address
K-sample nonparametric comparisons of data distributions, we propose a new
Stata command, vxdbel, to execute exact density-based empirical likelihood-ratio
tests using K samples. To calculate p-values of the proposed tests, we use the
following methods: 1) a classical technique based on Monte Carlo p-value evalu-
ations; 2) an interpolation technique based on tabulated critical values; and 3) a
new hybrid technique that combines methods 1 and 2. The third, cutting-edge
method is shown to be very efficient in the context of exact-test p-value compu-
tations. This Bayesian-type method considers tabulated critical values as prior
information and Monte Carlo generations of test statistic values as data used to
depict the likelihood function. In this case, a nonparametric Bayesian method is
proposed to compute critical values of exact tests.

Keywords: st0338, vxdbel, empirical likelihood, likelihood ratio, nonparametric
tests, exact tests, K-sample comparisons, symmetry, p-value computation

1 Introduction

The classical statistical literature proposes parametric likelihood-ratio (LR) decision-
making procedures as techniques for testing simple and composite hypotheses. In a
variety of scenarios, parametric LR tests are often the most powerful statistical tools
(see, for example, Lehmann and Romano [2005] and Vexler, Wu, and Yu [2010]).

c© 2014 StataCorp LP st0338



A. Vexler, H. Tanajian, and A. D. Hutson 305

The likelihood principle is arguably the most important concept for inference under
parametric model assumptions. As an example, consider the goodness-of-fit testing
problem, where given a sample of n independent and identically distributed (i.i.d.)
observations X1, . . . , Xn, we are interested in testing the hypothesis

H0 : X1, . . . , Xn ∼ F0 versus H1 : X1, . . . , Xn ∼ F1

where F0 and F1 are hypothesized distributions with the density functions f0(x) and
f1(x), respectively. By virtue of the Neyman–Pearson lemma, the most powerful test
statistic for this hypothesis is the LR

∏n
i=1 f1(Xi)/f0(Xi), where the density functions

f0 and f1 are assumed to be completely known.

An attractive property of the parametric LR methodology is that the likelihood
principle provides researchers with clear algorithms for constructing efficient statistical
tests across various complicated problems as they relate to practical applications. For
example, we can easily extend the solution of the goodness-of-fit problem to a two-
sample context with i.i.d. observations X1, . . . , Xn1

and i.i.d. observations Y1, . . . , Yn2

relative to testing

H0 : FX = FY versus H1 : FX = F1, FY = F2, F1 6= F2

where FX , FY and F1, F2 are distribution functions of observed data under the null and
alternative hypotheses, respectively. The resulting most powerful test statistic has the
form

n1∏

i=1

f1(Xi)

fX(Xi)

n2∏

j=1

f2(Yj)

fX(Yj)

where fX , f1, and f2 are the corresponding density functions that are assumed to be
known.

Our research focuses on modifying the traditional parametric LR testing to the non-
parametric setting to gain a degree of robustness while not sacrificing substantial power.
In general, the concept of the parametric LR testing method may not be applicable in
the nonparametric setting or when the number of unknown parameters involved in hy-
pothesis testing is relatively large (see Fan, Farmen, and Gijbels [1998]). Also, when key
assumptions are not met, parametric approaches may be nonrobust to the underlying
assumptions, suboptimal, or extremely biased. An important goal in our research is
to preserve the efficiency of statistical testing while maintaining robustness via robust
distribution-free likelihood-type methods. As part of our approach, we extend and de-
velop new methods based on empirical likelihood (EL) methods (see Owen [2001] and
Vexler, Wu, and Yu [2010]).

The EL methodology provides an efficient nonparametric analog to the most pow-
erful parametric likelihood methods. An outline of the EL approach is as follows: For
i.i.d. observations X1, . . . , Xn, the EL function has the form Lp =

∏n
i=1 pi, where the

components pi ∈ (0, 1), i = 1, . . . , n, maximize the likelihood Lp. The maximization
process is conditional on a set of empirical constraints defined under the null hypothesis.
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For example, define the null hypothesis of interest as H0 : EX1 = 0. It follows that
the constraints of interest are

∑n
i=1 pi = 1 and

∑n
i=1 piXi = 0, given by the empirical

counterpart of H0 : EX1 = 0. Computation of the pi’s is based on a straightforward
implementation of the method of Lagrange multipliers. This approach is due to consid-
eration of the distribution function–based likelihood

∏n
i=1{F (Xi) − F (Xi−)} over all

distribution functions F (Owen 2001).

Whereas the Neyman–Pearson principle uses a density-based structure of the LR,
the classical EL approach employs a distribution-based likelihood. Toward this end, we
develop exact tests by modifying the classical EL approach, that is, by basing it di-
rectly on density functions (Vexler and Yu 2010). This method provides nonparametric
approximations to Neyman–Pearson-type tests.

Vexler and Gurevich (2010) proposed to modify the main idea of the EL technique
to develop density-based empirical approximations to the likelihood, having the form

Lf =

n∏

i=1

f(Xi) =

n∏

i=1

f(X(i)) =

n∏

i=1

fi

where fi = f(X(i)) and X(i)≤· · ·≤X(n) are the order statistics derived from the sam-
ple X1, . . . , Xn. In this case, following the maximum EL technique, we can obtain
estimated values fi, i = 1, . . . , n, that maximize Lf , satisfying an empirical constraint
that corresponds to

∫
f(u)du = 1. Vexler and Gurevich (2010), Vexler and Yu (2010),

and Vexler, Gurevich, and Hutson (2013) employed this approach to create powerful
density-based empirical likelihood (DBEL) ratio tests for two-sample comparisons and
symmetry. Miecznikowski, Vexler, and Shepherd (2013) developed an R package for
DBEL ratio goodness-of-fit tests. Tsai, Vexler, and Gurevich (2013) showed that DBEL

tests are robust and significantly outperform classical procedures, including the Kol-
mogorov–Smirnov test, Wilcoxon rank-sum test, and t test.

