
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal

Editors

H. Joseph Newton

Department of Statistics

Texas A&M University

College Station, Texas

editors@stata-journal.com

Nicholas J. Cox

Department of Geography

Durham University

Durham, UK

editors@stata-journal.com

Associate Editors

Christopher F. Baum, Boston College

Nathaniel Beck, New York University

Rino Bellocco, Karolinska Institutet, Sweden, and

University of Milano-Bicocca, Italy

Maarten L. Buis, WZB, Germany

A. Colin Cameron, University of California–Davis

Mario A. Cleves, University of Arkansas for

Medical Sciences

William D. Dupont, Vanderbilt University

Philip Ender, University of California–Los Angeles

David Epstein, Columbia University

Allan Gregory, Queen’s University

James Hardin, University of South Carolina

Ben Jann, University of Bern, Switzerland

Stephen Jenkins, London School of Economics and

Political Science

Ulrich Kohler, University of Potsdam, Germany

Frauke Kreuter, Univ. of Maryland–College Park

Peter A. Lachenbruch, Oregon State University

Jens Lauritsen, Odense University Hospital

Stanley Lemeshow, Ohio State University

J. Scott Long, Indiana University

Roger Newson, Imperial College, London

Austin Nichols, Urban Institute, Washington DC

Marcello Pagano, Harvard School of Public Health

Sophia Rabe-Hesketh, Univ. of California–Berkeley

J. Patrick Royston, MRC Clinical Trials Unit,

London

Philip Ryan, University of Adelaide

Mark E. Schaffer, Heriot-Watt Univ., Edinburgh

Jeroen Weesie, Utrecht University

Ian White, MRC Biostatistics Unit, Cambridge

Nicholas J. G. Winter, University of Virginia

Jeffrey Wooldridge, Michigan State University

Stata Press Editorial Manager

Lisa Gilmore

Stata Press Copy Editors

David Culwell and Deirdre Skaggs

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book

reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository

papers that link the use of Stata commands or programs to associated principles, such as those that will serve

as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go

“beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate

or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to

a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users

(e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers

analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could

be of interest or usefulness to researchers, especially in fields that are of practical importance but are not

often included in texts or other journals, such as the use of Stata in managing datasets, especially large

datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata

with topics such as extended examples of techniques and interpretation of results, simulations of statistical

concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behav-

ioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch),

Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

http://www.stata-journal.com

http://www.stata-journal.com


Subscriptions are available from StataCorp, 4905 Lakeway Drive, College Station, Texas 77845, telephone

979-696-4600 or 800-STATA-PC, fax 979-696-4601, or online at

http://www.stata.com/bookstore/sj.html

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.

U.S. and Canada Elsewhere

Printed & electronic Printed & electronic

1-year subscription $ 98 1-year subscription $138

2-year subscription $165 2-year subscription $245

3-year subscription $225 3-year subscription $345

1-year student subscription $ 75 1-year student subscription $ 99

1-year institutional subscription $245 1-year institutional subscription $285

2-year institutional subscription $445 2-year institutional subscription $525

3-year institutional subscription $645 3-year institutional subscription $765

Electronic only Electronic only

1-year subscription $ 75 1-year subscription $ 75

2-year subscription $125 2-year subscription $125

3-year subscription $165 3-year subscription $165

1-year student subscription $ 45 1-year student subscription $ 45

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may

be ordered online.

http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX

77845, USA, or emailed to sj@stata.com.

®

Copyright c© 2014 by StataCorp LP

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,

fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal (ISSN 1536-867X) is a publication of Stata Press. Stata, , Stata Press, Mata, ,

and NetCourse are registered trademarks of StataCorp LP.

http://www.stata.com/bookstore/sj.html
http://www.stata.com/bookstore/sjj.html
http://www.stata-journal.com/archives.html


The Stata Journal (2014)
14, Number 1, pp. 191–217

Estimating marginal treatment effects using

parametric and semiparametric methods

Scott Brave
Federal Reserve Bank of Chicago

Chicago, IL
sbrave@frbchi.org

Thomas Walstrum
University of Illinois at Chicago

and
Federal Reserve Bank of Chicago

Chicago, IL
twalstrum@frbchi.org

Abstract. We describe the new command margte, which computes marginal and
average treatment effects for a model with a binary treatment and a continuous
outcome given selection on unobservables and returns. Marginal treatment effects
differ from average treatment effects in instances where the impact of treatment
varies within a population in correlation with unobserved characteristics. Both
parametric and semiparametric estimation methods can be used with margte, and
we provide evidence from a Monte Carlo simulation for when each is preferable.

