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Simulated multivariate random-effects probit

models for unbalanced panels
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Abstract. This article develops a method for implementing a simulated multivari-
ate random-effects probit model for unbalanced panels (with gaps) and illustrates
the model by using artificial data. Halton draws generated by mdraws are used to
simulate multivariate normal probabilities with the mvnp() egen function. The es-
timator can be easily adjusted, for example, to allow for autocorrelated errors. The
advantages of this simulated estimation, when compared with existing commands
such as redpace, are high accuracy and improved stability.

Keywords: st0335, mdraws, mvnp(), redpace, Halton draws, random effects, sim-
ulated multivariate probit

1 Introduction

Dynamic models fit the effect of the past outcome on the current one, for example,
the previous years’ labor-market position (employed, unemployed) on today’s labor-
market position. Estimations can be biased when not taking individual-specific effects
into account, which is done by including a time-invariant error term (Heckman 1981a).
Furthermore, the initial conditions might be correlated with the time-invariant error
term and, therefore, endogenous, referred to in the literature as the “initial condition
problem” (Heckman 1981b).

Different estimation techniques take care of both aspects. If the outcome variable
is binary, nonlinear models such as probit and logit can be applied. For probit mod-
els, there are two different commands, redprob and redpace, both written by Stewart
(2006a,b).1 The first command is calculated using (adaptive) Gauss–Hermite quadra-
tures, and the second one, using maximum simulated likelihood (MSL). A limitation of
the redprob command is that it needs a balanced panel. While the redpace help file
states that the command requires a balanced panel, it can be applied for unbalanced
panels, although gaps are not allowed.

This article focuses on simulated estimations. The mvnp() egen function (Cappellari
and Jenkins 2006a) uses the Geweke–Hajivassilou–Keane (GHK) (Keane 1994) simulator
to calculate multivariate normal probabilities. For simulation, one needs to take random

1. In the case of a categorical variable, Haan and Uhlendorff (2006) have presented the implementation
of a multinomial random-effects logit estimator for Stata. Hole (2007) has written a command for
mixed logits by using maximum simulated likelihood.

c© 2014 StataCorp LP st0335



260 Simulated multivariate random-effects probit models

draws from multivariate normal density to simulate multivariate normal probabilities.2

One command that derives quasi-random numbers, also referred to as Halton draws,
is mdraws, written by Cappellari and Jenkins (2003, 2005, 2006b).3 Halton draws are
applied because of their high effectiveness. For example, fewer numbers are needed as
compared with pseudorandom numbers. In the estimation, the likelihood is simulated,
and the average of these simulations is derived. The principles of MSL are described in
Train (2009).

The main advantage of applying simulated multivariate normal probabilities is that
the link between the time points in a dynamic model can be directly adjusted to the
researcher’s purpose by specifying the variance–covariance matrix accordingly. The first
illustration presents the basic estimation technique of a dynamic process with an unbal-
anced panel (including gaps) based on simulated multivariate normal probabilities. The
second illustration shows how to specify the variance–covariance matrix to allow for au-
tocorrelated errors. The advantages of this estimation technique, when compared with
the redpace command, are high accuracy and improved stability. Furthermore, indica-
tions that computational time can be saved are found in the model with autocorrelated
errors.

The remainder of the article is organized as follows: The first part presents the un-
derlying econometric structure of a simulated multivariate random-effects probit model.
The first illustration shows the Stata routine for an unbalanced panel with gaps and an
empirical example based on artificial data. Robustness checks of the simulation proper-
ties are performed, including a comparison of the estimation results with the redpace

command. The second illustration extends the model by allowing for autocorrelated
error terms. The last part concludes.

2 Multivariate random-effects probit model

The latent variable y∗it is specified by

y∗it = γyi(t−1) + x′
itβ + αi + uit

2. Halton sequences can also be generated using Mata (see Drukker and Gates [2006]).
3. A detailed discussion of the underlying commands can be found here.
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with i = 1, . . . , N indicating the individuals and t = 2, . . . , T indicating the time peri-
ods. Explanatory variables are the lagged dependent variable yit−1 and the exogenous
regressors x′

it. αi is the time-invariant error term, and uit is a time-specific idiosyncratic
shock. It is assumed that the time-invariant error term and the explanatory variables
are uncorrelated.4 It is also assumed that the idiosyncratic shock follows a standard
normal distribution uit ∼ N(0, 1) and that the time-invariant error term is independent
and identically distributed αi ∼ N(0, σ2

α). In most panels, the number of observed
periods is small; therefore, in these cases, asymptotics are on N alone. The observed
binary outcome variable is defined as

yit =

{
1 if y∗it > 0

0 else

The composite error term is νit = αi + uit.
5 Because the composite error term incor-

porates the time-invariant error term, the composite error term is correlated over time.
Therefore, the composite error term takes the following equicorrelation structure over
time,

corr(νit, νis) = σ2
α

with t, s = 2, . . . , T and t 6= s. Because the outcome in the initial period might not be
randomly distributed and T is thus endogenous, the proposition of Heckman (1981b) is
followed by estimating a static equation for the first period6

y∗i1 = z′i1π + ǫi

with i = 1, . . . , N . zi1 contains the explanatory variables xit and exogenous instruments
that have an effect on the outcome in only the initial period. It is assumed that the
time-invariant error term of the subsequent periods αi is correlated with the error term
in the initial period in the following manner:

ǫi = θαi + ui1

For the idiosyncratic shock in the initial period, the following normalization is chosen:
ui1 ∼ N(0, 1). The correlation of the composite error term between the initial period
and the subsequent ones is

corr(ǫi, νit) = θσ2
α

4. This assumption might easily be violated. Alternatively, Mundlak–Chamberlain decomposition
could be applied by including the time mean of the explanatory variables on the right side of the
equation system (see Mundlak [1978] and Chamberlain [1984]).

