
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal

Editors

H. Joseph Newton

Department of Statistics

Texas A&M University

College Station, Texas

editors@stata-journal.com

Nicholas J. Cox

Department of Geography

Durham University

Durham, UK

editors@stata-journal.com

Associate Editors

Christopher F. Baum, Boston College

Nathaniel Beck, New York University

Rino Bellocco, Karolinska Institutet, Sweden, and

University of Milano-Bicocca, Italy

Maarten L. Buis, WZB, Germany

A. Colin Cameron, University of California–Davis

Mario A. Cleves, University of Arkansas for

Medical Sciences

William D. Dupont, Vanderbilt University

Philip Ender, University of California–Los Angeles

David Epstein, Columbia University

Allan Gregory, Queen’s University

James Hardin, University of South Carolina

Ben Jann, University of Bern, Switzerland

Stephen Jenkins, London School of Economics and

Political Science

Ulrich Kohler, University of Potsdam, Germany

Frauke Kreuter, Univ. of Maryland–College Park

Peter A. Lachenbruch, Oregon State University

Jens Lauritsen, Odense University Hospital

Stanley Lemeshow, Ohio State University

J. Scott Long, Indiana University

Roger Newson, Imperial College, London

Austin Nichols, Urban Institute, Washington DC

Marcello Pagano, Harvard School of Public Health

Sophia Rabe-Hesketh, Univ. of California–Berkeley

J. Patrick Royston, MRC Clinical Trials Unit,

London

Philip Ryan, University of Adelaide

Mark E. Schaffer, Heriot-Watt Univ., Edinburgh

Jeroen Weesie, Utrecht University

Ian White, MRC Biostatistics Unit, Cambridge

Nicholas J. G. Winter, University of Virginia

Jeffrey Wooldridge, Michigan State University

Stata Press Editorial Manager

Lisa Gilmore

Stata Press Copy Editors

David Culwell, Deirdre Skaggs, and Shelbi Seiner

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book

reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository

papers that link the use of Stata commands or programs to associated principles, such as those that will serve

as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go

“beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate

or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to

a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users

(e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers

analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could

be of interest or usefulness to researchers, especially in fields that are of practical importance but are not

often included in texts or other journals, such as the use of Stata in managing datasets, especially large

datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata

with topics such as extended examples of techniques and interpretation of results, simulations of statistical

concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behav-

ioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch),

Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

http://www.stata-journal.com

http://www.stata-journal.com


Subscriptions are available from StataCorp, 4905 Lakeway Drive, College Station, Texas 77845, telephone

979-696-4600 or 800-STATA-PC, fax 979-696-4601, or online at

http://www.stata.com/bookstore/sj.html

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.

U.S. and Canada Elsewhere

Printed & electronic Printed & electronic

1-year subscription $ 98 1-year subscription $138

2-year subscription $165 2-year subscription $245

3-year subscription $225 3-year subscription $345

1-year student subscription $ 75 1-year student subscription $ 99

1-year institutional subscription $245 1-year institutional subscription $285

2-year institutional subscription $445 2-year institutional subscription $525

3-year institutional subscription $645 3-year institutional subscription $765

Electronic only Electronic only

1-year subscription $ 75 1-year subscription $ 75

2-year subscription $125 2-year subscription $125

3-year subscription $165 3-year subscription $165

1-year student subscription $ 45 1-year student subscription $ 45

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may

be ordered online.

http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX

77845, USA, or emailed to sj@stata.com.

®

Copyright c© 2014 by StataCorp LP

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,

fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal (ISSN 1536-867X) is a publication of Stata Press. Stata, , Stata Press, Mata, ,

and NetCourse are registered trademarks of StataCorp LP.

http://www.stata.com/bookstore/sj.html
http://www.stata.com/bookstore/sjj.html
http://www.stata-journal.com/archives.html


The Stata Journal (2014)
14, Number 2, pp. 237–258

Self-consistent density estimation

Joerg Luedicke
Yale University and University of Florida

Gainesville, FL
joerg.luedicke@ufl.edu

Alberto Bernacchia
Jacobs University Bremen

Bremen, Germany
a.bernacchia@jacobs-university.de

Abstract. Estimating a continuous density function from a finite set of data
points is an important tool in many scientific disciplines. Popular nonparametric
density estimators include histograms and kernel density methods. These methods
require the researcher to control the degree of smoothing inherent in an estimated
function. In a recent approach, a new method for nonparametric density estimation
was proposed that finds the estimate self-consistently, that is without requiring the
researcher to choose a smoothing parameter a priori. In this article, we outline
the basic ideas of the self-consistent density estimator, and we present a Stata
implementation of the method. In addition, we present results of Monte Carlo
simulations that show that the self-consistent estimator performs better than other
methods, especially for larger data samples.

Keywords: st0334, scdensity, density estimation, kernel density, nonparametric
statistics, self-consistent density estimator

1 Introduction: Nonparametric density estimation

Estimating a continuous density function from a finite set of data points is an impor-
tant tool in virtually any quantitatively oriented scientific field. The most widely used
nonparametric methods for estimating probability distribution functions are histograms
and kernel density estimators (Härdle et al. 2004; Silverman 1998). Let X1, . . . , XN be
a sample of size N from a continuous random variable X with probability density func-
tion f(x). The goal of a density estimator is to estimate this function from the sample,

and the estimate is denoted as f̂(x).