In this article, we extend these results to K-sample comparisons, including consider-
ations for ordered alternatives (Gurevich 2012). Although investigators need to compare
K samples in nonparametric settings in various clinical trials, to our knowledge, soft-
ware procedures based on the Kruskal–Wallis (KW) test are techniques only to execute
nonparametric tests for a three-sample comparison.

The proposed tests are exact; that is, their null distributions are defined indepen-
dently of data distributions, and their critical values can be evaluated without using
asymptotic approximations.

In terms of the inferential procedure, two methods are commonly used for calculating
the p-values in statistical software products. The Monte Carlo (MC) method is a well-
known technique for accurately approximating the critical values and p-values of exact
tests. For some testing situations, the use of the MC technique can be computationally
intensive. For example, a relatively large number of MC repetitions—say, t—are needed
to evaluate critical values that correspond to the 1% significance level because in this
case, the common 95% confidence interval of such an evaluation can be calculated as[
0.01±1.96

√
(0.01)(1− 0.01)/t

]
. The use of tables with corresponding critical values is
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also a standard method applied in various statistical software routines. In the literature,
this method is commonly referred to as interpolation. Providing the tables for use within
the testing algorithm improves the execution speed of the test. However, interpolation
becomes less reliable when real-data characteristics (for example, sample sizes) differ
from those used to tabulate the critical values (Pearson and Hartley 1966).

To advance these methods, we propose a new hybrid method that combines both the
interpolation and the MC methods. The result of this hybrid method is an innovation
that is related to applications of exact tests in statistical software and that can be
applied in the broader setting.

In developing the Stata package, we used the Mata matrix programming language.
Using the proposed package, we provide MC comparisons between classical procedures
and our newly proposed command. The results are shown in section 5. Section 6 presents
applications of the proposed three-sample test to a real-data example. Section 7 provides
some concluding remarks.

2 Method

In this section, we develop the DBEL ratio tests for symmetry of data distributions and
for comparing K-sample distributions.

2.1 Tests for symmetry

Consider the problem of testing the symmetry of a one-sample distribution about zero.
We suppose that the data consist of a sample of i.i.d. observations X1, . . . , Xn. Our
hypothesis of interest is H0 : Fx(u) = 1 − Fx(−u) for all −∞ ≤ u ≤ ∞ versus
H1 : Fx(u) 6= 1 − Fx(−u) for some −∞ ≤ u ≤ ∞, where the distribution Fx of the
observations is assumed to be unknown. In this case, the LR has the form

LR =
likelihood underH1

likelihood underH0
=

n∏

i=1

fH1
(Xi)

n∏

i=1

fH0
(Xi)

=

n∏

j=1

fH1
(X(j))

n∏

j=1

fH0
(X(j))

=

n∏

j=1

fH1,j

n∏

j=1

fH0,j

where fHk
(X(j)) = fHk,j with k = 0, 1 and where X(j) are the order statistics based on

the observations X1, . . . , Xn.

This LR is the most powerful test statistic in the parametric setting. However, in the
nonparametric setting, the LR statistic is not computable because the density functions
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are unknown. To generate the nonparametric test for the hypothesis above, we consider
the likelihood Lf =

∏n
j=1 fH1,j . We estimate the values of fH1,j that maximize Lf

given an empirical version of the constraint
∫
fH1

= 1. Following Vexler and Gurevich
(2010), this constraint has the form

1

2m

n∑

j=1

∫ X(j+m)

X(j−m)

fH1
(u)

fH0
(u)

fH0
(u)du ≤ 1

The empirical constraint on the fH1,j ’s can then be reformulated as

1

2m

n∑

j=1

fH1,j

fH0,j
∆jm = 1− m+ 1

2n

∆jm =
1

2n

n∑

i=1

{I(X(j−m) ≤ Xi ≤ X(j+m)) + I(X(j−m) ≤ −Xi ≤ X(j+m))}

where I( ) is an indicator function, X(i) = X(1) if i ≤ 1, and X(i) = X(n) if i ≥ n. The
method of Lagrange multipliers is then used to find values of fH1,j :

fH1,j = fH0,j
2m{1− (m+ 1)(2n)−1}

n∆jm
, j = 1, . . . , n

Hence, the EL approximation to Lf and LR can be presented as

n∏

j=1

fH0,j
2m{1− (m+ 1)(2n)−1}

n∆jm
and Vnm =

n∏

j=1

2m{1− (m+ 1)(2n)−1}
n∆jm

respectively. Thus it follows that the maximum EL method forms the LR test statistic

Vn = minan≤m≤bn Vnm

where an = n0.5+δ, bn = min(n1−δ, n/2), and δ ∈ (0, 0.25) (for details, see Vexler,
Gurevich, and Hutson [2013]). For practical purposes, we suggest a value of δ = 0.1 for
our applications. Tsai, Vexler, and Gurevich (2013) and Vexler, Gurevich, and Hutson
(2013) showed that the power of the test statistic does not differ substantially for values
of δ∈ (0, 0.25). Similar to the rationale provided in Vexler and Gurevich (2011), we will
set ∆jm = 1/n if ∆jm = 0 in terms of practical applications.