5. Note that the composite error term is not standard normal distributed; thus coefficients must be
adjusted when they are interpreted (see Arulampalam [1999]).

6. Wooldridge (2005) proposed an alternative approach by including the outcome of the initial period
as an exogenous regressor in periods t ≥ 2.
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where t = 2, . . . , T . The variance–covariance matrix of order T × T of the equation
system now takes the following form:7

Ω =




θ2σ2
α + 1
θσ2

α σ2
α + 1

θσ2
α σ2

α σ2
α + 1

...
...

...
. . .

θσ2
α σ2

α σ2
α . . . σ2

α + 1




Following the approach of Cappellari and Jenkins (2006a), a multivariate probit model
is applied. By this means, the likelihood contribution of each individual is8

ΦiT = (ki1z
′
i1π, ki2x

′
i2β, . . . , kiTx

′
iTβ,

ki1ki2Ω2,1, ki1ki3Ω3,1, . . . , kiT−1kiTΩT,T−1)

ΦiT is the cumulative multivariate normal distribution function of order T . Ωp,q refers
to row p and column q of the variance–covariance matrix Ω. The model has T levels of
explanatory variables and T (T −1)/2 covariance parameters. There are T sign variables
kit, where

kit =

{
1 if yit = 1

−1 else

Hence, the log likelihood to be maximized is the sum of the individual log-likelihood
contributions

lnL =
N∑

i=1

lnΦiT (µ;Ω)

where µ = (ki1z
′
i1π, . . . , kiTx

′
iTβ) and Ω = (ki1ki2Ω2,1, . . . , kiT−1kiTΩT,T−1). For de-

riving the likelihood, multivariate normal probability functions of order T are required.
In Stata, only the bivariate normal distribution function exists. Using Halton draws
that are derived by the command mdraws, simulated multivariate normal probabilities
are generated by the mvnp() egen function. The total number of generated Halton
draws is R, and with each draw r ∈ (1, . . . , R), multivariate normal probabilities are
simulated, and the average of these simulations is derived. Hence, the logarithm of the
simulated likelihood is

lnSL =
1

R

R∑

r=1

N∑

i=1

lnΦr
iT (µ;Ω)

In the first illustration, the implementation of the Stata routine9 for a simulated
multivariate random-effects probit model is presented with the help of simulated data.
The advantage of simulated data is that the accuracy of the estimator can be derived.
In the second step, a robustness check is applied, and the performance of the estimator

7. Note that the variance–covariance matrix is symmetric, so only the lower triangular part is shown.
8. To simplify notation, the lagged dependent variable is incorporated into x′

it
.

9. The mvnp() egen function and the mdraws command must be installed.
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is compared with the performance of the redpace command because both estimators
are based on simulated likelihoods. In the second illustration, the Stata routine for
simulated multivariate random-effects probit models with autocorrelated errors is pre-
sented.

3 Illustrations

3.1 Illustration 1: Simulated multivariate random-effects probit
model for unbalanced panels

An artificial dataset containing 1,000 individuals is created. Each individual is iden-
tified by the variable id. A panel containing five periods is constructed by expand-
ing the existing dataset by the value of five. The variable tper identifies the period
for each individual, running from t = 1, . . . , 5. With the command drawnorm, the
time-invariant error term (alpha), explanatory (x1, x2, x3) and instrumental variables
(Instrument), the idiosyncratic shock (u i), and a variable called Random are gener-
ated. The time-invariant error term has a normalization of ∼ N(0, 2), and all other
variables are standard normal distributed, that is, ∼ N(0, 1). The variable Random is
a temporary identifier that helps to construct an unbalanced panel with gaps. With
the function normal(), the normal distributed numbers are transformed into numbers
within the range 0 and 1. For each individual, the values of the variable Random and
alpha for the time points t = 2, . . . , 5 are replaced by the initial value.