Estimating f̂(x) by plotting a histogram is fairly simple. First, the domain of data
points is divided into intervals of width h, or “bins”, running from an initial point
(origin) x0 to a final point xf . The jth bin is denoted by Bj and is identified by the
interval

Bj = [x0 + (j − 1)h, x0 + jh)

where the index j runs from 1 to its maximum value determined by the final point xf .
Then observations Xi that fall into a given interval are counted, and that count, Nj , is
divided by the total number of observations N , and divided by bin width h to ensure
that the area under the histogram equals 1:

fj =
Nj

Nh

Finally, the histogram can be plotted by using bars of height fj and bin width h located
at the center of each interval.

c© 2014 StataCorp LP st0334



238 Self-consistent density estimation

We can see that there are two essential ingredients for plotting a histogram that
have to be chosen by the researcher a priori: the origin and the bin width. The bin
width is usually more crucial because it controls the amount of smoothing inherent in the
estimate. If the bin width is small, on average, only a few points will fall in each interval,
and the histogram will be characterized by many scattered bars of discrete height. If
the bin width is large, many points will fall in each interval; the histogram will have a
smooth look but only a few bars will be available, possibly obscuring interesting details
of the distribution. A reasonable goal is to estimate a neither over- nor undersmoothed
function. As pointed out frequently (for example, Cox [2007]), these choices are usually
made on rather arbitrary grounds, and the density estimate itself can lead to quite
different conclusions depending on these parameters. See Cox (2007) for a number of
illustrative examples.

As an alternative to histograms, kernel methods for density estimation are widely
used because of their performance and their being easy to understand and implement.
However, as in the case of histograms, similar problems arise. Here we have to determine
a kernel function and a bandwidth. The classical kernel estimator can be expressed as

f̂(x) =
1

Nh

N∑

i=1

K

(
x−Xi

h

)
(1)

where K(·) denotes the kernel, N is the number of data points, and h is the band-
width (for example, Silverman [1998]). The choice of a kernel is usually not of great
importance. Of greater importance is the bandwidth, which represents the smoothing
parameter and has to be fixed beforehand. Similarly to histograms, a resulting estimate
can lead to different conclusions, conditional on the amount of smoothing. A small
bandwidth determines a harsh density accounting for a lot of possibly spurious detail,
while a large bandwidth determines a smoother function, potentially obscuring informa-
tive detail. The adjustment of the bandwidth may be inspired by heuristic arguments or
formulas or by purely illustrative purposes, and it is for the researcher to decide whether
the amount of detail provides relevant information or noise instead. However, if little
or nothing is known in advance about the true density, determining how the bandwidth
affects the performance of the estimate is a difficult task. Therefore, a method that
does not require fixing parameters a priori—and at the same time maintains a high
performance—would be desirable.

In this article, we present a method for nonparametric density estimation—the self-
consistent method—that does not require any a priori fixing of parameters that are
subject to arbitrary choice. This method was presented in detail previously (Bernac-
chia and Pigolotti 2011). We briefly describe the basic ideas of the self-consistent esti-
mator and present a Stata implementation of the method. Previous simulation results
from a set of three test densities (that is, a standard normal distribution, a Cauchy
distribution, and a comb distribution; see Bernacchia and Pigolotti [2011]) show that
the self-consistent method is performing well in comparison with various other kernel
estimators. In this article, we extend the set of test densities and perform Monte Carlo
simulations for the standard normal and three different normal mixture distributions.
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We conclude with a discussion of some limitations inherent in the new method and some
practical implications.

2 The self-consistent method

The self-consistent estimator is motivated by the fact that a kernel can be adjusted opti-
mally if the true density is known. This observation may appear trivial because knowing
the true density makes any estimation unnecessary. However, as we explain below, the
idea of an optimally adjusted kernel can be used to build a self-consistent estimator.
While we start with the assumption of knowing the true density, this assumption will
be released at the end of the argument.

For example, suppose we know that the true density is Gaussian. We may take
advantage of this knowledge: instead of estimating the density nonparametrically, we
could use maximum likelihood (ML) to estimate the parameters (mean and variance)
of the Gaussian density from the data sample. If we insist on using a nonparametric
approach, the knowledge of the shape of the true density can still be used: it provides
a way to find an optimal bin width or bandwidth (Silverman 1998). An even stronger
result, shown in Watson and Leadbetter (1963) and Bernacchia and Pigolotti (2011), is
that this knowledge allows us to find not just the optimal bandwidth but the optimal
profile of the kernel, namely, its complete functional form. In other words, we do not
need to define a bandwidth, and we can find the entire shape of the optimal kernel,
derived at all of its points. Thus, without the need of a bandwidth h, the estimate can
be expressed as

f̂(x) =
1

N

N∑

i=1

K(x−Xi)

The Fourier transform kopt(t) of the optimal kernel Kopt(x) equals

kopt(t) =
N

N − 1 + |ω(t)|−2

where ω(t) is the Fourier transform of the true density f(x). To use this formula and
build a density estimator, we can use the standard Fourier transform and antitransform
(note the change in notation with respect to Bernacchia and Pigolotti [2011], where the
Fourier transform is denoted by φ). After Fourier antitransforming the kernel from
kopt(t) to Kopt(x) and plugging this into the classical kernel estimator, we can estimate
a density with the optimally shaped kernel:

f̂(x) =
1

N

N∑

i=1

Kopt(x−Xi) (2)

Note the similarity to (1), although in (2), as explained above, bandwidth h is not
needed.