The proposed test is now designed to reject the null hypothesis if log(Vn) > C, where
C is the critical value of the test. As Vexler, Gurevich, and Hutson (2013) showed, a
test based on the statistic log(Vn) has an asymptotic power 1; that is, it is a consistent
test. It turns out that the null distribution of the test statistic Vn is independent of
the distribution of observations X1, . . . , Xn. Our test statistic is based on indicator
functions involved in the definition of ∆jm. Because I(X > Y ) = I{FX(X) > FX(Y )},
it follows that

PH0
{log(Vn) > C} = PX1,...,Xn∼norm(0,1) {log(Vn) > C}
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By virtue of this result, the proposed test is exact, and the corresponding critical values
can be tabulated for fixed sample sizes. In the interpolation method, presented in
section 3, the MC approach is used to obtain the related critical values that are stored
in Stata beforehand to increase the execution speed of the test.

Next we consider the one-sided version of the two-sided problem (Vexler, Gurevich,
and Hutson 2013). We want to verify that the sample is generated from a distribution
that is stochastically greater than zero. That is, we want to test for H0 : Fx(u) =
1−Fx(−u) for all −∞ ≤ u ≤ ∞ versus H1 : Fx(u) ≤ 1−Fx(−u) for some −∞ ≤ u ≤ ∞,
where the distribution Fx is assumed to be unknown.

Applying the DBEL concept, we have the EL ratio test statistic

V ∗
n = min

an≤m≤bn

n∏

j=1

2m{1− (m+ 1)(2n)−1}
n∆jm

, with

∆jm = max
1

n

{ n∑

i=1

I(Xi ≤ X(j+m)),

n∑

i=1

I(−Xi ≤ X(j+m))
}

−max
1

n

{ n∑

i=1

I(Xi ≤ X(j−m)),
n∑

i=1

I(−Xi ≤ X(j−m))
}

The proposed test rejects the null hypothesis if log(V ∗
n ) > C, where C is the test

threshold. As in the two-sided test, the critical values of the one-sided test can be cal-
culated according to the following equation: PH0{log(V ∗

n ) > C} = PX1,...,Xn∼norm(0,1)

{log(V ∗
n ) > C}.

2.2 Two-sample comparison

The two-sample DBEL ratio test has been dealt with extensively in the recent litera-
ture (for example, Vexler and Gurevich 2011; Vexler and Yu 2010; Vexler et al. 2012;
Miecznikowski, Vexler, and Shepherd 2013). To outline this method, we suppose that
data consist of two samples of i.i.d. observations: X1, . . . , Xn and Y1, . . . , Yk. We want
to verify that both samples are from the same distribution. That is, we want to test
for H0 : Fx = Fy = Fz versus H1 : Fx 6= Fy, where the distributions Fx, Fy, and Fz of
the observations are unknown. In this case, the most powerful LR statistic has the form
of LR =

∏n
i=1 fX,i/fZX,i

∏k
j=1 fY,j/fZY,j , where fX(X(i)) = fX,i, fZ(X(i)) = fZX,i,

fY (Y(j)) = fY,j , and X(i) and Y(j) are the order statistics based on the observations
X1, . . . , Xn and Y1, . . . , Yk, respectively.

To construct the corresponding nonparametric test, we consider the likelihood Lf =∏n
i=1 fX,i. Toward this end, we find values of fX,i that maximize Lf given an empirical

version of the constraint
∫
fX(u)du = 1. This is quite similar to the one-sample setting

described earlier. Define the following H0 empirical distribution function (EDF):

FZ(n+k)(u) =

∑n
i=1 I(Xi ≤ u) +

∑k
j=1 I(Yj ≤ u)

(n+ k)
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After Vexler and Gurevich (2011), one can show that by virtue of the hypotheses setting,

H0 : Fx = Fy = Fz versus H1 : Fx 6=Fy, the empirical constraint ∆̃m ≤ 1, with

∆̃m =

∑n
i=1{FZ(n+k)(X(i+m))− FZ(n+k)(X(i−m))} fX,i

fZX,i

2m

approximates the condition

∆m =

∏n
i=1

∫X(i+m)

X(i−m)
fZ(u)fX(u)

fZ(u) du

2m
≤ 1

which reflects the property
∫
fZ(u)fX(u)/fZ(u)du =

∫
fX(u)du = 1. Then the Lagrange

multiplier method can be used to directly find values of fX,i that maximize Lf , satisfying

the empirical constraint ∆̃m ≤ 1:

fX,i =
2mfZX,i

n{FZ(n+k)(X(i+m))− FZ(n+k)(X(i−m))}
, i = 1, . . . , n

This implies that the EL estimator of
∏n

i=1 fX,i/fZX,i is given as

ELRX,m,n =
∏n

i=1

2m

n{FZ(n+k)(X(i+m))− FZ(n+k)(X(i−m))}

Similarly, the maximum EL method forms the EL estimator of
∏k

j=1 fY,j/fZY,j as

ELRY,r,k =
∏k

i=1

2r

k{FZ(n+k)(Y(i+r))− FZ(n+k)(Y(i−r))}

where Y(i) = Y(1) if i ≤ 1 and Y(i) = Y(k) if i ≥ k.

Thus the proposed test statistic is

Vnk = ELRX,nELRY,k

where ELRX,n = min
an≤m≤bn

ELRX,m,n, ELRY,k = min
ak≤r≤bk

ELRY,r,k, al = l0.5+δ, bl =

min(l1−δ, l/2), δ ∈ (0, 1/4), and l = n, k. Here the operation min is used to pro-
vide the EL estimators of the parameters m and r in the expressions ELRX,m,n and
ELRY,r,k, respectively. The bounds al and bl are defined to preserve the asymptotic
consistency of the test (see Vexler and Yu [2010] for details). As before, we set a value
of δ = 0.1. It is shown in Tsai, Vexler, and Gurevich (2013), Vexler and Yu (2010),
Vexler and Gurevich (2010), and Vexler, Gurevich, and Hutson (2013) that the power
of the test statistic does not differ substantially for values of δ ∈ (0, 1/4). Similar to
what was defined in Vexler and Gurevich (2011), FZ(n+k)(x)− FZ(n+k)(y) = 1/(n+ k)
if Fz(n+k)(x) = FZ(n+k)(y).

