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Abstract. We present new Stata commands for estimating several regression
models suitable for analyzing overdispersed count outcomes. The nbregp command
nests the dispersion(constant) and dispersion(mean) versions of Stata’s nbreg
command in a model for negative binomial(p) regression. The zignbreg command
extends Stata’s gnbreg command for zero inflation, and the zinbregp command fits
a negative binomial(p) regression model with zero inflation. The new commands
for zero-inflated models allow specification of links within the glm command’s
collection for the Bernoulli model of zero inflation. These commands will optionally
calculate a Vuong test, which compares the zero-inflated model with the nonzero-
inflated model.

Keywords: st0336, nbregp, zignbreg, zinbregp, Vuong test, zero inflation

1 Introduction

Regression modeling of count outcomes is supported in several Stata commands. Missing
from the official collection of commands is support for a regression model based on a
generalization of the negative binomial (NB) distribution discussed in Greene (2008).
A simple version of this model (without support for predict or zero inflation) was
illustrated in Hardin and Hilbe (2012). This illustration used a simple lf style program
callable from Stata’s ml command. However, the command lacked the full support
enjoyed by Stata’s other built-in commands.

We present Stata estimation commands to evaluate negative binomial(p) (NB-P)
regression, zero-inflated generalized NB regression, and zero-inflated NB-P regression.
This article is organized as follows: in section 2, we review the regression models; in
section 3, we present Stata syntax for the new commands; and in section 4, we present
examples.

c© 2014 StataCorp LP st0336
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2 Two extensions of NB regression

The NB probability mass function is given by

f(y;α, δ) =
Γ(y + 1/α)

Γ(1/α)Γ(y + 1)

(
1

1 + δα

)1/α (
1− 1

1 + δα

)y

with mean E(y) = δ, and variance V (y) = δ(1 + δα). Stata users have access to two
parameterizations of the NB distribution. The two results of the parameterizations
are called the NB-1 (constant dispersion) and the NB-2 (mean dispersion) models. The
numerals used in naming these two models correspond to the nature of the variance
(as a function of the power of the mean). The NB-1 model results from introducing
coefficients via α = θ exp(Xβ) = θµ and δ = exp(Xβ) = µ so that the mean is µ,
the variance is µ(1 + θ), and the dispersion is (1 + θ). The NB-2 model results from
introducing regressors X via α = θ and δ = exp(Xβ) = µ so that the mean is µ, the
variance is µ(1 + µθ), and the dispersion is 1 + µθ.

Stata software has included the gnbreg command since at least the release of ver-
sion 4.0. The gnbreg command includes an observation-specific dispersion parameter
via a linear combination of predictors (separate from the linear combination of predictors
for the mean). Instead of being a scalar value constant over all observations, as assumed
in the nbreg command, this generalization allows the dispersion to change even within
a specific covariate pattern for the mean. Thus the gnbreg command generalizes the
treatment of the dispersion parameter in the regression model. Specifically, regressors
X are introduced via α = θ and δ = exp(Xβ) as in the NB-2 specification, and a second
set of regressors Z is used to replace the dispersion parameter θ = exp(Zγ). This is not
the only generalization of the NB regression model.

Greene (2008) discusses the implementation of a second generalization to the un-
derlying NB probability distribution for which the variance is a function of a parameter
power of the mean; also see Cameron and Trivedi (2013). In this NB-P model, regressors
X are introduced via α = θ exp(Xβ)P−2 = θµP−2 and δ = exp(Xβ) = µ so that the
mean is µ, the variance is µ(1 + µP−1θ), and the dispersion is (1 + µP−1θ). In this
presentation, we see that the distribution is equal to NB-1 when P = 1 and to NB-2

when P = 2.

2.1 Zero-inflated count models

Similar to the manner in which the zero-inflated Poisson and the zero-inflated NB models
are derived, we can imagine two separate processes generating outcomes such that the
outcome of the two processes are partially visible.
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In the generalized NB regression model, each observation in the dataset contains
information on the number of outcomes (successes); this count can also be thought of as a
rate if we consider the amount of time for which each observation was exposed. When we
consider zero inflation for binomial or count outcomes, we introduce a Bernoulli process
that models the probability of zero successes; this probability of failure is parameterized
via a user-specified link function of a linear predictor, zγ:

P (Y = 0) = PBernoulli(Y = 0|zγ)
+ {1− PBernoulli(Y = 0|zγ)}Pcount(Y = 0|xβ, n)

P (Y = y > 0) = {1− PBernoulli(Y = 0|zγ)}Pcount(Y = y|xβ, n)

An extension of the likelihood-ratio test called the Vuong test (Vuong 1989) evaluates
whether the count model with zero inflation or the count model without zero inflation
is closer to the true model.