In most cases, however, the Fourier transform ω(t) of the true density is not known in
advance, and the above equation cannot be used to obtain a density estimate. To obtain
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an estimate with neither the need of strong prior knowledge of the true density nor the
adjustment of a smoothing parameter, Bernacchia and Pigolotti (2011) have developed
a self-consistent estimator. In the following, we show the main underlying arguments
and procedure of the self-consistent method and refer to Bernacchia and Pigolotti (2011)
for technical details.

The goal is to find a shape of the kernel that is optimal for the density estimate pro-
duced by the kernel itself. To achieve this goal, we will construct an iterative procedure
that starts with an arbitrary function, assumed to be the true density, and determine
the optimal kernel for that density. Let ω̂(t) be the Fourier transform of the density
estimate in (2). This can be expressed in simple form by using the convolution theorem
(Pinsky 2002) and is equal to

ω̂(t) = ∆(t)kopt(t) =
N∆(t)

N − 1 + |ω(t)|−2
(3)

where ∆(t) is the empirical characteristic function

∆(t) =
1

N

N∑

i=1

exp(itXi) (4)

with i being the imaginary unit.

As explained above, (3) cannot be used to obtain a density estimate because the
function ω(t) in the denominator of the right-hand side is unknown. However, we
substitute this term with an arbitrary function ω(t) and obtain a candidate estimate
represented by ω̂. We then obtain a second estimate by applying the kernel that is
optimal for ω̂, namely, the kernel in (3), where ω is substituted by the estimate ω̂. This
procedure can be iterated by obtaining at a given step j an estimate ω̂j+1 from a kernel
that is optimal for the estimate at the previous step ω̂j . This implies that the estimate
at the jth step is equal to

ω̂j+1 =
N∆

N − 1 + |ω̂j |−2

The self-consistent estimate is defined as the estimate whose optimal kernel repro-
duces the estimate itself, that is, the estimate for which ω̂j+1 is equal to ω̂j . It is denoted
by ωsc and satisfies

ω̂sc =
N∆

N − 1 + |ω̂sc|−2
(5)

Bernacchia and Pigolotti (2011) show that the iterative procedure is unnecessary in
practice because the exact solution can be derived analytically:

ω̂sc(t) =
N∆(t)

2(N − 1)

{
1 +

√
1− 4(N − 1)

N2|∆(t)|2

}
(6)

This result is valid only for a subset of frequencies t (Bernacchia and Pigolotti 2011).
By straightforward algebra, it is possible to show that the above estimator satisfies the
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definition of self-consistency introduced above; namely, it satisfies (5). It has also been
shown that the estimate is asymptotically consistent; namely, it converges to the true
density in the limit of large datasets. The self-consistent estimate in Fourier space can
be antitransformed back to real space and then expressed as

f̂sc(x) =
1

2π

∫ ∞

−∞

exp(−itx)ω̂sc(t)dt (7)

Because the Fourier transform is unitary (Pinsky 2002), the self-consistent estimate
satisfies the normalization condition

∫ ∞

−∞

f̂sc(x)dx = 1

Note that (7) requires the computation of the Fourier transform of a simple function of
the data and therefore the computation of the integral in practical applications. This
is computed numerically by using a regular grid of points. Technical issues such as
the stability and uniqueness of the estimator are described in Bernacchia and Pigolotti
(2011).

3 Density correction

A potential drawback of the self-consistent method is that it is not guaranteed to be
nonnegative. However, if it happens that an estimate contains negative values and if
strict nonnegativity is desired, one can make the density strictly nonnegative without
loss of accuracy by using a correction approach described in Glad, Hjort, and Ushakov
(2003). The basic idea of this approach is to find the unique and well-identified value
ξ that has to be subtracted from the density such that the positive part of the density
integrates to 1, after which the remaining negative values can be set to 0. More formally,
if the original estimate f̂sc(x) contains negative values and if

∫
f̂sc(x)dx = 1, then the

integral of the positive part of the density is greater than 1:
∫

max
{
0, f̂sc(x)

}
dx ≥ 1

Glad, Hjort, and Ushakov (2003) show that a unique value ξ can be found such that
the modified estimator

f̃sc(x) = max
{
0, f̂sc(x)− ξ

}

satisfies
∫
f̃sc(x)dx = 1 and is strictly nonnegative by definition. Glad, Hjort, and

Ushakov (2003) further demonstrate that the corrected estimate f̃sc(x) is at least as
accurate as the original estimate.