The proposed test rejects the null hypothesis if log(Vnk) > C, where C is the
test threshold. As we saw in section 2.1, it turns out that the null distribution of
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the test statistic Vnk is independent of the sample distributions. Therefore, we have
PH0

{log(Vnk) > C} = PX1,...,Xn,Y1,...,Yk∼unif(0,1){log(Vnk) > C}. Thus this expression
indicates that the probability of a type I error of the test can be calculated exactly.

Now consider the one-sided version of the two-sample problem (Gurevich 2012). We
want to test the hypotheses H0 : Fx = Fy = Fz versus H1 : Fx(u) ≤ Fy(u) for all
−∞ ≤ u ≤ ∞, Fx(u) < Fy(u) for some −∞ ≤ u ≤ ∞.

Applying the maximum DBEL concept, one can define the test statistic

V ∗
nk = ELR

∗
X,nELR

∗
Y,k

where

ELR
∗
X,n= min

an≤m≤bn

∏n

i=1

2m

n{F ∗
Z(X(i+m))− F ∗

Z(X(i−m))}

ELR
∗
Y,k= min

ak≤r≤bk

∏k

i=1

2r

k{F ∗∗
Z (Y(i+r))− F ∗∗

Z (Y(i−r))}
F ∗
Z(u) = max{FX,n(u), FY,k(u)}

F ∗∗
Z (u) = min{FX,n(u), FY,k(u)}

with FX,n(u) = n−1
∑n

i=1 I(Xi ≤ u) and FY,k(u) = k−1
∑k

j=1 I(Yj ≤ u). Further, if

F ∗
Z(X(i+m)) − F ∗

Z(X(i−m)) < 0, then it is set to (n + k)−1. Similarly, if F ∗∗
Z (Y(i+r)) −

F ∗∗
Z (Y(i−r)) ≤ 0 then it is set to (n+k)−1. Here, in providing comparisons with the test

statistic Vnk, instead of using FZ(n+k)—the EDF of identically H0-distributed X and
Y —we use F ∗

Z and F ∗∗
Z to depict the fit between data distributions and our alternative

hypothesis.

As in the two-sided test, the critical values can be calculated exactly according to the
following equation: PH0

{log(V ∗
nk > C)} = PX1,...,Xn,Y1,...,Yk∼norm(0,1){log(V ∗

nk) > C}.

2.3 K-sample comparison

To outline the K-sample procedure, we suppose that the data consist of K indepen-
dent samples. We want to test whether all K samples are distributed identically in
a nonparametric fashion. Let n1, . . . , nk denote the respective sample sizes corre-
sponding to the K samples being compared. Assume that the K samples are rep-
resented by the vectors of observations given as {X11, . . . , X1n1

}, . . . , {Xk1, . . . , Xknk
}

from the corresponding distribution functions FX1
, . . . , FXk

. We now want to test the
hypothesis H0 : FX1

= · · · = FXk
= FZ versus H1 : not all FXi

= FXj
, i 6= j. If

the corresponding density functions are known, the LR statistic has the form LR =∏k
j=1

∏nj

i=1 fXj
(Xji)/fZ(Xji) =

∏k
j=1

∏nj

i=1 fXj ,i/fZXj ,i, where fXj
denotes the den-

sity function of the jth sample under H1, fZ is the theoretical density function of
observations under H0, and Xj(i), j = 1, . . . , k, are the order statistics per sample
based on the observations Xj1, . . . , Xjnj

. As before, we denote fXj
(Xj(i)) = fXj ,i and

fZ(Xj(i)) = fZXj ,i, j = 1, . . . , k.



312 Density-based empirical likelihood procedures

We apply the maximum EL method to obtain the proposed DBEL ratio test statis-
tic Vn1,n2,...,nk

=
∏k

j=1 ELRXj ,nj
, where the EL estimator of

∏nj

i=1 fXj ,i/fZXj ,i, for j =

1, . . . , k, is ELRXj ,nj
= min

anj≤mj≤bnj

∏nj

i=1 2mj/nj{FZ(N)(Xj(i+mj))− FZ(N)(Xj(i−mj))},

al = l0.5+δ, bl = min(l1−δ, l/2), δ ∈ (0, 1/4), and the corresponding EDF under H0

is given as FZ(N)(u) = 1/N
∑k

j=1

∑nj

i=1 I(Xji ≤ u), N =
∑k

j=1 nj , Xj(i) = Xj(1)

if i ≤ 1 and Xj(i) = Xj(nj) if i ≥ nj . As in the two-group setting, we define
FZ(N)(x)− FZ(N)(y) = 1/N if FZ(N)(x) = FZ(N)(y).

The type I error of the K-sample test can be monitored through the following
probability statement: PH0

{log(Vn1,n2,...,nk
) > C} = PX11,...,X1n1

,...,Xk1,...,Xknk
∼unif(0,1)

{log(Vn1,n2,...,nk
) > C}. As above, we set a value of δ = 0.1. The proposed test statistic

approximates nonparametrically the most powerful parametric LR test statistic; thus
one can assume heuristically that the proposed test also has good relative efficiency.

3 Evaluations of critical values of the exact tests

In this section, we outline three methods to obtain critical values for the exact tests
proposed in this article. The MC, interpolation, and hybrid methods will be described
in section 3.1, section 3.2, and section 3.3, respectively. These techniques are applied
within a newly developed Stata command.

3.1 MC method

The MC method is a well-known approach for obtaining accurate approximations to the
critical values (CVs) of exact tests (see Metropolis and Ulam [1949] and Rubinstein and
Kroese [2008] for details).