A random variable ω is defined as the vector logLZ − logLS, where LZ is a vector
of the observation-level contributions to the likelihood of the zero-inflated model eval-
uated at its maximum likelihood estimate, and LS is a vector of the observation-level
contributions to the likelihood of the standard (nonzero-inflated) model evaluated at its
maximum likelihood estimate. The vector of differences over the N observations is then
used to define the statistic

V =

√
Nω√∑

i(ωi − ω)2/(N − 1)

which, asymptotically, is characterized by a standard normal distribution. A significant
positive statistic indicates preference for the zero-inflated model, and a significant neg-
ative statistic indicates preference for the model without zero inflation. Nonsignificant
Vuong statistics indicate no preference for either model. Results of this test are included
in a footnote to the estimation of the model when the user includes the vuong option.

Thus zero-inflated versions of the NB-P and the generalized NB model can be devel-
oped. Each zero-inflated model can be compared with the associated model without
zero inflation via the Vuong test.

Greene (2008) points out that a Vuong statistic could be developed to compare the
NB-1 and NB-2 models. When the count model includes only a constant, this statistic
is zero, and Greene (2008) reports rarely encountering a significant result for this com-
parison in practice. Obviously, if one were to generate synthetic data according to one
or the other distribution, the statistic would achieve the nominal size for large enough
samples. However, Greene (2008) also points out that under the NB-P model, one can
perform likelihood-ratio tests against either (or both) of the NB-1 and NB-2 models.
These likelihood-ratio tests are included by default in the accompanying software.

3 Stata syntax

The software accompanying this article includes the command files and supporting files
for prediction and help. In all the following syntax diagrams, unspecified options include



J. W. Hardin and J. M. Hilbe 283

the usual collection of maximization and display options available to all estimation com-
mands. In addition, the zero-inflated commands zignbreg and zinbregp include the
option ilink(linkname) to specify the link function for the inflation model. Supported
linknames include logit, probit, loglog, and cloglog.

Equivalent in syntax to the zip command, the basic syntax for the zero-inflated
generalized NB model is

zignbreg depvar
[
indepvars

] [
if
] [

in
] [

weight
]
,

inflate(varlist
[
, offset(varname)

] ∣∣ cons) lnalpha(varlist)
[
vuong options

]

Equivalent in syntax to the nbreg command, the basic syntax for the NB-P regression
command is

nbregp depvar
[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

Equivalent in syntax to the zip command, the basic syntax for the zero-inflated NB-P

regression command is

zinbregp depvar
[
indepvars

] [
if
] [

in
] [

weight
]
,

inflate(varlist
[
, offset(varname)

] ∣∣ cons)
[
vuong options

]

Help files are included for the estimation and postestimation specifications of these
models. The help files include example specifications.

4 Example

We use the included dataset on German health reform to build models similar to those
used in the discussion of Riphahn, Wambach, and Million (2003). These data include
several variables: the number of days each year the patient visits a physician, docvis;
the age in years of the patient, age; the monthly income in German marks per 1,000,
hhninc; and the number of years (including partial years) of education, educ.

We illustrate a Poisson model of docvis on age, hhninc, and educ. Using Stata’s
glm command, we see evidence of overdispersion in the Pearson statistic. Recall that
the Poisson distribution assumes that the mean and variance of the response variable
are equal for a given set of covariates. When the mean and variance are equal, the data
are said to be equidispersed. When the variance is greater than the mean, the data are
said to be overdispersed. Evaluating whether there is overdispersion in data is indicated
when the (1/df) Pearson statistic is greater than one.
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. use rwm

. keep if age != . & hhninc != . & educ != . & docvis != .
(0 observations deleted)

. glm docvis age hhninc edu, nolog family(poisson)

Generalized linear models No. of obs = 27326
Optimization : ML Residual df = 27322

Scale parameter = 1
Deviance = 156589.5963 (1/df) Deviance = 5.731264
Pearson = 256396.682 (1/df) Pearson = 9.384257

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 7.671674
Log likelihood = -104814.0886 BIC = -122520.9

OIM
docvis Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0212508 .0003047 69.75 0.000 .0206536 .021848
hhninc -.0532375 .0022036 -24.16 0.000 -.0575564 -.0489186

educ -.0420873 .0017279 -24.36 0.000 -.045474 -.0387006
_cons .8523131 .0254907 33.44 0.000 .8023521 .902274