We developed two algorithms for finding the unique value ξ. The first algorithm
(the default) is fast, while the second is slower but guaranteed to converge. The default
search algorithm starts with an initial ballpark estimate of ξ (ξs) divided by 10. This
initial value, ξs, is derived by integrating over the positive part of the density (by using
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a regular grid of points) to determine excess probability mass, which is then divided by
the product of the number of grid points with nonnegative density values (γ) and dx,
which here denotes the grid interval used in the numerical computation of the integral:

ξs =

∫
max

{
0, f̂sc(x)

}
dx− 1

γdx

Then ξ is found iteratively by using the search interval δs, where δs is a constant that
defaults to

δs = 10τξs (8)

The search is iterated by adding δs to ξi at each iteration until the point

1 ≤
∫

f̃sc(x)dx ≤ 1 + τ (9)

is reached, where τ is a defined tolerance limit. As can be seen in (8), δs is proportional
to τ to ensure a sufficiently small resolution of the interval with respect to the tolerance
value.

Theoretically, it is not guaranteed that the value ξ is found with this algorithm such
that (9) is satisfied, although this will rarely happen in practice. However, the second
algorithm could be used in case the default algorithm fails to find ξ. The difference to
the default algorithm is that the search interval δs is not a constant but a function of
ǫ2i (δi = ξiǫ

2
i ), where

ǫi =

∫
f̃sc(x)idx− 1

that is, the excess probability mass at iteration i. This ensures that the smaller the
difference is between ξi and ξ, the smaller the search interval will get until (9) is satisfied.

Note that the practical implementation of this method includes the case of ξ being
negative because the numerically computed integral over a discrete set of grid points
deviates from 1 and can be smaller than 1. This implies that the computed integral for
the positive part of the density can still be smaller than 1, in which case we would add
ξ to the density instead of subtracting it. As a consequence of satisfying the condition
in (9) (which would be equivalent to 1 − τ ≤

∫
f̃sc(x)dx ≤ 1 in the case of a negative

ξ), the corrected estimate will be a renormalized 1. We recommend that users apply
the command scdcor (see below), which facilitates comparisons between original and
corrected estimates.

4 Stata commands

4.1 The scdensity command

The self-consistent method is implemented in Stata as an ado-file, with its main en-
gine written in Mata. The command requires Stata 9.2 or higher and the user-written
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moremata package (Jann 2005b), which is available from the Statistical Software Com-
ponents archive (type ssc install moremata in Stata to install it).

The algorithm implements the ideas and formulas described in section 2. In particu-
lar, the algorithm reads a list of data points and calculates the Fourier transform of the
data points (4) on a grid of t values. The width and spacing of the grid is determined
by an iterative procedure that results in a meaningful sampling of the Fourier space
(see below). Then the transformed self-consistent estimate is calculated using (6). Note
that only real values of (6) represent meaningful solutions; therefore, only values of t for
which the argument of the square root in (6) is positive should be considered. For all
other values, the estimate is set to 0 (Bernacchia and Pigolotti 2011). The grid of t val-
ues at which the transformed estimate is calculated is determined by those meaningful
solutions and is chosen in such a way that approximately half the grid points corre-
spond to a value of t giving a nonzero estimate. Finally, the self-consistent estimate
is calculated using (7), namely, by antitransforming the estimate previously obtained.
The grid of n points at which the estimate is evaluated can be determined by the input
options of the Stata command. Note that as of the current version (version 1.0.1), no
method is implemented for density estimation with bounded variables.

What follows is an overview of scdensity’s syntax and options.

Syntax

scdensity varname
[
if
] [

in
] [

, n(#) range(# #) expand at(varname)

correction gtd tolerance(#) initial(#) interval(#)

generate(newvar1
[
newvar2

]
) nograph twoway options

]

Options

n(#) specifies the number of grid points to be used at which the density is evaluated.
If the number of data points is greater than N = 1000, the default is n(1000) grid
points. If the number of data points is lower than N = 1000, the number of grid
points defaults to n = N . If a number larger than the actual sample size is requested,
then n is set to N .

range(# #) defines the grid range at which the density is to be evaluated. By default,
the endpoints of the evaluation grid are determined by the minimum and maximum
values of the actual data points; the range() option can be used to change this
default behavior. The input of two numbers is required, with the first one being the
minimum and the second one being the maximum of the range.
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expand expands the evaluation grid. scdensity’s default is to use the endpoints of
the data range as grid endpoints. If the expand option is used, the grid range is
expanded at both ends as a function of sample size. Let the width of the data range
be w = max(x)−min(x), where x are the data points; then the expanded range re
is defined by min(re) = min(x) − 0.5N−0.3w and max(re) = max(x) + 0.5N−0.3w,
with N being the sample size of x.

at(varname) evaluates the density at varname. If varname is not a regular grid of
points, then densities that contain negative values cannot be corrected.

correction specifies that a correction be applied so that the density will be strictly
nonnegative. The unique and well-identified value ξ is found such that the positive
part of the density integrates to 1 (plus tolerance) when ξ is subtracted from the
density, after which the negative part is set to 0. This approach is described in
Glad, Hjort, and Ushakov (2003). A search algorithm is implemented that finds ξ.
The tolerance τ defaults to 1e−4. All defaults can be changed using the tolerance(),
initial(), and interval() options. Changing the initial() and interval()

defaults will rarely be needed.

gtd specifies an alternative algorithm for finding ξ. The default algorithm usually finds
ξ fast and reliably. Theoretically, however, it might not find ξ, in which case an
alternative algorithm can be used by specifying the gtd option. With this alternative
algorithm, ξ is found, but the algorithm can take a substantial amount of time,
especially for very small tolerance values.

tolerance(#) changes the default tolerance τ .

initial(#) changes the initial value of ξ at which the search is started.

interval(#) changes the default search interval δs.

generate(newvar1
[
newvar2

]
) stores the density estimate in newvar1 and the evalu-

ation grid in newvar2.

nograph suppresses the graph.

twoway options are any options other than by() documented in [G-3] twoway options.