The proposed Stata command provides the option of the MC method using 10,000
MC repetitions to calculate a critical value per application of the command. In the
developed procedures, the CVs are calculated using data generated from a standard
normal distribution for one-sample tests and a uniform(0,1) distribution for the two-
sample and three-sample tests. The generated values of V , the test statistic, are used
to determine the critical value C, the test threshold, for the desired significance level
α = PH0

(logV > Cα) via calculating the quantiles of the MC H0 distribution of logV .

In addition, using the MC procedure, we tabulated tables of CVs. Each critical value
was calculated for each proposed test, each set of sample sizes, and each significance
level. The MC procedure was based on 50,000 replicate samples of the corresponding
test statistic’s logV . The resulting tables of CVs are to be used by the command vxdbel,
a product of this package.
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3.2 An approach based on interpolation

Interpolation differs from the MC method in that tables of CVs were calculated be-
forehand for each proposed test, various sample sizes, and various significance lev-
els α. Following the method in the previous section, we obtained the resulting ta-
bles and saved them in Stata data format. Pearson and Hartley (1966) demonstrated
the method of interpolation for calculating values within tables. For example, sup-
pose we have data consisting of one sample with size n—say, n = 37—to be tested
for symmetry. The needed critical value can be interpolated using tabulated CVs
of n = 30, 35, 40, and 50. For our procedure, the tables with CVs are provided for
sample sizes: the one-sample tests with sample size n from the set {A}, where A =
{1, 2, 3, . . . , 29, 30, 35, 40, 50, 60, 80, 100, 150, 200}; the two-sample tests with sample
sizes (m,n) from the set {A×A}; and the three-sample test with sample sizes (m,n, p)
from the set {A × A × A}. The applications of the interpolation and extrapolation
procedures decrease the accuracy of the estimates of the CVs when actual samples have
sample sizes that differ significantly from those used to tabulate the tables. Providing
tables for the test increases the speed to execute the test compared with the MC method,
but the interpolation method becomes less reliable.

In the context of the proposed procedures, in the cases of sample sizes not tabulated
within the tables, an appropriate subset of the table data is selected. The data to
be selected have been defined as related to sample sizes in the tables within a radius
of two values around the values of the sample sizes that are needed. For example, if
we are interested in a one-sample test based on a sample with size n = 78, we use
CVs related to n = 50, 60, 80, and 100 to estimate the required critical value. On the
basis of extensive MC experiments, to interpolate for needed CVs, we conclude that the
radius of two values around the CVs best minimizes the bias of the interpolation and
extrapolation procedures. To outline this method for one sample, we define Cnα as the
critical value corresponding to the sample size n and the significance level α. Using the
selected table data, we fit Cnα via the regression model

Cnα
∼= β0 + β1n+ β21/n+ β3n

2 + β4α+ β5α
1/2

employing the local maximum-likelihood methodology (Fan, Farmen, and Gijbels 1998).
In this manner, the coefficient β’s are estimated and yield values of Cnα as a function
of n and α.

Similarly, for the two- and three-sample tests, we define Cnmα and Cnmkα as the
CVs corresponding to the sample sizes n,m, and k and the significance level α. Using
the selected table data, we fit Cnmα and Cnmkα via the regression models Cnmα

∼=
β0 + β1n + β2m + β31/n + β41/m + β5n

2 + β6m
2 + β7α + β8α

1/2 and Cnmkα
∼= β0 +

β1n+β2m+β3k+β41/n+β51/m+β61/k+β7n
2+β8m

2+β9k
2+β10α+β11α

1/2. Here
we assume Cnα = G1(n, α), Cnmα = G2(n,m, α), and Cnmkα = G3(n,m, k, α), where
the functions G1, G2, and G3 are unknown but approximated via the equations shown
above.

The regression equation with the parameter estimates is solved backward for an
estimate of the type I error, α, using the equation solvers mm root and optimize in
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Stata. This is accomplished by plugging the value of the test statistic, logV, which is
based on the observed data for the critical value and the sample sizes of the observed
data, into the regression equation and solving for α; that is, logV = β̂0+ β̂1n+ β̂21/n+

β̂3n
2 + β̂4α+ β̂5α

1/2 should be solved with respect to α for the one-sample test. Thus
the value obtained for α is an estimate of the p-value for the test.

3.3 A novel hybrid technique that combines MC and interpolation

This method combines the MC and interpolation methods depicted in section 3.1 and
section 3.2, respectively. Toward this end, we propose a nonparametric Bayesian-type
approach for constructing the posterior expectations of the needed CVs. Thereby, we in-
corporate the efficiency of the interpolation method and the accuracy of the MC method.

Lazar (2003) and Vexler, Deng, and Wilding (2013) showed that the ELs can be used
in Bayesian statistical inferences instead of the corresponding parametric likelihoods.
This provides nonparametric Bayes procedures. This concept is applied in the pro-
posed command to calculate the CVs. Because distributions of test-statistic values are
unknown, the likelihoods are presented in the EL form.

The proposed algorithm is conducted in two stages and repeated until a stopping
condition is met. The following notations are used in the description of the procedures:

• tk denotes the number of MC simulations related to stage k = 1, 2;

• α denotes the level of significance (we use α = 0.05 as the default level in the
command);

• T k
(1) < T k

(2) < · · ·<T k
(tk)

denotes the order statistics based on the test statistic

values T k
1 , T

k
2 , . . . , T

k
tk
, generated on stage k (T = logV );

• Jk denotes the interval
[max{1, (1− α)tk − t

1/2
k log(tk)}, min{(1− α)tk + t

1/2
k log(tk), tk}];

• Lk(q) = exp(tkFk,tk(q)[log(1−α)− log{Fk,tk(q)}+ tk{1−Fk,tk(q)}][logα− log{1−
Fk,tk(q)}]) denotes the EL function = max{

∏tk
i=1 pi :

∑tk
i=1 pi = 1,

∑tk
i=1 piI(Ti <

q) = α}, where Fk,tk(q) =
∑tk

i=1 I(T
k
(i) < q)/tk; and

• the quantile qα, such that PH0
(logV > qα) = α, defines the needed critical value

of the test statistic logV .