. set obs 1000
obs was 0, now 1000

. set seed 987654321

. generate id=_n

. expand 5
(4000 observations created)

. by id, sort: generate tper=_n

. matrix m = (0,0,0,0,0,0,0)

. matrix sd = (sqrt(2),1,1,1,1,1,1)

. drawnorm alpha Instrument x1 x2 x3 u_i Random, n(5000) means(m) sds(sd)
> seed(987654321)

. replace Random=normal(Random)
(5000 real changes made)

. sort id tper

. by id: replace alpha=alpha[1]
(4000 real changes made)

. by id: replace Random=Random[1]
(4000 real changes made)
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The latent variable y∗ is constructed in the following manner:

y∗i1 = 0.7 + 0.35x1 + 0.66x2 + 0.25x3 + 1.5xInstrument + θαi + ui1

Here xInstrument is an instrumental variable that will affect the outcome of the initial
period but not the subsequent ones. For the initial period, it is assumed that θ takes the
value 1. For the subsequent periods, t = 2, . . . , 5, the following relationship is defined:

y∗it = 0.35 + 0.46yt−1 + 0.25x1 + 0.75x2 + 0.55x3 + αi + uit

The observable variable yit becomes 1 if y∗it > 0 and 0 otherwise. In addition, the variable
ylag is generated, which takes the value of the outcome variable of the previous period.

. sort id (tper)

. local theta=1

. by id: generate ystar=.35*x1 + .66*x2 + .25*x3 + 1.5*Instrument + .7 +
> `theta´*alpha + u_i if _n==1
(4000 missing values generated)

. by id: generate y=cond(ystar>0,1,0) if _n==1
(4000 missing values generated)

. sort id (tper)

. forvalues i=2/5 {
2. by id: replace ystar =.25*x1 + .75*x2 + .55*x3 + .46*y[_n-1] + .35 +

> alpha + u_i if _n==`i´
3. by id: replace y=cond(ystar>0,1,0) if _n==`i´
4. }

(output omitted )

. sort id (tper)

. by id: generate ylag=cond(_n>1,y[_n-1],.)
(1000 missing values generated)

The fifth time point of those observations is dropped if the value of the variable
Random exceeds 0.85, and the fourth and the fifth time point are dropped if Random is
below 0.10. To construct a gap within the time sequence of the observation, the routine
drops the third time point when the value of the variable Random is between 0.25 and
0.30.10 The variable nwave contains information about the number of waves of which
an individual is part and ranges between 3 and 5.

. drop if tper==5 & Random>.85
(151 observations deleted)

. drop if tper>=4 & Random<.10
(160 observations deleted)

. drop if tper==3 & Random>.25 & Random<=.30
(56 observations deleted)

. by id (tper), sort: generate nwave=_N

In Stata, only the cumulative bivariate normal distribution is implemented. To
calculate multivariate normal probabilities, one applies the approach of Cappellari and

10. All thresholds are picked arbitrarily.
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Jenkins (2006a). Multivariate normal probabilities are simulated by either Halton quasi-
random or pseudorandom sequences using the GHK simulator. For multivariate normal
distributions of order T , mvnp() returns the joint cumulative distribution of multi-
variate normal probabilities. In this simulation, 100 Halton quasi-random draws are
generated.11 The number of periods determines the dimensions of integration. Though
an unbalanced sample is applied, five dimensions are generated for each observation. A
prefix is used to identify the generated random numbers for the simulation of the mul-
tivariate normal probabilities later. The random numbers are based on prime numbers
in the following manner (for details of the method, see Cappellari and Jenkins [2006a,
2003, 2005, 2006b] and Train [2009]):

. matrix p=(2,3,5,7,11)

. global dr = 100

. global T_max=5

. global T_min=3

. mdraws, neq(5) draws($dr) prefix(z) primes(p) burn(15)
Created 100 Halton draws per equation for 5 dimensions. Number of initial
draws dropped per dimension = 15 . Primes used:

2 3 5 7 11

The number of random draws is saved in the macro ($dr). Additionally, 2 globals
are generated, with T max referring to the maximum number of periods, here 5, and
T min referring to the minimum number of periods, here 3.12 Both globals are needed
later in the Stata syntax.

The implementation of the Stata code is based on an extension of the approach of
Cappellari and Jenkins (2006a).13

11. Halton quasi-random numbers instead of pseudorandom numbers are applied because of greater
accuracy; see Cappellari and Jenkins (2006a) and Train (2009).

12. The group with several periods of 4 also contains those observations with a gap in their time
sequence.

13. A helpful introduction into maximum likelihood estimation can be found in Gould, Pitblado, and
Poi (2010).
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program define mpheckman_d0
args todo b lnf
tempname sigma theta
tempvar beta pi lnsigma lntheta T fi fi6 fi5 fi4 fi3 FF
mleval `beta´ = `b´, eq(1)
mleval `pi´ = `b´, eq(2)
mleval `lnsigma´ = `b´, eq(3) scalar
mleval `lntheta´ = `b´, eq(4) scalar

scalar `sigma´=(exp(`lnsigma´))^2
scalar `theta´=exp(`lntheta´)

qui: {
by idcode: generate double `T´ = (_n == _N)
sort idcode (year)
tempvar k1 zb1
by idcode: generate double `k1´ = (2*$ML_y1[1]) - 1
by idcode: generate double `zb1´ = `pi´[1]
forvalues r = 2/$T_max {

tempvar k`r´ xb`r´
by idcode: generate double `k`r´´ = (2*$ML_y1[`r´]) - 1
by idcode: generate double `xb`r´´ = `beta´[`r´]

