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Abstract. We present new Stata commands for carrying out several regression
commands suitable for binomial outcomes. The zib command extends Stata’s
binreg command to allow zero inflation. The betabin command fits binomial
regression models allowing for beta overdispersion, and the zibbin command fits
a beta-binomial regression model with zero inflation. All the new commands al-
low the specification of links within the glm command’s collection for both out-
come and zero inflation. The zero-inflated commands optionally calculate a Vuong
test comparing the zero-inflated model with the nonzero-inflated model, and the
zibbin command optionally includes a likelihood-ratio test of the overdispersion
parameter.

Keywords: st0337, betabin, zib, zibbin, binomial outcomes, Vuong test, zero infla-
tion, beta overdispersion

1 Introduction

Regression modeling of binary outcomes is supported by several Stata commands. Miss-
ing from the official collection of commands is support for zero inflation and beta disper-
sion. We present Stata commands to evaluate zero-inflated binomial (ZIB) regression,
beta-binomial regression, and zero-inflated beta-binomial regression. This article is or-
ganized as follows: in section 2, we review the regression models; in section 3, we present
Stata syntax for the new commands; and in section 4, we present examples.

c© 2014 StataCorp LP st0337
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2 Binomial regression models

A binomial outcome is characterized by

P (Y = y) =

(
n

y

)
µy(1− µ)n−y

where the expected value of the outcome is nµ for n independent trials, each with a
probability of success given by µ. In binomial regression, we model the probability
of success, µ, via a link function g( ), of a linear combination of covariates Xβ. The
compound beta-binomial distribution results from assuming the probability of success,
µ, is a random variable that follows a Beta(α, β) distribution. The resulting probability
mass function can be written as

P (Y = y) =

(
n

y

)
B(y + α, n− y + β)

B(α, β)

with mean nα/(α+β) and variance nαβ(α+β+n)/{(α+β)2(α+β+1)}. Substituting
p = α/(α+ β) and σ = 1/(αβ), the probability mass function is given by

P (Y = y) =

(
n

y

)
B(y + p/σ, n− y + (1− p)/σ)

B(p/σ, (1− p)/σ)

with mean np and variance np(1 − p)(1 + nσ)/(1 + σ) so that the variance exceeds
that of the binomial model when (1 + nσ)/(1 + σ) > 1. Thus extra binomial disper-
sion is accounted for only when n > 1 and when σ > 0; the new commands support
estimation using the same grouped binomial data that are addressed by Stata’s glm,

family(binomial N) for generalized linear models and by the blogit and bprobit

commands for logistic and probit regression models, respectively.

In the following subsections, we review various approaches to regression modeling of
binary outcomes.

2.1 General binomial regression

General binomial regression models are fit using Stata’s glm command; one can also use
the binreg command. Specific regression models (fitting binomial models for a specific
link function) can also be fit using model-specific commands: logit and logistic fit
logistic regression models; probit fits a probit regression model; and cloglog can be
used to fit complementary log-log regression models. Using the glm command is the
most convenient: it represents one command from which multiple models (via various
link functions) can be fit.

2.2 General binomial regression with zero inflation

As with the zero-inflated Poisson and the zero-inflated negative binomial models, we can
imagine two separate processes generating outcomes such that the outcome of the two
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processes are partially visible. The two binary components of the model are programmed
through the glm command in Stata and admit all supported glm link functions.

In the general (grouped) binomial regression model, each observation in the dataset
contains information on the number of successes out of a number of trials where each
trial has the same probability of success. This probability of success is parameterized
via a user-specified link function of a linear predictor, xβ. When we incorporate zero
inflation, we consider a Bernoulli process that models the probability of zero successes.
This probability of failure is parameterized via a user-specified link function of a linear
predictor, zγ. Given that this part of the data-generating process is Bernoulli and
models the probability of zero successes, it is modeling the probability of failure for one
trial. This is backward from the binomial model with which it is combined, and users
must take care interpreting the coefficients of the Bernoulli (inflation) process as being
associated with a higher likelihood of failure (zero successes), while the coefficients of the
binomial process are associated with a higher likelihood of success for each independent
trial.

P (Y = 0) = PBernoulli(Y = 0|zγ)
+ {1− PBernoulli(Y = 0|zγ)}PBinomial(Y = 0|xβ, n)

P (Y = y > 0) = {1− PBernoulli(Y = 0|zγ)}PBinomial(Y = y|xβ, n)

A Vuong test (Vuong 1989) evaluates whether the binomial model with zero inflation
or the binomial model without zero inflation is closer to the true model. This equation
is equivalent to the interpretation of the Vuong test for the zip and zinb commands.