Stored results

scdensity stores the following in r():

Scalars
r(n data) number of data points r(range min) minimum grid point
r(n points) number of evaluation points r(range max) maximum grid point

4.2 The scdcor command

The scdcor command is a convenience wrapper and plots the original and corrected
density estimates overlaid in one graph. This can be useful to compare original and
corrected estimates if a nonnegativity correction is desired. Additionally, a kernel-
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density estimate can be added to the graph for which the number of grid points and the
grid range will be the same as for the self-consistent estimates. The kernel estimates are
obtained with kdens, which needs to be installed to use the added kernel functionality
of scdcor (kdens is available from the Statistical Software Components archive; type
ssc install kdens in Stata to install it). The syntax and options of scdcor follow.

Syntax

scdcor varname
[
if

] [
in

] [
, addkde(kernel) bw(# | string) adaptive n(#)

range(# #) expand gtd tolerance(#) initial(#) interval(#)

cline1opts(cline options) cline2opts(cline options)

cline3opts(cline options) twoway options
]

Options

addkde(kernel) adds a kernel estimate. kernel can be any type of kernel that is sup-
ported by kdens. The evaluation grid is the same as for the self-consistent estimate
(that is, range and number of grid points).

bw(# | string) specifies the smoothing parameter for the kernel estimate, which can be
either a positive real number or an automatic bandwidth selector of kdens. The
default is bw(silverman).

adaptive specifies that a variable bandwidth be used.

n(#) specifies the number of grid points to be used at which the density is evaluated.
If the number of data points is greater than N = 1000, the default is n(1000). If the
number of data points is lower than N = 1000, the number of grid points defaults
to n = N . If a number larger than the actual sample size is requested, then n is set
to N .

range(# #) defines the grid range at which the density is to be evaluated. By default,
the endpoints of the evaluation grid are determined by the minimum and maximum
values of the actual data points; the range() option can be used to change this
default behavior. The input of two numbers is required, with the first one being the
minimum and the second one being the maximum of the range.

expand expands the evaluation grid as a function of sample size (see scdensity for
details). The default grid range is determined by the endpoints of the data range.

gtd uses the alternative algorithm to find ξ. See scdensity for further details about
this and the default algorithm.

tolerance(#) changes the default tolerance τ .

initial(#) changes the initial value of ξ at which the search is started.
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interval(#) changes the default search interval δs.

cline1opts(cline options) specifies any options documented in [G-3] cline options for
the original estimate.

cline2opts(cline options) specifies any options documented in [G-3] cline options for
the corrected estimate.

cline3opts(cline options) specifies any options documented in [G-3] cline options for
the added kernel estimate.

twoway options are any options other than by() documented in [G-3] twoway options.

5 Monte Carlo simulations

5.1 Experimental setup

To evaluate the accuracy of the new method, we compare self-consistent estimates with
several kernel-density estimates and ML fits by using Monte Carlo simulations. As a
measure of accuracy, the mean integrated squared error (MISE) is used. MISE is a global
measure and captures the error across an entire distribution. Thus more specific aspects
of a distribution (for example, tails and mode) are not explicitly considered here. MISE

can be expressed as (Silverman 1998)

MISE

(
f̂
)
= E

∫ {
f̂(x)− f(x)

}2

dx (10)

where E denotes the average over the Monte Carlo replications. Two different kernel
functions and three different bandwidth rules are used for comparisons. In addition, a
varying bandwidth estimator is used, and the errors of (parametric) ML estimates are
used as benchmarks.

We used four different test densities, which are shown in figure 1. We first used a
normal distribution with density function

f(x) = φ(µ, σ2) = (2π)−
1
2σ−1exp

{
−0.5(x− µ)2/σ2

}

where µ = 0 and σ2 = 1, that is, the standard normal distribution. We then used three
normal mixture distributions (McLachlan and Peel 2000): the two-component mixture
with different means, equal variances, and equal-component probabilities,

f(x) = 0.5φ(0, 1) + 0.5φ(3, 1)

the two-component mixture with different means, different variances, and equal-com-
ponent probabilities,

f(x) = 0.5φ(0, 1) + 0.5φ(5, 22)

and the three-component mixture,

f(x) = 0.5φ(0, 1.22) + 0.25φ(4, 1.42) + 0.25φ(8, 0.62)
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Four different sample sizes were used in the simulations: N = 100, N = 1000, N =
10000, and N = 100000.
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Figure 1. True density functions used as test densities in the simulations: a) f(x) =
φ(0, 1); b) f(x) = 0.5φ(0, 1) + 0.5φ(3, 1); c) f(x) = 0.5φ(0, 12) + 0.5φ(5, 22); d) f(x) =
0.5φ(0, 1.22) + 0.25φ(4, 1.42) + 0.25φ(8, 0.62)