}

forvalues s=$T_min/$T_max {
tempname V`s´ C`s´

}

mat `V$T_max´=I($T_max)*(`sigma´+1)
mat `V$T_max´[1,1]=(`theta´^2)*`sigma´+1

forvalues row=2/$T_max {
mat `V$T_max´[`row´,1] = (`theta´*`sigma´)
mat `V$T_max´[1,`row´] = `V$T_max´[`row´,1]
local s = `row´-1
forvalues col=2/`s´ {

mat `V$T_max´[`row´,`col´] = `sigma´
mat `V$T_max´[`col´,`row´] = `V$T_max´[`row´,`col´]

}
}

forvalues r = $T_min/$T_max {
mat `V`r´´ = `V$T_max´[1..`r´,1..`r´]
mat `C`r´´ = cholesky(`V`r´´)

}
egen double `fi5´ = mvnp(`zb1´ `xb2´ `xb3´ `xb4´ `xb5´) if nwave==5, /*
*/ chol(`C5´) dr($dr) prefix(z) signs(`k1´ `k2´ `k3´ `k4´ `k5´) adoonly
egen double `fi4´ = mvnp(`zb1´ `xb2´ `xb3´ `xb4´) if nwave==4, /*
*/ chol(`C4´) dr($dr) prefix(z) signs(`k1´ `k2´ `k3´ `k4´) adoonly
egen double `fi3´ = mvnp(`zb1´ `xb2´ `xb3´) if nwave==3, /*
*/ chol(`C3´) dr($dr) prefix(z) signs(`k1´ `k2´ `k3´) adoonly

generate double `fi´=cond(nwave==5,`fi5´,cond(nwave==4,`fi4´,`fi3´))
generate double `FF´ = cond(!`T´,0,ln(`fi´))
}
mlsum `lnf´ = `FF´ if `T´
if (`todo´==0 | `lnf´>=.) exit

end
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In the first part of the maximum likelihood model, the utilized parameters are speci-
fied, where beta refers to the explanatory variables for the time period t = 2, . . . , T , and
pi refers to the explanatory variables of the initial period. The parameters used for the
specification of the variance–covariance matrix, θ and σα, are included in logarithmic
form. Therefore, the exponential function is applied; hence, the second expression is
taken in addition to the square.

Time-specific sign variables (k1, . . . , k5) and explanatory variables (zb1, xb2, . . . , xb5)
are defined afterward. The explanatory variables referring to the initial period are
labeled as zb1 and the subsequent ones as xbt with t ∈ (2, . . . , 5).

Thereafter, the variance–covariance matrix, with respect to the full time periods
V5, is defined.14 The elements of the main diagonal are σ2

α + 1 for the time period
t ≥ 2; they are θ2σ2

α+1 for the initial period t = 1. In the following loop, the remaining
elements of the matrix are defined. Those covariances correlated with the initial period
are defined as θσ2

α; the remaining covariances are defined as σ2
α. In the next loop,

those observations with T < 5 submatrices from the variance–covariance matrix V5

are extracted. Then the Cholesky decompositions of the variance–covariance matrix,
C3 . . .C5, are derived by the matrix function cholesky().

The Cholesky decomposed variance–covariance matrices are needed when multivari-
ate normal probabilities are calculated with the mvnp() egen function. The Cholesky
decomposition of the variance–covariance matrix is Ω = V ×V′. When mvnp() is ap-
plied, the explanatory variables, the Cholesky decomposition of the variance–covariance
matrix (chol()), and the sign variables (signs()) must be inserted. The link to the
generated random numbers is prefix(z), the number of draws used by dr($dr). For
lower computational time, the calculation of the probabilities is restricted to those ob-
servations with the corresponding number of time periods [constraint nwave==T , where
T ∈ (3, . . . , 5)]. Finally, the logarithm of the calculated probabilities is summed up over
each observation.

Because of the application of the two macros, T max and T min, the described syntax
can easily be extended to datasets with different settings, for example, with longer
periods. However, the calculation of the probabilities and the sum over each observation
must still be adjusted accordingly. Generalization of this procedure is an open research
task. An important advantage of this procedure is that the variance–covariance matrix
can be easily adjusted, for example, by taking autocorrelated errors into account (see
Illustration 2).

14. It is the same procedure as in the redpace command.
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Estimation time can be reduced by starting the estimation with feasible initial values.
In this example, we use the parameters of a probit model that does not account for
random effects:

. qui: probit y ylag x1 x2 x3 if tper>1

. matrix b0=e(b)

. qui: probit y x1 x2 x3 Instrument if tper==1

. matrix b1=e(b)

. matrix b12 = (-.5,-.5)

. matrix b0 = (b0 , b1 , b12)

Note that the instrumental variable for the initial period is Instrument, which is not
included in the subsequent periods as an explanatory variable. Furthermore, the lagged
dependent variable ylag is not on the right hand of the initial-period equation system.
Consequently, this variable contains missing values for the initial period. Hence, each
observation has one variable with missing values. To stop Stata from eliminating these
observations with missing values, we insert the option missing at the end of the ml

model.