A random variable, ω, is defined as the vector logLZ − logLS, where LZ is the
likelihood of the zero-inflated model evaluated at its maximum likelihood estimates, and
LS is the likelihood of the standard (nonzero-inflated) model evaluated at its maximum
likelihood estimates. The vector of differences over the N observations is then used to
define the statistic

V =

√
Nω√∑

i(ωi − ω)2/(N − 1)

which, asymptotically, is characterized by a standard normal distribution. A significant
positive statistic indicates preference for the zero-inflated model, and a significant neg-
ative statistic indicates preference for the model without zero inflation. Nonsignificant
Vuong statistics indicate no preference for either model. Results of this test are included
in a footnote to the estimation of the model when the user includes the vuong option.

2.3 Beta-binomial regression

Griffiths (1973) and Prentice (1986) popularized a regression model for outcomes follow-
ing the beta-binomial model. Subsequently, Guimarães (2005) provided readers of this
journal an introduction to methods for estimating beta-binomial parameters. Herein,
we provide a full regression command for grouped binomial data (with and without zero
inflation) following this distribution. Similar to how the negative binomial model allows
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for greater dispersion than the Poisson model, the beta-binomial regression model allows
for greater dispersion than the binomial model. This extra variability originates from
assuming that the mean parameter in the binomial model follows a beta distribution;
the binomial component is programmed through the glm command and supports all the
glm link functions.

Because the beta-binomial regression model differs from the general binomial re-
gression model only when σ > 0, estimation of the model includes the appropriate test
of the null hypothesis that σ = 0. Similar to testing the dispersion parameter in a
negative binomial model, the hypothesis test evaluates the parameter at the boundary
of the parameter space. As such, the resulting statistic is a distributed chi-bar with a
single degree of freedom. Results of this test are included as a footnote to the output
of the model estimation.

2.4 Beta-binomial regression with zero inflation

Analogous to how the ZIB model allows extra dispersion and zero inflation, the zero-
inflated beta-binomial regression model allows extra-binomial dispersion and zero in-
flation. The two binary components of the model are programmed through the glm

command in Stata and thus admit all supported glm link functions.

Because the zero-inflated beta-binomial regression model differs from the ZIB regres-
sion model only when σ > 0, estimation of the model includes the appropriate test.
However, unlike with the betabin command, this test is included in the output only
when the user requests the test via the zib option. This implementation mimics that
of the zip option for the zinb command. Interpretation of the test results is the same
as for the zinb command.

In addition, a Vuong test evaluates whether the beta-binomial model with zero
inflation or the beta-binomial model without zero inflation is closer to the true model.
As in the interpretation of the Vuong test for the zip, zinb, and zib commands,
a significant positive statistic indicates preference for the zero-inflated model, and a
significant negative statistic indicates preference for the model without zero inflation.
Nonsignificant Vuong statistics indicate no preference for either model. Results of this
test are included in a footnote to the estimation of the model when the user includes
the vuong option.
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3 Stata syntax

The software accompanying this article includes the command files and supporting files
for dialogs and help. In all the following syntax diagrams, unspecified options include
the usual collection of maximization and display options available to all estimation
commands. In addition, all commands include the option link(linkname) to specify
the link function for the binomial model, and the zero-inflated commands include the
option ilink(linkname) to specify the link function for the inflation model. Supported
linknames include logit, probit, loglog, and cloglog.

Equivalent in syntax to the zip command, the basic syntax for the ZIB model is

zib depvar
[
indepvars

] [
if

] [
in

] [
weight

]
,

inflate(varlist
[
, offset(varname)

]
| cons) n(varname n)

[
vuong options

]

Equivalent in syntax to the nbreg command, the basic syntax for the beta-binomial
regression model is

betabin depvar
[
indepvars

] [
if

] [
in

] [
weight

]
, n(varname n)

[
options

]

Equivalent in syntax to the zinb command, the basic syntax for the zero-inflated beta-
binomial regression model is

zibbin depvar
[
indepvars

] [
if
] [

in
] [

weight
]
,

inflate(varlist
[
, offset(varname)

]
| cons) n(varname n)

[
vuong zib

options
]

Help files are included for the estimation and postestimation specifications of these
models. The help files include example specifications.

4 Example

Using data included in Hilbe (2009) on surviving passengers of the Titanic (see table 1),
we highlight the use of the new commands and the interpretation of fitted coefficients.
For pedagogical reasons, we have altered the data by changing some survivor numbers
to facilitate examination of the data by the zero-inflated models.