We begin by fitting this information with a functional form. The tabulated values
are assumed to provide prior information regarding the target CVs. We obtain the prior
distribution function π(q), with the parameters (µ0, σ0), by using the local maximum-
likelihood method (Fan, Farmen, and Gijbels 1998) based on tabulated CVs. Here

π(q) = (2πσ0)
−0.5exp{−(q − µ0)

2(2σ2
0)

−1}
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The normal function form of π(q) was used because quantile estimators are commonly
normally distributed when sample sizes are relatively large. For example, in the context
of the two-sample test, following section 3.2, we can present µ0 = β̂0n0 + β̂1m0 +
β̂21/n0 = β̂31/m0 + β̂4n

2
0 + β̂5m

2
0 + β̂6α, where we assume that the observed data

consist of two samples of sizes n0 and m0. In this case, the σ0 can be estimated using
standard regression analysis.

In the first MC simulation step, 200 generations (t1 = 200) of test statistic values
are conducted; then test statistics T 1 = (T 1

1 , . . . , T
1
t1), based on the generated data, are

calculated. Next the posterior expectation q̂1,α, of the quantile qα, is calculated. We
compute the posterior expectation of quantiles as follows:

q̂k,α =

∫ Tk
(t1)

T 1
(1)

qLk(q)π(q)dq

∫ Tk
(t1)

Tk
(1)

Lk(q)π(q)dq
, k = 1

Now one can show that

q̂1,α =

∑
j∈J1

exp[−t1(1− α− j
t1
)2{2α(1− a)}−1]

∫ T 1
(j)

T c
(j−1)

qπ(q)dq

∑
j∈J1

exp[−t1(1− α− j
t1
)2{2α(1− a)}−1]

∫ T 1
(j)

T 1
(j−1)

π(q)dq

where, in general,
∫ b

a
qπ(q)dq =

√
σ2
0/2π[exp{−(a−µ0)

2/(2σ2
0)}−exp{−(b−µ0)

2/(2σ2
0)}]

+µ0

∫ b

a
π(q)dq, and

∫ b

a
π(q)dq = normal((b − µ0)/σ0)−normal((a − µ0)/σ0). In this

equation, the Stata function normal() returns the cumulative standard normal distri-
bution.

During the second stage, 200 additional generations (t2 = 200) of the test statistic
values are conducted; then test statistics T 2 = (T 2

1 , . . . , T
2
t2), based on simulated data,

are calculated. We then estimate f2,t2(q̂1,α), an estimate of the density function of the
test statistic, by using the following kernel estimator (see Gibbons and Chakraborti
[2005] for details):

f2,t2(q̂1,α) = (t2)
−1

∑t2

j=1
(2πh2)−1/2exp{−(q̂1,α − T 2

j )
2(2h2)−1}

where h = 1.06σ̂t2t
−1/5 and σ̂t2 is the standard deviation of the test statistics T 2

j . Then
we calculate the estimated variance of q̂1,α as Vk ≡ Fk+1,tk+1

(q̂k,α){1−Fk+1,tk+1
(q̂k,α)}

fk+1,tk+1
(q̂k,α)

−2/tk+1, k = 1. (For details of this approximation to the variance, see
Serfling [1980].)

To define the stopping rule of the procedure, we evaluate whether V1 ≤ σ2
0 ; if this is

so, we stop the procedure and calculate the posterior expectation of the quantiles with
the combined values of the test statistics T c = (T 1

1 , . . . , T
1
t1 , T

2
1 , . . . , T

2
t2) and tc = t1+t2:

q̂c,α =

∫ T c
(tc)

T c
(1)

qLc(q)π(q)dq

∫ T c
(tc)

T c
(1)

Lc(q)π(q)dq

∼=

∑
j∈J1

exp[−tc(1− α− j
tc
)2/{2α(1− a)}]

∫ T c
(j)

T c
(j−1)

qπ(q)dq

∑
j∈J1

exp[−tc(1− α− j
tc
)2/{2α(1− a)}]

∫ T c
(j)

T c
(j−1)

π(q)dq
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In this case, we reach the estimated value of the variance of the CVs comparable with
the variance of the CVs found in the table. If the value of the test statistic based on the
data, t0, is greater than q̂c,α, then we reject the null.

If V1 > σ2
0 , combine T 1 and T 2 into a new T 1 so that the new t1 is equal to t1 + t2.

Repeat stages one and two until the stop condition (V1 ≤ σ2
0) is reached or the number

of the new combined values of test statistics, T 1, is greater than 35,000.

In summary, the algorithm is performed iteratively, and the decision to perform
another iteration of the scheme is based on a comparison of the variance estimator Vk

and the parameter σ2
0 .

4 The vxdbel command

4.1 Description

In this article, we present a Stata implementation of the DBEL ratio test in the command
vxdbel. This command conducts a one-sample test of symmetry, two-sample compari-
son, or three-sample comparison as described above. The command output presents an
applicable test statistic and p-value.

4.2 Syntax

The syntax of the command to execute the test of symmetry and K-sample distribution-
free DBEL ratio test is

vxdbel varlist
[
, sided(description) method(type) level(#) reps(#)

]

where varlist specifies up to three variable names.