. estat ic

Model Obs ll(null) ll(model) df AIC BIC

. 27326 . -104814.1 4 209636.2 209669

Note: N=Obs used in calculating BIC; see [R] BIC note

The dispersion statistic is 9.38, which is far greater than would be estimated if the
data were equidispersed. Likely reasons for overdispersion in these data are that the
data are longitudinal and that there are an excess of zero outcomes. For illustration, we
are ignoring these important facts in some of these analyses. A first step in addressing
overdispersion is to consider fitting an NB regression model. This model allows overdis-
persion such that the conditional variance of the outcome is assumed to be a quadratic
function of the conditional mean.
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. glm docvis age hhninc edu, nolog family(nbinomial ml)

Generalized linear models No. of obs = 27326
Optimization : ML Residual df = 27322

Scale parameter = 1
Deviance = 28510.91449 (1/df) Deviance = 1.043515
Pearson = 36242.35265 (1/df) Pearson = 1.32649

Variance function: V(u) = u+(1.9363)u^2 [Neg. Binomial]
Link function : g(u) = ln(u) [Log]

AIC = 4.415284
Log likelihood = -60322.02105 BIC = -250599.5

OIM
docvis Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0204292 .0008006 25.52 0.000 .0188601 .0219984
hhninc -.0476814 .0052278 -9.12 0.000 -.0579278 -.0374351

educ -.0459575 .0042257 -10.88 0.000 -.0542398 -.0376752
_cons .9132608 .0633757 14.41 0.000 .7890467 1.037475

Note: Negative binomial parameter estimated via ML and treated as fixed once
estimated.

. estat ic

Model Obs ll(null) ll(model) df AIC BIC

. 27326 . -60322.02 4 120652 120684.9

Note: N=Obs used in calculating BIC; see [R] BIC note

The dispersion statistic for the NB regression model is 1.33. This is a substantial
improvement but still indicates unaccounted overdispersion. In fact, a substantial num-
ber of zero outcomes in the data may reflect a completely separate data-generating
mechanism. We will explore that idea with zero-inflated models. Before investigating
zero-inflated models, we first investigate two alternatives.

Negative binomial regression is a common first strategy for addressing overdispersed
data. The scalar heterogeneity parameter in the NB model can often appropriately ad-
just for the extra correlation in the data. Thus it is necessary to assess the heterogeneity
parameter to determine whether it is different from zero. If not, then the NB model is no
different from the Poisson model. We can assess the parameter as part of the standard
output of the nbreg command.
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. nbreg docvis age hhninc edu, nolog

Negative binomial regression Number of obs = 27326
LR chi2(3) = 1027.40

Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = -60322.021 Pseudo R2 = 0.0084

docvis Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0204292 .0008006 25.52 0.000 .0188601 .0219984
hhninc -.0476814 .0052279 -9.12 0.000 -.0579279 -.037435

educ -.0459575 .0042257 -10.88 0.000 -.0542398 -.0376752
_cons .9132608 .0633758 14.41 0.000 .7890465 1.037475

/lnalpha .6608039 .0115374 .638191 .6834168

alpha 1.936348 .0223404 1.893053 1.980634

Likelihood-ratio test of alpha=0: chibar2(01) = 8.9e+04 Prob>=chibar2 = 0.000

. estat ic

Model Obs ll(null) ll(model) df AIC BIC

. 27326 -60835.72 -60322.02 5 120654 120695.1

Note: N=Obs used in calculating BIC; see [R] BIC note

Clearly, the dispersion parameter (labeled alpha) is significantly different from zero.
Thus the NB model seems to fit the data better than the Poisson model. When one
uses the default parameterization of the NB regression model, dispersion(mean), the
conditional variance of the outcome is a quadratic function of the conditional mean
µ(1+ θµ)—this is the so-called NB-2 model. One could specify dispersion(constant),
in which case the parameterization of the NB model would specify a conditional variance
of the outcome that was a linear function of the conditional mean µ(1 + θ)—this is the
so-called NB-1 model.

A generalized (three-parameter) NB distribution yielding an alternative regression
model is known as the NB-P model. In this generalization, the relationship of the
conditional variance in terms of the conditional mean is a parameter.