The data are organized in 12 passenger types constituting the outcome for 1,316
passengers. Passenger types are defined by whether the members are adult, whether
they are male, and whether they are first-, second-, or third-class passengers.
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Table 1. Survivors among different categorizations of passengers on the Titanic

Survive N Adult Male Class Survive N Adult Male Class

0 1 0 0 1 140 144 1 0 1
0 13 0 0 2 80 93 1 0 2
14 31 0 0 3 76 165 1 0 3
0 5 0 1 1 57 175 1 1 1
0 11 0 1 2 14 168 1 1 2
0 48 0 1 3 75 462 1 1 3

Because we are interested in the predictors of passenger survival, we first construct
a regression with the outcome variable survive as the numerator of the binomial re-
sponse and the variable N as the denominator of the binomial response. The N variable
represents the number of passengers having the same pattern or values for the model
predictors, that is, the same values for adult, male, and class. There are 12 separate
sets of covariate patterns in the data. The explanatory predictors adult and male are
binary; class is a categorical variable with three values or levels. We created three
indicator variables for each level of class, designating class1 (first-class passengers)
as the reference level. Because we are treating these data as grouped data for which
observations within a group might be more correlated than observations from different
groups, we specify robust standard errors in generalized linear model specifications. Be-
cause the beta-binomial regression models incorporate an extra dispersion parameter,
we specify model-based standard errors in those cases.

. glm survive adult male class2 class3, family(binomial N) nolog eform
> vce(robust)

Generalized linear models No. of obs = 12
Optimization : ML Residual df = 7

Scale parameter = 1
Deviance = 86.69204634 (1/df) Deviance = 12.38458
Pearson = 77.51997519 (1/df) Pearson = 11.07428

Variance function: V(u) = u*(1-u/N) [Binomial]
Link function : g(u) = ln(u/(N-u)) [Logit]

AIC = 10.79288
Log pseudolikelihood = -59.75725742 BIC = 69.2977

Robust
survive Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

adult 5.379405 4.653434 1.95 0.052 .987201 29.31318
male .0741401 .0409807 -4.71 0.000 .0250931 .2190545

class2 .2766598 .1523033 -2.33 0.020 .0940488 .8138397
class3 .2041763 .106587 -3.04 0.002 .073392 .5680175
_cons 1.562367 1.383433 0.50 0.614 .2754655 8.861329



298 Binomial regression models

We note the Pearson dispersion statistic of 11.074, which clearly indicates overdis-
persion in the data.

. estat ic

Model Obs ll(null) ll(model) df AIC BIC

. 12 . -59.75726 5 129.5145 131.939

Note: N=Obs used in calculating BIC; see [R] BIC note

The Bayesian information criterion (BIC) statistic for this model is 131.94, and the
Akaike’s information criterion (AIC) is 129.51.

Subsequently, we specified the complementary log-log link in place of the canonical
logit link:

. glm survive adult male class2 class3, family(binomial N) link(cloglog) nolog
> eform vce(robust)

Generalized linear models No. of obs = 12
Optimization : ML Residual df = 7

Scale parameter = 1
Deviance = 65.24144526 (1/df) Deviance = 9.320206
Pearson = 58.8251827 (1/df) Pearson = 8.403598

Variance function: V(u) = u*(1-u/N) [Binomial]
Link function : g(u) = ln(-ln(1-u/N)) [Complementary log-log]

AIC = 9.005326
Log pseudolikelihood = -49.03195688 BIC = 47.8471

Robust
survive exp(b) Std. Err. z P>|z| [95% Conf. Interval]

adult 3.663888 2.765667 1.72 0.085 .834482 16.08672
male .1375246 .0394917 -6.91 0.000 .0783337 .2414418

class2 .4232986 .1475969 -2.47 0.014 .2137212 .83839
class3 .2782559 .0781055 -4.56 0.000 .1605147 .4823628
_cons .860577 .6584041 -0.20 0.844 .1921138 3.854969

. estat ic

Model Obs ll(null) ll(model) df AIC BIC

. 12 . -49.03196 5 108.0639 110.4884

Note: N=Obs used in calculating BIC; see [R] BIC note

This model appears to be the best-fitted standard generalized linear model for the
data. The Pearson dispersion statistic has reduced to 8.4, and the AIC and BIC statistics
have respective values of 108.06 and 110.49, a substantial improvement over the logit
model.