4.3 Options

sided(description) specifies the test as one sided or two sided. sided(greater) and
sided(less) perform a one-sided test. sided(two.sided) (the default) conducts a
two-sided test.

method(type) specifies the test method. method(interpolation)(the default) defines
it as interpolation, method(mc) defines it as MC, and method(hybrid) defines it as
hybrid.

level(#) specifies the significance level, as a percentage, for the hybrid method. The
default is level(95).

reps(#) specifies the number of repetitions to use in calculating the critical values for
the MC method. The default is reps(10000).
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4.4 Remarks

Three Stata tables are provided with the command. For the MC method, the critical
values are obtained by MC simulations for each test conducted as described in section 3.1.
For the interpolation method, the provided tables of CVs are used to obtain the p-value
as described in section 3.2. For the hybrid method, which is based on the Bayesian
approach, the provided tables of CVs are used to obtain initial parameter estimates
(µ0, σ0) as described in section 3.3.

Further, assuming the method() option is set to interpolation or hybrid, the provided
tables of CVs are complete for sample sizes less than or equal to 30 but are incomplete
for sample sizes greater than 30. If all the sample sizes are 30 or less, then the CVs are
directly available in the tables. If any of the sample sizes is greater than 30, then the
CVs are not directly available in the tables. In this case, the hybrid and interpolation
methods are used to obtain the desired CVs.

5 Simulations

In this section, we examine the power of the proposed tests. In particular, we compare
the power of our tests with that of the classical tests, and we compare the new hybrid
method with the MC and interpolation methods. Simulations were conducted for 10,000
repetitions for all tests with varying sample sizes, at a significance level of 0.05. In the
interest of economy, we present just a part of the obtained MC results to show the general
picture of the evaluations. The power of the proposed tests was simulated under various
alternatives. To describe the MC simulations, we use the following abbreviations: N( )
is the normal distribution with mean µ and standard deviation σ; u(a, b) is the uniform
distribution between a and b; e(β) is the exponential distribution with parameter β;
and logN(µ.σ) is the lognormal distribution with mean µ and standard deviation σ.

To complete table 1, we compare the powers of proposed one-sample tests with
those of Wilcoxon (W) tests. In accordance with the statistical literature, with regard
to normally distributed data and the change of location, the W test is considered to
be close to an optimal test. We can see that our test provided powers that are not
significantly different from those of the W test. However, in cases different from the one
above, the proposed test is superior to the W test. For example, when the two-sided
test is based on u(−1, 0.8) distributed data with n = 40, the proposed test provides a
power of 0.3965 versus the W test power of 0.1997, a 99% increase relative to the W
test.
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In tables 2 and 3, the powers of proposed two-sample tests are compared with those
of W and Kolmogorov–Smirnov (KS) tests. In accordance with the statistical litera-
ture, with regard to normally distributed data and change of location, the W test is
very powerful. In such cases, we observed that our test provided powers that are not
significantly different from those of the W test. However, in cases different from the
one above, the proposed test is superior to the W and KS tests. For example, when
the two-sided test is based on N(1, 1) and N(0, 2) distributed data with sample sizes
of 10 and 25, respectively, the power of the proposed test was significantly higher than
that of the W and KS tests. The proposed, W, and KS test powers were 0.6603, 0.3257,
and 0.3727, respectively, with the proposed test showing a 103% and a 77% increase
relative to the W and the KS, respectively. Similar results were seen for the two-sided
test with sample distributions u(1, 2) and logN(0, 1). The proposed, W, and KS test
powers at sample sizes of 10 and 20 were 0.9934, 0.2351, and 0.5446, respectively, with
the proposed test showing a 323% and an 82% increase relative to the W and the KS,
respectively. The same situations are observed, but not shown, when the test is based
on two exponentially distributed data or two Cauchy-distributed data.
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To complete table 4, we compared the powers of proposed three-sample tests with
those of ANOVA F and KW tests. In accordance with the statistical literature, with
regard to normally distributed data and the change of location, the F test is considered
to be close to an optimal test. We observed that our test provided powers that are not
significantly different from those of the F test. However, in cases different from the one
above, the proposed test is superior to the F test. For example, when the test is based
on N(0, 1), N(0, 1), and u(−1, 1) distributed data with sample sizes of 37, 45, and 50,
respectively, the proposed test provides a power of 0.9809 versus the F test power of
0.0610 and the KW test power of 0.0577, with the proposed test having a 1508% and
a 1600% increase relative to the F and the KW test, respectively. The proposed three-
sample test outperformed the F and KW tests under almost all the tested alternatives.

Table 4. The MC power comparisons between the proposed, F , and KW three-sample
tests

Distributions n m k Proposed F KW

N(0,1)×2: u(−1,1) 25 15 20 0.3745 0.0573 0.0526
25 25 25 0.5578 0.0529 0.0521
37 45 50 0.9809 0.0610 0.0577

e(1)×2: logN(0,1) 25 15 20 0.2313 0.2306 0.2386
37 45 50 0.6023 0.5481 0.5241

N(0,1)×2: N(0,2.25) 25 15 20 0.5908 0.0685 0.0599
25 25 25 0.7719 0.0624 0.0576
37 45 50 0.9941 0.0497 0.0544

N(0,1)×2: N(0,0.25) 25 15 20 0.9950 0.0610 0.0664
25 25 25 0.9998 0.0584 0.0651

e(1): logN(0,1): u(0,1) 25 15 20 0.9645 0.8004 0.6745
25 25 25 0.9980 0.9121 0.8311

To analyze the methods for calculating critical values of the exact tests mentioned
in sections 3.1, 3.2, and 3.3, we conducted the following MC comparisons. In table 5, the
type I errors for the proposed two-sample test were compared for the MC, interpolation,
and hybrid methods. The two-sample test was based on N(0, 1) and N(0, 1) distributed
data samples. The type I errors for the test were appropriately controlled at 5% for all
three methods. For example, when the test is based on sample sizes of 35 and 37, the
actual type I errors are 0.0483, 0.0526, and 0.0526 for the MC, interpolation, and hybrid
methods, respectively.
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Table 5. The MC type I error comparisons between proposed methods for a two-sample
test