. ml model d0 mpheckman_d0 (y: y = ylag x1 x2 x3) (Init_Period: y = x1 x2 x3 In
> strument) /lnsigma /lntheta, title(Multivariate RE Probit, $dr Halton draws)
> missing

. ml init b0, copy

. ml max

(output omitted )

Multivariate RE Probit, 100 Halton draws Number of obs = 4633
Wald chi2(4) = 452.75

Log likelihood = -2078.5332 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

y
ylag .4676766 .0820586 5.70 0.000 .3068447 .6285085

x1 .3017219 .0360704 8.36 0.000 .2310251 .3724187
x2 .7494927 .0433351 17.30 0.000 .6645574 .834428
x3 .5721053 .0394884 14.49 0.000 .4947094 .6495012

_cons .3166202 .0826484 3.83 0.000 .1546324 .4786081

Init_Period
x1 .3691082 .0719819 5.13 0.000 .2280263 .5101901
x2 .6834951 .0836506 8.17 0.000 .5195428 .8474473
x3 .34158 .0726513 4.70 0.000 .199186 .4839739

Instrument 1.495445 .1384893 10.80 0.000 1.224011 1.766879
_cons .6932924 .0923201 7.51 0.000 .5123483 .8742365

lnsigma
_cons .3614243 .0688798 5.25 0.000 .2264223 .4964262

lntheta
_cons -.0729095 .1373428 -0.53 0.596 -.3420965 .1962774
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Looking at the output, we can see that the values of the estimated coefficients for
the explanatory variables are close to the true values. The null hypothesis—it states the
estimated coefficient is equal to the true value—is not rejected in any case. To derive
σ2
α and θ, we must transform both variables. When we apply the command diparm,

the first derivative of the function must be obtained.

. _diparm lnsigma, function((exp(@))^2) deriv(2*(exp(@))*(exp(@)))
> label("Sigma^2") prob

Sigma^2 2.060294 .2838253 7.26 0.000 1.57278 2.698922

. _diparm lntheta, function(exp(@)) deriv(exp(@)) label("Theta") prob
Theta .9296849 .1276855 7.28 0.000 .7102797 1.216864

As can be seen, the estimated variance of αi is close to the true value. The results
also indicate that αi is correlated with the initial conditions because θ = 0 is strongly
rejected. Hence, the initial conditions cannot be taken as exogenous. Also θ is very close
to 1 (the true value), which implies that the impact of αi is not significantly different
from the impact in the subsequent periods t ≥ 2.

The simulation of multivariate normal probabilities is based on Halton quasi-random
numbers. The robustness of the estimation technique is checked by applying different
sets of primes to generate Halton draws. Five primes in the range between 2, . . . , 97
are picked randomly, following a suggestion of Stewart (2006b) constructing random
seeds:15

. forvalues r=1/10 {
2. primes 100, clear
3. set seed 987654321
4. generate long s=int((runiform()+10-_n)*10000000)
5. global d=s[`r´]
6. set seed $d
7. generate Random_`r´=runiform()
8. sort Random_`r´
9. qui: keep if _n<=5
10. sort prime
11. matrix p_`r´=(prime[1],prime[2],prime[3],prime[4],prime[5])
12. }

15. The primes command (Kolenikov 2005) must be installed.
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Altogether, 10 estimations are run; they use a different set of primes to simulate
multivariate normal probabilities. The results can be found in table 1.

Table 1. Multivariate random-effects probit model (different sets of primes)

Multivariate random-effects probit†

Halton quasi-random numbers‡

(1) (2) (3) (4) (5)

Dynamic sequence (t > 1)

yt−1 0.460 0.465 0.466 0.470 0.465 0.476
(0.082) (0.082) (0.082) (0.082) (0.082)

x1 0.250 0.302 0.301 0.301 0.302 0.299
(0.036) (0.036) (0.036) (0.036) (0.036)

x2 0.750 0.750 0.749 0.750 0.747 0.747
(0.043) (0.043) (0.043) (0.043) (0.043)

x3 0.550 0.574 0.573 0.572 0.573 0.569
(0.040) (0.040) (0.040) (0.039) (0.039)

constant 0.350 0.319 0.318 0.316 0.323 0.309
(0.083) (0.083) (0.083) (0.083) (0.082)

Initial period (t = 1)

x1 0.350 0.369 0.370 0.369 0.377 0.370
(0.072) (0.072) (0.072) (0.073) (0.072)

x2 0.660 0.680 0.686 0.685 0.694 0.686
(0.083) (0.084) (0.084) (0.085) (0.084)

x3 0.250 0.341 0.343 0.341 0.349 0.340
(0.072) (0.073) (0.073) (0.074) (0.073)

xInstrument 1.500 1.490 1.497 1.495 1.520 1.497
(0.137) (0.138) (0.140) (0.142) (0.141)

constant 0.700 0.691 0.694 0.693 0.707 0.695
(0.092) (0.092) (0.093) (0.094) (0.093)

σ2
α 2.000 2.067 2.069 2.052 2.061 2.021

(0.284) (0.286) (0.283) (0.284) (0.277)
θ 1.000 0.924 0.930 0.931 0.951 0.941

(0.125) (0.127) (0.130) (0.130) (0.131)
lnSL − −2077.769 −2078.334 −2078.834 −2076.100 −2079.220
Observations − 4,633 4,633 4,633 4,633 4,633