Ideally, an equidispersed binomial model has a dispersion statistic of 1.0. We seek to
determine what may be causing the inflated dispersion statistic, which represents extra-
binomial correlation in the data. We note that 5 of the 12 binomial numerators have 0
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values. Like the zero-inflated Poisson model, a ZIB model can be used to accommodate
binomial overdispersion, adjusting for Poisson overdispersion because of excessive zero
counts.

We attempted both the logit and the complementary log-log links using the new zib

command. The complementary log-log link provided better results.

. zib survive adult male class2 class3, n(N) inflate(adult male class2 class3)
> link(cloglog) nolog eform vce(robust)

Zero-inflated binomial regression Number of obs = 12
Regression link: cloglog Nonzero obs = 7
Inflation link : logit Zero obs = 5

LR chi2(4) = 480.98
Log pseudolikelihood = -35.96415 Prob > chi2 = 0.0000

Robust
survive exp(b) Std. Err. z P>|z| [95% Conf. Interval]

survive
adult 1.383654 .3449018 1.30 0.193 .8488861 2.255306
male .1412465 .0418428 -6.61 0.000 .0790347 .2524278

class2 .4484645 .1542485 -2.33 0.020 .2285382 .8800296
class3 .2641123 .0757093 -4.64 0.000 .1505868 .4632232
_cons 2.274691 .6520528 2.87 0.004 1.296942 3.989551

inflate
adult -79.48796 1.805339 -44.03 0.000 -83.02636 -75.94957
male 38.90549 1.477246 26.34 0.000 36.01014 41.80084

class2 -.2168801 1.061966 -0.20 0.838 -2.298296 1.864536
class3 -40.15798 1.397274 -28.74 0.000 -42.89659 -37.41937
_cons 20.52229 .9281515 22.11 0.000 18.70315 22.34144

. estat ic

Model Obs ll(null) ll(model) df AIC BIC

. 12 -276.4523 -35.96415 9 89.92831 94.29247

Note: N=Obs used in calculating BIC; see [R] BIC note

The initial part of the regression table reports usual binomial regression results.
From this part of the model, we can see that males (compared with females), second-
class (compared with first-class) passengers, and third-class (compared with first-class)
passengers are more likely to be survivors of the disaster. The inflation part of the
model reports the association of the covariates with the likelihood of a zero outcome.
Compared with children, adults are far less likely to have zero survivors. Similarly,
compared with males, females are far less likely to have zero survivors. Finally, third-
class passengers, compared with first-class passengers, are far less likely to have zero
survivors.

We do not have a Pearson dispersion statistic with this model, although it can be
derived. However, the AIC statistic rather substantially decreased from 108.06 to 89.93,
as did the BIC statistic (down to 94.29).
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Next we fit a beta-binomial model for the data; the generalization from binomial
to beta binomial is similar to that of Poisson to negative binomial. Though we do
not illustrate results for the logit link, the complementary log-log link proved to be a
better-fitting link than the logit link.

. betabin survive adult male class2 class3, n(N) nolog eform link(cloglog)

Beta-binomial regression Number of obs = 12
Link = cloglog LR chi2(4) = 18.71
Dispersion = beta-binomial Prob > chi2 = 0.0022
Log likelihood = -31.990675 Pseudo R2 = 0.2263

survive exp(b) Std. Err. z P>|z| [95% Conf. Interval]

adult 9.762161 8.616098 2.58 0.010 1.730909 55.05765
male .1380966 .0661646 -4.13 0.000 .0539954 .3531908

class2 .495203 .216559 -1.61 0.108 .2101558 1.166877
class3 .3748033 .1957181 -1.88 0.060 .1346839 1.043017
_cons .2738493 .2611105 -1.36 0.174 .0422577 1.774669

/lnsigma -2.164766 .7019774 -3.540616 -.7889153

sigma .1147768 .0805707 .0289955 .4543374

Likelihood-ratio test of sigma=0: chibar2(01) = 34.08 Prob>=chibar2 = 0.000

. estat ic

Model Obs ll(null) ll(model) df AIC BIC

. 12 -41.34621 -31.99068 6 75.98135 78.89079

Note: N=Obs used in calculating BIC; see [R] BIC note

The beta-binomial model results in a significantly better model than the ZIB. The
AIC drops from 108.06 to 75.98, and the BIC from 94.29 to 78.89. Note that adult

and class3 (third class) are not significant at the 0.05 level. The likelihood-ratio test
indicates that the beta-binomial model is preferred to the logit model.
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Finally, we turn to the zero-inflated beta binomial model. There is still the problem
of excessive zero counts in the data. Recall that the zero-inflated complementary log-log
model was preferred to the standard complementary log-log model. Here the canonical
logit link is preferred over the complementary log-log link. Note that we are using the
logit link for the model’s inflation component.