Design n m MC Interpolation Hybrid

N(0,1)×2 32 35 0.0538 0.0520 0.0472
40 0.0533 0.0583 0.0513
50 0.0519 0.0446 0.0498

35 37 0.0483 0.0526 0.0526
50 0.0476 0.0327 0.0488

37 50 0.0513 0.0467 0.0526
40 50 0.0469 0.0351 0.0498

The type I errors for the proposed three-sample test were compared for the MC,
interpolation, and hybrid methods in table 6. The three-sample test was based on
sample distributions of N(0, 1), N(0, 1), and N(0, 1). The type I errors for the test were
appropriately controlled at 5% for all three methods. The hybrid and MC methods are
comparable, but the hybrid method on average uses five times fewer MC repetitions.

Table 6. The MC type I error comparisons between proposed methods for a three-sample
test

Design n m k MC Interpolation Hybrid

N(0,1)×3 32 40 50 0.0493 0.0454 0.0519
35 35 35 0.0546 0.0415 0.0501
50 37 40 0.0477 0.0441 0.0466

As mentioned in sections 3.1, 3.2, and 3.3, the interpolation and hybrid methods use
tables of CVs.

6 Application

In this section, the proposed three-sample comparison test is illustrated via a dataset
of blood test results for patients with anemia (Wians et al. 2001). A total of 134 pa-
tients with anemia underwent a series of blood tests. To eliminate the bias that might
be caused by gender, researchers limited the analysis to the 55 female study patients.
Ferritin concentration provides a useful screening test for iron deficiency anemia (IDA).
Nonpregnant women with anemia and a ferritin concentration less than 20 µg/l were
assigned to the IDA group, while those with anemia and a ferritin concentration greater
than 240 µg/l were assigned to the anemia of chronic disease (ACD) group. The interme-
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diate group consists of the women with ferritin concentration between 20 and 240 µg/l.
There were 12, 14, and 29 females in the ACD, intermediate, and IDA groups, respec-
tively. We want to compare the sample distributions of the two rapid blood tests—that
is, total iron-binding capacity (TIBC) and percent transferrin saturation (%TS)—to dis-
criminate between the ACD, intermediate, and IDA groups (Tian et al. 2011).

Tian et al. (2011) focus on the confidence interval estimation of the differences in
paired volumes under surfaces (VUS) and paired partial volumes under surfaces (PVUS).
The 95% confidence intervals were [0.1103, 0.5139] for ∆VUS and [0.038, 0.1515] for
∆PVUS. Both confidence intervals showed that TIBC had better diagnostic ability than
%TS. The assumption of multivariate normality for each group was tested and not
rejected.

We use the vxdbel command to conduct three-sample comparison tests, comparing
the three groups within the two rapid blood tests. In addition, we use the vxdbel

command to conduct two-sample comparison tests, comparing each group between the
two rapid blood tests. First, we conduct the three-sample comparison of the three
groups for the TIBC.

. use tibc

. vxdbel ICD Intermediate ACD
T0 P-value

DBEL (3-sample) 44.2553 <0.0001

The test results indicate that the distributions of the three groups are not equal.

Similarly, we conduct the three-sample comparison of the three groups for the %TS.

. use ts

. vxdbel ICD Intermediate ACD
T0 P-value

DBEL (3-sample) 25.1539 0.0003

The test results indicate that the distributions of the three groups are not equal.

Thus the proposed three-sample test can discriminate between the three groups for
both the TIBC and the %TS blood tests.

In addition, we conducted a two-sample comparison of TIBC versus %TS for each
group. We note that the %TS and TIBC result values have completely different scales.
The %TS results range within single digits, and the TIBC results range within hundreds,
so a standardization transformation was applied to make the results of the blood tests
comparable. For brevity, the vxdbel results are not presented. The p-values for the
three two-sample tests were 0.4556, 0.9647, and 0.0939 for the IDA, intermediate, and
ACD groups, respectively. The test results suggest that the distributions between TIBC

and %TS for each group are equal.

In conducting clinical experiments, researchers often desire to compare populations
receiving different treatments to establish equivalence or desire to test identical dis-
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tribution assumptions of various statistical tests. Thus the proposed Stata command
can be used in such experiments without assumptions on data distributions (Tian et
al. [2011] assumed normal distributions of observations). In general, there is excellent
applicability for discriminating between samples in any context.

7 Concluding remarks

In this article, we proposed and examined the one-sample symmetry and K-sample
comparison DBEL ratio tests. The tests are shown to be exact and robust nonparametric
tests that approximate the optimal LR test statistic. The powers of the tests were
comparable and in many cases outperformed the classical tests.

To date, simple DBEL tests have not been presented in Stata but are considered very
efficient in practice. We developed and presented a command for Stata to perform the
discussed approaches. The data example was used to demonstrate that the command
is simple to use. The command performs both one-sided and two-sided alternatives for
one-sample symmetry and two-sample comparison tests; it also performs a three-sample
comparison test. The command can perform three methods: the MC method for best
accuracy and the interpolation and hybrid methods for improved speed. The command
is freely available for download at

http://sphhp.buffalo.edu/biostatistics/research-and-facilities/software/stata.html

The MC study performed in this article confirmed powerful properties of the proposed
tests. We demonstrated that our one- and two-sample tests outperform the classical
nonparametric tests of W and KS and that the three-sample test outperforms the F and
KW tests under various alternatives. Further, this is accomplished while appropriately
controlling the type I error for all the tests. The data example shows that the proposed
test can be easily and efficiently used by practitioners.
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