Prime numbers −
7,13, 2,7, 2,23 17,19, 3,37,

29,31,67 23,31,83 41,79,83 43,59,79 43,47,83

Continued on next page
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Multivariate random-effects probit†

Halton quasi-random numbers‡

(6) (7) (8) (9) (10)

Dynamic sequence (t > 1)

yt−1 0.460 0.467 0.469 0.470 0.466 0.462
(0.082) (0.082) (0.082) (0.082) (0.082)

x1 0.250 0.302 0.300 0.300 0.302 0.304
(0.036) (0.036) (0.036) (0.036) (0.036)

x2 0.750 0.751 0.747 0.748 0.750 0.753
(0.043) (0.043) (0.043) (0.043) (0.044)

x3 0.550 0.574 0.570 0.570 0.573 0.575
(0.040) (0.039) (0.039) (0.040) (0.040)

constant 0.350 0.319 0.315 0.313 0.319 0.327
(0.083) (0.083) (0.082) (0.083) (0.083)

Initial period (t = 1)

x1 0.350 0.370 0.369 0.372 0.371 0.370
(0.072) (0.072) (0.073) (0.072) (0.072)

x2 0.660 0.683 0.681 0.689 0.685 0.679
(0.083) (0.083) (0.085) (0.084) (0.083)

x3 0.250 0.341 0.341 0.344 0.342 0.341
(0.072) (0.072) (0.073) (0.073) (0.072)

xInstrument 1.500 1.494 1.489 1.507 1.500 1.488
(0.137) (0.137) (0.141) (0.139) (0.135)

constant 0.700 0.693 0.690 0.699 0.695 0.691
(0.092) (0.092) (0.093) (0.093) (0.091)

σ2
α 2.000 2.072 2.050 2.039 2.064 2.108

(0.284) (0.283) (0.281) (0.285) (0.290)
θ 1.000 0.924 0.925 0.946 0.932 0.912

(0.126) (0.127) (0.131) (0.129) (0.123)
lnSL − −2077.593 −2080.571 −2079.387 −2077.690 −2076.939
Observations − 4,633 4,633 4,633 4,633 4,633

Prime numbers −
3,17, 19,23, 2,3, 13,23, 5,59,

31,59,97 53,67,71 19,73,79 31,43,59 61,89,97

† Standard error in brackets. ‡ For each estimation, 100 Halton quasi-random numbers are

applied.

The estimation results of the multivariate random-effects probit model are now com-
pared with those of the redpace command, which was written by Stewart (2006b) and
uses Halton quasi-random numbers and additional pseudorandom numbers. Because
the latter command cannot be applied when the time sequence of the observation con-
tains gaps, a dataset identical to the one above is generated but without dropping time
periods. Thus the new dataset contains 5,000 observations. The latent variables are
constructed analogously to those in the previous section.
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To compare both techniques, we run the estimations on the basis of 20, 50, and
100 draws. In the multivariate random-effects model, Halton quasi-random numbers
are applied; in the redpace command, additional pseudorandom numbers are used.
Estimation results can be found in table 2.

The command redpace does not report the coefficient σ2
α but the proportion of the

time-invariant variance on the composite error term

λ =
σ2
α

σ2
α + σ2

u

As can be seen in table 2, when 100 draws are applied, all estimators derive similar
coefficients that are close to the true values. This is independent of the type of random
numbers used. Also, in all estimations, none of the null hypotheses—the estimated value
of a coefficient is equal to the true value—is rejected. Furthermore, the log likelihoods
are close to each other, especially when Halton quasi-random numbers are applied.

In addition, table 2 shows that if the estimation is run with 50 Halton draws, the
difference in the log likelihood compared with the estimation with 100 Halton draws is
slightly smaller in the multivariate random-effects probit case. The higher accuracy of
the multivariate probit estimator becomes apparent when comparing the log likelihood
of the estimations run with 20 and 100 Halton draws (lnSL = −2218.829) for the mul-
tivariate probit model compared with the estimations based on pseudorandom numbers
(lnSL = −2223.770). These results indicate some better estimation fit of the simu-
lated multivariate random-effects probit model compared with the redpace command,
in which the simulation is based on pseudorandom numbers.

3.2 Illustration 2: Extending to autocorrelated errors

An advantage of applying multivariate probit models is that the link between the time
points in the dynamic model can be directly adjusted by specifying the variance–
covariance matrix. As an extension to the previous model, it is now assumed that
the idiosyncratic shock is autocorrelated so that it follows a first-order autoregressive
process:16

uit = δuit−1 + ǫit

16. Another extension might regard a moving-average process or an autocorrelated error process of
higher order.
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The generalized variance–covariance matrix takes on the following form:

Ω =




θ2σ2
α + 1

θσ2
α + δ σ2

α + 1
θσ2

α + δ2 σ2
α + δ σ2

α + 1
θσ2

α + δ3 σ2
α + δ2 σ2

α + δ σ2
α + 1

...
...

...
...

. . .