For kernel-density estimation in the simulations, we used the user-written kdens

package (Jann 2005a), which allows for a computationally efficient approximate esti-
mation. The approximate estimator implemented in kdens is based on a linear-binning
algorithm (see Jann [2007] for details). To ensure that the approximate estimation yields
accurate MISEs, we ran simulations for one of our test densities to compare approximate
and exact kernel-density estimates. Results indicated that these two estimation meth-
ods yielded the same MISEs as long as the number of grid points was sufficiently large
relative to the sample size (see the Appendix and Hall and Wand [1996]).
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If X1, . . . , XN is a sample of data points drawn from population X with density
f(x), the exact kernel estimator is defined by (1). We used an Epanechnikov kernel
with Silverman’s optimal bandwidth rule (Silverman 1998),

ho = 0.9min(σ, IQ/1.349)N− 1
5 (11)

which is the default for both the kernel function and the bandwidth choice in Stata’s
official kdensity command as well as the user-written kdens package (Jann 2005a). We
also used an Epanechnikov kernel for the varying bandwidth estimator. In addition to
the Epanechnikov kernel, we used Gaussian kernels with Silverman’s rule from above,
Härdle’s “better” rule of thumb (Härdle et al. 2004),

ho = 1.06min(σ, IQ/1.349)N− 1
5 (12)

and Scott’s oversmoothed bandwidth (Scott 1992),

ho ≥ 1.144σN− 1
5 (13)

Density estimation with variable bandwidths—also known as adaptive kernel-density
estimation—can be expressed as

f̂(x) =
1

N

N∑

i=1

1

hi
K

(
x−Xi

hi

)
(14)

where hi is the local bandwidth determined by

hi = hλi

for which the local bandwidth factor λi is estimated as

λ̂i =

√√√√G
{
f̂(X)

}

f̂(Xi)
, i = 1, . . . , N

where G(·) denotes the geometric mean of a preliminary fixed bandwidth estimate over
all i (see Abramson [1982]; Van Kerm [2003]).

To provide an overall benchmark, we also calculated MISE for (parametric) ML esti-
mates. For the standard normal distribution, the error was derived analytically, using
the following formula:

MISEMLφ(0,1) =
7

16
√
π
N−1

For the mixture distributions, parameters were estimated with ML by using the user-
written package fmm (Deb 2007). The evaluation grid was the same for all estimates
in each Monte Carlo replication. A grid of n = 100 points was used for sample size
N = 100, and a grid of n = 1000 points was used for larger samples. The same
grids were used for the computation of the integrals in (10). Because the scdensity
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command uses the endpoints of the actual data points as grid endpoints by default, the
kdens command was slightly modified to have a comparable grid in each replication.
Specifically, the kdens grid() function from kdens.mata was modified such that the
minimum and the maximum values of the data vector were taken as the endpoints of
the evaluation grid instead of the bandwidth-adjusted grid range.

5.2 Results

Results are presented in figures 2–5. These graphs show MISE as a function of sample size
(N) for each density estimator, with both MISE and N plotted on the logarithmic scale.
All lines are sloping downward because the error of an estimator decreases with larger
samples. The steeper a line is, the faster the corresponding estimator will converge to
the true density.

Figure 2 shows the simulation results for the standard normal distribution. For small
sample sizes, all nonparametric estimates have a similar error. However, the distance
between the self-consistent and the kernel estimates increases with larger sample sizes,
and the self-consistent estimates are more accurate than all kernel estimates. The worst
estimate for the simple Gaussian distribution is the variable bandwidth estimator. As
expected, the ML estimator performs best. However, one needs to keep in mind that
this is a parametric ML estimator, which requires prior knowledge about the shape of
the distribution.

Figure 3 shows results for the mixture distribution depicted in figure 1b. Again, for
small sample sizes, all estimators lead to similar errors, which for this distribution is
also true for the parametric ML estimator. Only when the sample size grows larger is the
ML estimator more accurate than kernel-density estimates. However, the self-consistent
method provides estimates that are almost as accurate as the ML estimates. Remember
that the self-consistent estimate does not rely on any a priori assumptions (besides
assuming a smooth function). In contrast, the ML estimate assumes that the underlying
density is a distributional mixture, that it is a mixture of exactly two distributions, and
that these two distributions are both Gaussians.

Similar conclusions can be drawn with respect to the third test density, depicted in
figure 1c. However, for this distribution, the adaptive bandwidth estimator is performing
clearly better than the other kernel estimates (figure 4). Note that the test density here
is a mixture where the two components have different variances, a situation to which the
varying bandwidth estimator seems to adapt well. For small sample sizes, it performs
slightly better than the self-consistent method and almost as good as ML. For moderate-
sized samples (that is, N = 1000), the errors of both the adaptive bandwidth and the
self-consistent estimators are roughly the same. For larger samples (that is, N = 10000
and N = 100000), the self-consistent method performs slightly better and scales similar
to the ML error.
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Figure 2. Accuracy of density estimates for the standard normal distribution f(x) =
φ(0, 1), figure 1a, measured by the mean integrated squared error (MISE) as a func-
tion of sample size N ; ML = maximum likelihood; SCD = self-consistent method;
EPH2 = Epanechnikov kernel with bandwidth ho = 0.9min(σ, IQ/1.349)N− 1