. zibbin survive adult male class2 class3, n(N)
> inflate(adult male class2 class3) link(cloglog) nolog eform

Zero-inflated beta-binomial regression Number of obs = 12
Regression link: logit Nonzero obs = 7
Inflation link : logit Zero obs = 5

LR chi2(4) = 16.72
Log likelihood = -26.1544 Prob > chi2 = 0.0022

survive exp(b) Std. Err. z P>|z| [95% Conf. Interval]

survive
adult 1.471449 .9772518 0.58 0.561 .4003373 5.408344
male .0410846 .0223641 -5.86 0.000 .0141363 .1194054

class2 .2796984 .143201 -2.49 0.013 .102539 .7629415
class3 .0867963 .0593631 -3.57 0.000 .0227161 .3316411
_cons 9.555155 8.167465 2.64 0.008 1.789187 51.02932

inflate
adult -74.79802 21738.02 -0.00 0.997 -42680.53 42530.94
male 36.05695 13572.33 0.00 0.998 -26565.22 26637.34

class2 -.1523928 15692.19 -0.00 1.000 -30756.29 30755.98
class3 -36.94756 15063.43 -0.00 0.998 -29560.73 29486.83
_cons 19.01662 12869.68 0.00 0.999 -25205.09 25243.13

/lnsigma -3.300808 .5982408 -4.473338 -2.128277

sigma .0368534 .0220472 .0114092 .1190422

. estat ic

Model Obs ll(null) ll(model) df AIC BIC

. 12 -34.51573 -26.1544 11 74.30881 79.64278

Note: N=Obs used in calculating BIC; see [R] BIC note

The excess number of zero counts indeed appears to be a factor in the observed
overdispersion in the data. The AIC drops to 74.31. Though the BIC increases slightly
to 79.64, the difference between 79.64 and 78.89 is only 0.75. We affirm that there is
no significant difference between the BIC measures for these models. Note that we have
incorporated the adult variable in the main component of the model despite its not
being a significant predictor of survival. We also point out that the class2 variable is
not significant in the logistic inflation component of the model.
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. zibbin survive adult male class2 class3, n(N) inflate(adult male class3)
> link(cloglog) nolog eform zib vuong

Zero-inflated beta-binomial regression Number of obs = 12
Regression link: logit Nonzero obs = 7
Inflation link : logit Zero obs = 5

LR chi2(4) = 16.72
Log likelihood = -26.1544 Prob > chi2 = 0.0022

survive exp(b) Std. Err. z P>|z| [95% Conf. Interval]

survive
adult 1.471449 .9772515 0.58 0.561 .4003373 5.408342
male .0410846 .0223641 -5.86 0.000 .0141363 .1194055

class2 .2796986 .1432011 -2.49 0.013 .102539 .7629418
class3 .0867964 .0593631 -3.57 0.000 .0227162 .3316412
_cons 9.555147 8.167456 2.64 0.008 1.789186 51.02925

inflate
adult -74.75848 21851.03 -0.00 0.997 -42901.99 42752.48
male 36.06967 13642.47 0.00 0.998 -26702.68 26774.82

class3 -36.74312 11790 -0.00 0.998 -23144.72 23071.23
_cons 18.81744 8834.441 0.00 0.998 -17296.37 17334

/lnsigma -3.300808 .5982408 -4.473338 -2.128277

sigma .0368534 .0220472 .0114092 .1190422

Likelihood-ratio test of sigma=0: chibar2(01) = 44.59 Prob>=chibar2 = 0.000
Vuong test of zibb vs. standard beta binomial: z = 1.49 Pr>z = 0.0684

. estat ic

Model Obs ll(null) ll(model) df AIC BIC

. 12 -34.51573 -26.1544 10 72.30881 77.15787

Note: N=Obs used in calculating BIC; see [R] BIC note

For this model, the AIC is now 72.31, and the BIC is 77.16. Each of the predictors
has significant p-values at the 0.05 level. The comparison of the zero-inflated beta-
binomial regression model with the ZIB model for binomial outcome data is similar to the
comparison of the zero-inflated negative binomial model with the zero-inflated Poisson
model for count data. The requested Vuong statistic is not statistically significant.
While the AIC and BIC statistics indicate a slight preference for this final model, the
Vuong test does not indicate that either the beta-binomial model or the zero-inflated
beta-binomial model is closer to the true model.
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