The generalized NB-P is often used to determine between choosing the NB-1 or the NB-

2 model for a given set of count data. The NB-P model incorporates an additional scalar
parameter to the standard NB symbolizing the term “power”, where the conditional
variance of the conditional mean is given by µ(1+θµP−1). Clearly, these NB models allow
for overdispersion but not underdispersion. Also note that when data are adequately
modeled as Poisson, the NB-P model can encounter numeric difficulties in estimation
because θ and P are near zero.

Parameterized in this fashion, the θ parameter in the model is such that higher
values reflect greater correlation in the data. Therefore, the NB-2 model can adjust for
a greater degree of correlation than the NB-1 model. See Cameron and Trivedi (2013),
Greene (2012), Hilbe and Greene (2008), and Hilbe (2011). Note that Hardin and Hilbe
(2012) also treat this model but parameterize θ in the reciprocal.
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While some statisticians prefer to model overdispersed data using only powers as-
sociated with the well-known NB-1 or NB-2, allowing the NB-P model to be used as a
means to select between the two forms of the NB model, one can use the NB-P model in
its own right.

. nbregp docvis age hhninc edu, nolog

Negative binomial-P regression Number of obs = 27326
Wald chi2(3) = 1059.09

Log likelihood = -60258.97 Prob > chi2 = 0.0000

docvis Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0217776 .000775 28.10 0.000 .0202587 .0232965
hhninc -.0387497 .0053987 -7.18 0.000 -.049331 -.0281684

educ -.0412764 .0042127 -9.80 0.000 -.0495332 -.0330196
_cons .7702929 .0622765 12.37 0.000 .6482332 .8923525

/P 1.544368 .0425538 36.29 0.000 1.460964 1.627772
/lntheta 1.187102 .0507474 1.087639 1.286565

theta 3.27757 .166328 2.967261 3.620331

Likelihood-ratio test of P=1: chi2 = 115.72 Prob > chi2 = 0.0000
Likelihood-ratio test of P=2: chi2 = 126.10 Prob > chi2 = 0.0000

. estat ic

Model Obs ll(null) ll(model) df AIC BIC

. 27326 . -60258.97 6 120529.9 120579.2

Note: N=Obs used in calculating BIC; see [R] BIC note

The Akaike information criterion (AIC) and Bayesian information criterion (BIC)
statistics are some 130 lower than standard NB-2 regression but about 50 higher than
the heterogeneous NB. If we were foremost interested in using NB-P to select between NB-

1 or NB-2 for modeling the data, the model does not help much. With an estimated value
of the power parameter at 1.54, neither NB-1 nor NB-2 is clearly preferred. Adjusting
for zero counts and using a zero-inflated NB-P may well resolve the issue.

Another generalization of the (two-parameter) NB distribution is to allow the overdis-
persion parameter to vary across observations instead of assuming that it is a fixed-scalar
quantity. Stata refers to this model as a generalized NB regression model, though others
call it a heterogeneous NB regression model.

The heterogeneous NB model allows us to determine which predictors most influence
the value of the dispersion parameter. For these data, the heterogeneous model may
tell us which predictors influence the generation of zero counts. Significant coefficients
of the scale parameter are those likely influencing zero values.
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. gnbreg docvis age hhninc edu, nolog lnalpha(age hhninc edu)

Generalized negative binomial regression Number of obs = 27326
LR chi2(3) = 1039.39
Prob > chi2 = 0.0000

Log likelihood = -60230.363 Pseudo R2 = 0.0086

docvis Coef. Std. Err. z P>|z| [95% Conf. Interval]

docvis
age .0208972 .0008043 25.98 0.000 .0193209 .0224736

hhninc -.0467431 .0050995 -9.17 0.000 -.0567379 -.0367483
educ -.0454817 .004282 -10.62 0.000 -.0538742 -.0370891
_cons .8837919 .0646169 13.68 0.000 .757145 1.010439

lnalpha
age -.0131726 .0010249 -12.85 0.000 -.0151814 -.0111639

hhninc -.0208019 .0070329 -2.96 0.003 -.0345861 -.0070177
educ .0073402 .0056123 1.31 0.191 -.0036597 .0183401
_cons 1.239363 .0828105 14.97 0.000 1.077057 1.401668

. estat ic

Model Obs ll(null) ll(model) df AIC BIC

. 27326 -60750.06 -60230.36 8 120476.7 120542.5

Note: N=Obs used in calculating BIC; see [R] BIC note

There is evidence that the dispersion varies across age and income categories. How-
ever, we may not have suitably addressed a difference in the underlying mechanisms
producing zero and count outcomes. We have extended Stata’s gnbreg command to
allow for zero inflation. As with other zero-inflated commands, we have also included
the Vuong test to compare the zero-inflated model with the nonzero-inflated model.
Also we have extended the nbregp command to allow for zero inflation.
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. zinbregp docvis age hhninc edu, inflate(age hhninc) vuong nolr nolog