θσ2
α + δT−1 σ2

α + δT−2 σ2
α + δT−3 σ2

α + δT−4 . . . σ2
α + 1




The implementation of a multivariate random-effects probit model with autocorre-
lated errors is illustrated by following the empirical approach of Stewart (2006b). U.S.
data from the National Longitudinal Survey of Youth concerning young women are used
to investigate the state dependence of union membership.17 Following Stewart (2006b),
those observations from 1978 onward, excluding 1983, are used. Additional variables
that identify the time period (tper) and the number of time periods an observation is in
the sample (nwave) are generated. As an excluding restriction, those observations that
are sample members for the complete sequence are kept. Also the lagged dependent
variable—Lunion—is generated.

. webuse union
(NLS Women 14-24 in 1968)

. drop if year<78
(10136 observations deleted)

. drop if year==83
(2194 observations deleted)

. bys idcode (year): gen nwave=_N

. bys idcode (year): gen tper=_n

. keep if nwave==6
(9076 observations deleted)

. by idcode (year), sort: gen Lunion = union[_n-1]
(799 missing values generated)

The Stata routine of Illustration 1 must be extended by introducing the parameter
ρ, which refers to the autocorrelated error term. This parameter will be integrated into
the Stata syntax as the inverse hyperbolic tangent of ρ. The variance–covariance matrix
must be adjusted according to the adjusted Ω. Because a balanced panel is applied, the
multivariate normal distribution function of order T = 6 must be simulated; hence, the
probabilities are calculated only one time.

17. A description of the data and of the variables can be found in Stewart (2006b).
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cap prog drop mpheckman_d0
program define mpheckman_d0

args todo b lnf
tempname sigma theta rho
tempvar beta pi lnsigma lntheta trho T fi FF V C
mleval `beta´ = `b´, eq(1)
mleval `pi´ = `b´, eq(2)
mleval `lnsigma´ = `b´, eq(3) scalar
mleval `lntheta´ = `b´, eq(4) scalar
mleval `trho´ = `b´, eq(5) scalar

scalar `sigma´=(exp(`lnsigma´))^2
scalar `theta´=exp(`lntheta´)
scalar `rho´ =tanh(`trho´)

qui: {
sort idcode (year)
tempvar k1 zb1
by idcode: generate double `k1´ = (2*$ML_y1[1]) - 1
by idcode: generate double `zb1´ = `pi´[1]
forvalues r = 2/6 {

tempvar k`r´ xb`r´
by idcode: generate double `k`r´´ = (2*$ML_y1[`r´]) - 1
by idcode: generate double `xb`r´´ = `beta´[`r´]

}

by idcode: generate double `T´ = (_n == _N)

mat `V´=I(6)*(`sigma´+1)
mat `V´[1,1]=(`theta´^2)*`sigma´+1

forvalues row=2/6 {
mat `V´[`row´,1] = (`theta´*`sigma´ + `rho´^(`row´-1))
mat `V´[1,`row´] = `V´[`row´,1]
local r1 = `row´-1
forvalues col=2/`r1´ {

mat `V´[`row´,`col´] = `sigma´ + `rho´^(`row´-`col´)
mat `V´[`col´,`row´] = `V´[`row´,`col´]

}
}

mat `C´ = cholesky(`V´)

egen `fi´ = mvnp(`zb1´ `xb2´ `xb3´ `xb4´ `xb5´ `xb6´), chol(`C´) /*
*/ dr($dr) prefix(z) signs(`k1´ `k2´ `k3´ `k4´ `k5´ `k6´) adoonly

generate double `FF´ = cond(!`T´,0,ln(`fi´))
}
mlsum `lnf´ = `FF´ if `T´
if (`todo´==0 | `lnf´>=.) exit

end



276 Simulated multivariate random-effects probit models

Estimation results are compared with those of the redpace command. Stewart
(2006b) uses a GHK simulator to fit a random-effects probit model with autocorrelated
errors. Hereby, the probability of a sequence is calculated as the product of recursively
defined conditional probabilities (Stewart 2006b). In the multivariate probit model, the
probabilities are calculated directly, but the multivariate cumulative distributions must
be simulated. Note that the redpace command does not report σ2

α but instead λ, which
shows the attribution of the individual specific error-term on the composite error term.

To reduce computational time, we derive initial values by fitting two probit models,
the first one referring to the dynamic sequence (t ≥ 2) and the second one to the initial
period. Note that the variable not smsa is integrated as an instrumental variable for
the initial period.

. qui: probit union Lunion age grade south if tper>1

. matrix b0=e(b)

. qui: probit union age grade south not_smsa if tper==1

. matrix b1=e(b)

. matrix b12 = (-.5,-.5,-.2)

. matrix b0 = (b0 , b1 , b12)

For the simulation of the multivariate normal probabilities, Halton pseudorandom
numbers must be generated. In the beginning, 20 Halton draws are chosen and succes-
sively increased. Then the multivariate random-effects probit model with autocorrelated
errors is fit. The option search(off) is applied so that observations are not dropped
from the estimation sample.