5 (Stata’s

default); GKH1 = Gaussian kernel with bandwidth ho = 1.06min(σ, IQ/1.349)N− 1
5 ;

GKH2 = Gaussian kernel with bandwidth ho = 0.9min(σ, IQ/1.349)N− 1
5 ; GKH3 =

Gaussian kernel with bandwidth ho ≥ 1.144σN− 1
5 ; ADK = variable bandwidth Epanech-

nikov kernel
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Figure 3. Accuracy of density estimates for mixture distribution f(x) =
0.5φ(0, 1)0.5φ(3, 1), figure 1b, measured by MISE as a function of sample size N
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Figure 4. Accuracy of density estimates for mixture distribution f(x) = 0.5φ(0, 1) +
0.5φ(5, 22), figure 1c, measured by MISE as a function of sample size N

Finally, figure 5 shows results for the three-component mixture for which the true
density is depicted in figure 1d. While the adaptive bandwidth estimator is again the
best among the kernel estimates, the self-consistent method is performing much better
for this test density. Its error is equivalent to the ML error for small samples and then
somewhat worse once the sample size increases. Again this is without making any prior
assumptions about the nature of the density, while the ML estimate relies on the (in
this case true) assumptions of a three-component mixture distribution for the single
components being all Gaussians.
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Figure 5. Accuracy of density estimates for mixture distribution f(x) = 0.5φ(0, 1.22) +
0.25φ(4, 1.42) + 0.25φ(8, 0.62), figure 1d, measured by MISE as a function of sample size
N

6 Conclusions

Given the test densities and kernel-density estimators used in the simulations, the self-
consistent method was the most accurate among the nonparametric estimators. For one
of the test densities [f(x) = 0.5φ(0, 1)+0.5φ(3, 1)], the self-consistent method performed
nearly as well as the (parametric) ML estimate without relying on any prior assumptions
or on fixing parameters. Thus the self-consistent method is a very promising new
approach in the context of nonparametric statistics. The self-consistent method may
also be generalized to more than one dimension or used in the context of nonparametric
regression models; however, because this is an active field of research, mathematical
theory has yet to be derived for such applications. However, a self-consistent estimator
for bivariate-density estimation will probably be implemented in a future version of
scdensity.

The question remains whether the observed differences in bias have any practical
implications. Using real data, we estimated the distribution function for body height
from an adult population of humans (N = 10351 males and females; variable height

is from the Stata example dataset nhanes2; type webuse nhanes2 in Stata to load
these data). Figure 6 shows results for fixed and variable bandwidth kernel estimates,
a self-consistent estimate, and an ML estimate, respectively. Among the nonparametric
methods, the self-consistent estimate allows for a less ambiguous interpretation of the
distribution function as a mixture of two height distributions, putatively a mixture of
female and male heights, and looks very similar to the ML estimate, which is assuming a
mixture distribution of two Gaussians. In contrast, the fixed and the variable bandwidth
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estimates look noisy right around the modal area of the functions and seem difficult to
interpret. Thus the self-consistent method might indeed be very useful in practice.
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Figure 6. Comparison of density estimates using real data. Data are variable height

from the Stata example dataset nhanes2, measuring body height of N = 10351 male and
female humans. Epanechnikov kernels are used for the kernel estimates with bandwidth
ho = 0.9min(σ, IQ/1.349)N− 1

5 for the fixed bandwidth estimate (Stata’s default). The
ML estimate is based on the assumption of a mixture distribution of two Gaussians.

However, the self-consistent estimate is not always expected to work well: for ex-
ample, for specific families of density functions that include a) discontinuous densities
(that is, densities having abrupt changes of probability) and b) diverging densities (that
is, densities having an infinite value at given points) (Bernacchia and Pigolotti 2011).
Densities of type (a) also include densities defined only for positive numbers and are
discontinuous at 0, for example, the exponential density. Probability functions of type
(b) include, for example, the χ2 distribution with one degree of freedom, which is infinite
at 0. Densities that are defined only for positive numbers but do not have a disconti-
nuity at 0 may still be well captured by the self-consistent method. Those include, for
example, the χ2 distribution of degree 3 and higher. However, because those densities
may have a discontinuous derivative, the performance of the self-consistent estimator



254 Self-consistent density estimation

is not expected to be excellent in these instances. Finally, discrete data are usually
not suitable for analysis with the self-consistent method and can be better analyzed by
simple (discrete) histograms or similar methods.
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A Appendix

A.1 Introduction: Approximate versus exact kernel-density estima-
tion

For reasons of increased computational efficiency, Hall and Wand (1996) proposed esti-
mating a kernel density approximately by binning the data instead of doing an exact
estimation using raw data. Existing evidence from simulation studies shows that the
approximated and the exact estimates are of equivalent accuracy if the number of grid
points at which a density is evaluated is sufficiently large (Hall and Wand 1996). The
differences between approximate and exact estimates in terms of processing time can
be substantial. For example, an exact estimation for 100,000 normally distributed data
points takes more than 4 seconds, while the approximate estimate takes only roughly 0.2
seconds on a modern desktop machine (using the user-written kdens package of Jann
[2005a] for both methods). It is therefore desirable to use the approximated estimate,
especially in the context of a simulation study where the density is repeatedly estimated
and where the sample sizes become large. However, one needs to check whether the two
estimators are indeed equivalent with respect to the specific simulation study setup.
Demonstrating this is the purpose of this appendix.