Zero-inflated negative binomial-p regression Number of obs = 27326
Regression link: Nonzero obs = 17191
Inflation link : logit Zero obs = 10135

Wald chi2(3) = 1002.52
Log likelihood = -60257.39 Prob > chi2 = 0.0000

docvis Coef. Std. Err. z P>|z| [95% Conf. Interval]

docvis
age .0211927 .0008709 24.33 0.000 .0194857 .0228996

hhninc -.0450366 .0063834 -7.06 0.000 -.0575478 -.0325253
educ -.0417591 .0042365 -9.86 0.000 -.0500625 -.0334556
_cons .8357666 .0741013 11.28 0.000 .6905306 .9810025

inflate
age -.0368993 .0147789 -2.50 0.013 -.0658654 -.0079332

hhninc -.5452372 .2344786 -2.33 0.020 -1.004807 -.0856675
_cons -1.231483 .8693829 -1.42 0.157 -2.935442 .4724763

/P 1.563359 .0451585 34.62 0.000 1.47485 1.651869
/lntheta 1.145579 .0582813 1.031349 1.259808

theta 3.14426 .1832516 2.804848 3.524744

Vuong test of zinbregp vs. negative binomial(p): z = 105.70 Pr>z = 0.0000

. estat ic

Model Obs ll(null) ll(model) df AIC BIC

. 27326 . -60257.39 9 120532.8 120606.7

Note: N=Obs used in calculating BIC; see [R] BIC note

The value of alpha, as understood for standard NB-2 regression, is the same as theta
reported above. It is rather high, but it is lower than that of the nonzero-inflated model,
which indicates that it needed to adjust for the excess zero-response values. The Vuong
statistic also informs us that the zero-inflated model is favored over the model that does
not adjust for excess zero counts. Predictors influencing the generation of zeros are age
and income. Educational level does not appear to contribute to zero counts. The fact
that the data are clustered by year undermines the usefulness of both the AIC and the
BIC statistics, which assume the independence of observations. Standard errors differ
little from the model-based standard errors. In this case, the AIC and BIC statistics are
slightly higher than the model that does not adjust for zero counts, so we cannot rely
on either of them to tell us much about the models in question.
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Note that both the inflate() and lnalpha() options are required: inflate()

specifies the predictors we believe may influence the generation of zero counts, and
lnalpha() defines the predictors we believe bear on the dispersion statistic.

. zignbreg docvis age hhninc edu, nolog lnalpha(age hhninc edu)
> inflate(age hhninc) vuong

Zero-inflated generalized binomial regression Number of obs = 27326
Regression link: Nonzero obs = 17191
Inflation link : logit Zero obs = 10135

LR chi2(3) = 914.30
Log likelihood = -60230.36 Prob > chi2 = 0.0000

docvis Coef. Std. Err. z P>|z| [95% Conf. Interval]

docvis
age .0208973 .0008043 25.98 0.000 .019321 .0224737

hhninc -.0467432 .0050995 -9.17 0.000 -.0567381 -.0367484
educ -.0454815 .004282 -10.62 0.000 -.0538741 -.037089
_cons .8837831 .0646171 13.68 0.000 .7571359 1.01043

inflate
age -.0036265 17.52539 -0.00 1.000 -34.35276 34.34551

hhninc .0564263 89.04143 0.00 0.999 -174.4616 174.5744
_cons -18.27565 1189.44 -0.02 0.988 -2349.536 2312.984

lntheta
age -.0131727 .0010249 -12.85 0.000 -.0151815 -.011164

hhninc -.0208018 .0070329 -2.96 0.003 -.034586 -.0070176
educ .0073404 .0056123 1.31 0.191 -.0036595 .0183403
_cons 1.239372 .0828105 14.97 0.000 1.077066 1.401677

Vuong test of zignbreg vs. gen negative binomial: z = 0.24 Pr>z = 0.4039

. estat ic

Model Obs ll(null) ll(model) df AIC BIC

. 27326 -60687.51 -60230.36 11 120482.7 120573.1

Note: N=Obs used in calculating BIC; see [R] BIC note

The Vuong test shows no preference for the model with or without zero inflation, so
we would prefer the more parsimonious specification. In this example, the generalized
(heterogeneous) NB model seems to fit the data best.
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