. matrix p=(2,3,5,7,11,13)

. mdraws, neq(6) draws(20) prefix(z) primes(p) burn(15)
Created 20 Halton draws per equation for 6 dimensions. Number of initial
draws dropped per dimension = 15 . Primes used:

2 3 5 7 11 13

. global dr = r(n_draws)

. ml model d0 mpheckman_d0 (`y1´: `y1´ = `a´) (Init_Period: `y1´ = `b´)
> /lnsigma /lntheta /trho, title(Multivariate AR1 Probit, $dr Halton draws)
> missing

. ml init b0, copy

. ml max, search(off)

(output omitted )

The estimation results of the multivariate random-effects probit model with auto-
correlated errors can be found in table 3. Estimations are run on the basis of 20, 50, and
100 Halton draws.18 In the case of the redpace command, simulations based on 20, 50,
100, and 500 pseudorandom numbers are applied and reported in the last four columns
of table 3. The redpace command has substantial problems when Halton draws are
applied instead of pseudorandom numbers. Estimations based on 20, 50, or 100 Halton
draws did not converge and interrupted after several iterations.

18. The parameter ρ is derived by diparm trho, tanh prob.
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Table 3. Random effects with autocorrelated errors†

Coefficients Multivariate random-effects Random-effects probit (redpace)
probit

Halton quasi-random numbers Pseudorandom numbers‡

Dynamic sequence (t > 1)
Lunion 1.319 1.344 1.325 1.376 1.341 1.297 1.322

(0.152) (0.147) (0.154) (0.147) (0.154) (0.161) (0.154)
age −0.023 −0.023 −0.023 −0.021 −0.023 −0.024 −0.023

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)
grade −0.038 −0.036 −0.037 −0.033 −0.035 −0.037 −0.036

(0.020) (0.020) (0.020) (0.019) (0.019) (0.020) (0.020)
south −0.382 −0.372 −0.374 −0.341 −0.360 −0.381 −0.370

(0.099) (0.097) (0.099) (0.092) (0.097) (0.101) (0.099)
constant 0.068 0.057 0.076 −0.035 0.044 0.101 0.080

(0.401) (0.399) (0.400) (0.380) (0.394) (0.406) (0.400)
Initial period (t = 1)
age 0.009 0.009 0.010 0.013 0.011 0.011 0.011

(0.025) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024)
grade −0.014 −0.014 −0.013 −0.012 −0.014 −0.012 −0.013

(0.034) (0.033) (0.034) (0.033) (0.033) (0.033) (0.033)
south −0.768 −0.767 −0.760 −0.731 −0.749 −0.760 −0.755

(0.171) (0.169) (0.168) (0.165) (0.166) (0.167) (0.167)
not smsa −0.414 −0.415 −0.418 −0.418 −0.417 −0.414 −0.420

(0.166) (0.167) (0.167) (0.166) (0.166) (0.166) (0.166)
constant −0.843 −0.851 −0.866 −0.968 −0.887 −0.931 −0.891

(0.864) (0.857) (0.853) (0.845) (0.846) (0.849) (0.848)
σ2
α 1.100 1.057 1.080

− − − −
(0.306) (0.290) (0.307)

λ
− − −

0.479 0.502 0.526 0.519
(0.070) (0.072) (0.072) (0.071)

θ 1.265 1.265 1.239 1.296 1.251 1.211 1.227
(0.219) (0.217) (0.216) (0.224) (0.222) (0.213) (0.214)

ρ −0.329 −0.347 −0.338 −0.328 −0.329 −0.321 −0.338
(0.057) (0.055) (0.058) (0.053) (0.057) (0.061) (0.058)

lnSL −1856.328 −1854.106 −1854.579 −1859.836 −1858.151 −1855.833 −1854.062
Observations 4,794 4,794 4,794 4,794 4,794 4,794 4,794
Numbers 20 50 100 20 50 100 500

† Standard error in brackets.
‡ Seed is 945430778, using starting values from Stewart (2006b) for the estimation with

500 draws.

As can be seen in table 3, the log likelihood of the multivariate random-effects
probit model with autocorrelated errors changes only slightly when using 100 Halton
quasi-random numbers instead of 50. In addition, table 3 shows that the idiosyncratic
shocks are significantly negatively correlated. The findings go along with those of the
redpace command, especially when 500 pseudorandom numbers are applied. A notice-
able change in the log likelihood can be found with the redpace command when the
numbers of the pseudorandom draws are increased from 20 or 50 to 100. Again, in the
simulated multivariate random-effects probit model, accuracy can already be found at a
low level of Halton draws, which helps save computational time. Also, when one applies
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Halton draws, indications of greater stability can be found in the simulated multivariate
random-effects probit model because convergence is reached at a low number of draws;
in contrast, the redpace command has difficulties in converging.

4 Conclusion

The main feature of this estimation technique is that the time link in the dynamic model
can be directly adjusted by specifying the variance–covariance matrix. In the first il-
lustration, the Stata routine of a simulated multivariate random-effects probit model
for unbalanced panels with gaps is presented. The robustness check shows that this
estimation strategy produces similar results when compared with the existing redpace

command. In the second illustration, the specification of the variance–covariance matrix
is described to allow for autocorrelated errors. In sum, the advantages of the proposed
estimator when compared with the redpace command are higher accuracy and improved
estimation stability. Additionally, regarding the model with autocorrelated errors, com-
putational time can be saved because a lower number of Halton draws is needed for the
estimation.
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