The formulas for exact kernel-density estimation are shown in (1) (for the fixed
bandwidth estimator) and (14) (for the variable bandwidth estimator). The linear-
binning approach implemented in kdens is described in Hall and Wand (1996), and
methods and formulas of the kdens implementation are concisely documented in Jann
(2007). In a nutshell, the data are preprocessed by assigning data points to grid points,
after which bin counts at M equally spaced grid points can be calculated. The density
function is then evaluated at those grid points, and the grid counts are used instead of
the actual data points. In the case of linear binning as implemented in kdens, linear
interpolation is used for the assignment of data points to grid points to weigh the
contribution of each data point to a given grid count.
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A.2 Monte Carlo setup

To compare approximate and exact estimates, we used one of the test densities from
the main Monte Carlo study [f(x) = 0.5φ(0, 1) + 0.5φ(5, 22)] and a number of different
kernel functions and bandwidth rules. Specifically, two different kernel functions are
used, an Epanechnikov and a Gaussian kernel. For the Gaussian kernel, the same
bandwidth rules as in the main study were chosen. The Epanechnikov kernel was used
with varying bandwidths as well as Silverman’s optimal bandwidth, consistent with the
main experiment [see equations (11), (12), and (13) for the different bandwidth rules].
MISE was again used as the measure of accuracy.

Two Monte Carlo experiments were carried out. First, the number of data points
N was varied (N = 10, N = 50, N = 100, N = 1000, and N = 10000), while the
number of grid points n was set to the number of data points for N ≤ 1000 and to
n = 1000 for N = 10000. Although the accuracy of a kernel-density estimate relies
on large-sample asymptotics (that is, accuracy increases with increasing sample size),
the difference between the binned and exact estimators does not rely on asymptotics.
That means that in theory, the difference between the two estimators is not supposed to
vary across different sample sizes. Consequently, the sample size is fixed in the second
experiment (N = 1000), and now the number of grid points at which the density is
evaluated varies (n = 10, n = 50, n = 100, n = 1000). Because the relevant results were
the same across kernels and bandwidths in terms of differences between approximate
and exact estimates, we only present a subset of the results.

A.3 Results

In figure 7, MISEs for both the exact and the approximate estimators are plotted against
sample size. We can indeed see that there are no differences between the approximate
and the exact estimates when the number of grid points equals the number of data
points or is sufficiently large (n = 1000), even for very small N (the lines appear
exactly on top of each other, and the crosses, which represent MISEs of the approximate
estimates, appear within the hollow marker shapes, which represent the errors of the
exact estimates).
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Figure 7. Accuracy of the approximate and exact kernel-density estimates with grid size
equaling sample size (n = N) up to N = 1000, and n = 1000 for N > 1000; note that
the lines representing approximate and exact estimates appear exactly on top of each
other, and the crosses appear within the hollow marker shapes. EPH2 is an Epanech-
nikov kernel with Silverman’s optimal bandwidth; AKD is an adaptive bandwidth ker-
nel (Epanechnikov); GKH3 is a Gaussian kernel with Scott’s oversmoothed bandwidth.
“Exact” means exact estimation, and “approx” means approximate estimation using a
linear-binning approach as implemented in kdens.
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Figure 8 shows the results from the second experiment. Here we see a considerable
difference between the two estimation methods when the number of evaluation points
is very small (n = 10). However, this difference decreases at n = 50, and again no
differences between the two methods can be observed for n = 100 or higher.
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Figure 8. Accuracy of the approximate and exact kernel-density estimates using a
varying number of evaluation points and a fixed sample size (N = 1000). EPH2 is an
Epanechnikov kernel with Silverman’s optimal bandwidth; AKD is an adaptive band-
width kernel (Epanechnikov); GKH3 is a Gaussian kernel with Scott’s oversmoothed
bandwidth. “Exact” means exact estimation, and “approx” means approximate esti-
mation using a linear-binning approach as implemented in kdens.

A.4 Conclusion

On the basis of the evidence presented here, one does not have to do an exact kernel-
density estimation, and the binned approximation can be used instead—as long as the
number of evaluation points equals the sample size or is sufficiently large. These results
rely on a certain test density and assume reasonable bandwidth choices and are thus not
necessarily generalizable. However, given these data and bandwidth choices, the only
time it makes sense to use the exact estimator is when the sample size is larger than
the number of grid points and when the number of grid points is lower than n = 100.
Fortunately, this is avoidable: the grid size has no impact on computation time when
using the approximation. A binned kernel-density estimation with one million data
points takes around 2 seconds on a modern machine regardless of whether the number
of grid points is set to 100, 500, or 1,000. Hence, erring on the side of a larger grid
comes at no additional cost. In any case, because the number of grid points in our main
experiment is never smaller than N if N < 1000 and is set to n = 1000 for N ≥ 1000,
an exact estimation would not yield any results that would be different from the ones
obtained by using the approximation.