Keywords: st0331, margte, locpoly2, etregress, movestay, marginal treatment ef-
fect, average treatment effect, generalized Roy model, local instrumental variables

1 Introduction

The estimation of marginal treatment effects (MTEs) is an approach used in empirical
research when the impact of a treatment is thought to vary within a population in corre-
lation with unobserved characteristics. For instance, Carneiro, Heckman, and Vytlacil
(2011) use this framework to measure the differential returns to education for individ-
uals whose unobserved characteristics make it more likely for them to pursue higher
education. Other applications include Doyle (2007) and Brinch, Mogstad, and Wiswall
(2012), who use this framework to estimate the effects of foster care and family size,
respectively, on the long-term outcomes of children.

To illustrate the difference between MTEs and average treatment effects (ATEs),
consider the classic return-to-education model in labor economics. These models usually
begin with the Mincer equation describing the log-level of wages for a collection of
individuals,

log(wagei) = α+ βenrolli + γ1expi + γ2exp
2
i + ui (1)

where enrolli is a binary variable for whether an individual enrolled in a postsecondary
school, expi is the subsequent work experience of the individual, and ui represents
unobservable wage determinants. If ui is an independent, identically distributed (i.i.d.)
normal random variable, such that Cov(ui, enrolli) = 0, then ordinary least squares
provides an unbiased estimate of β, which represents the average return to postsecondary
education conditional on experience.

c© 2014 StataCorp LP st0331



192 Estimating marginal treatment effects

Suppose, however, that the true model of wage determination is

log(wagei) = α+ βenrolli + γ1expi + γ2exp
2
i + δmoti + νi (2)

where moti captures the motivation of an individual. We would expect that, on aver-
age, people who are more motivated earn more and are more likely to have attended
a postsecondary school. Unfortunately, a person’s motivation is unobservable to the
econometrician. This means that we cannot know whether people who attended a post-
secondary school have higher earnings because of their education or because they are
more motivated. In this case, the ui in (1) is equal to δmoti + νi, and the ordinary
least-squares estimate of β is biased.

The above example is an instance of what is often referred to as selection on unob-
servables. A standard solution to this problem is to find an instrumental variable. In
our example, such a variable must be correlated with postsecondary school enrollment
but uncorrelated with ui. Using a valid instrument with two-stage least squares provides
an unbiased estimate of β if the true empirical model is (2) but the econometrician only
observes the variables in (1).

Suppose, instead, that the model of wage determination is

log(wagei) = α+ βenrolli + γ1expi + γ2exp
2
i + δmoti + θenrolli ×moti + ui (3)

Now the average return to education varies throughout the population according to
β+θ×moti. This instance of the Mincer equation is said to exhibit selection on returns
(see Carneiro, Heckman, and Vytlacil [2011]). Another way to present it is to begin
with (1) but to treat β as a random variable such that

β(1) = β(3) + θ(3)moti + ǫ

where ǫ is an i.i.d. unobserved random variable and the subscripts in parentheses ref-
erence the equation numbers in the text. If the scale of motivation is normalized such
that E(moti) = 0, then β(1) is the average return to postsecondary education, or ATE.

If θ(3) = 0, then there is no selection on returns and two-stage least-squares estima-
tion of (1) is unbiased even though β(1) is random. However, in our example, we would
expect θ to be positive such that more motivated people get more out of their time spent
in school. It is this dependence, called essential heterogeneity, that makes it relevant to
examine the marginal return to postsecondary education, or MTE, for individuals with
varying levels of motivation.

The presence of selection on returns necessitates that we explicitly model the treat-
ment decision. This is because, as is made clear in our example, any variable that is
correlated with the decision to enroll in a postsecondary school is also correlated with
the unobserved interaction between that decision and motivation. Heckman, Urzua,
and Vytlacil (2006) show that the selection probability into treatment, or the propen-
sity score, is a valid instrument given selection on unobservables and selection on returns,
and it can be used to identify both ATEs and MTEs.
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Returning to our example, the propensity score pi is the expected value of enrolli
conditional on observable variables zi that help to explain enrollment.

pi = E(enrolli|zi) (4)

Instrumental variables for selection on unobservables are included in zi. Taking the
expectation of log wages, equation (3), conditional on expi and zi then implies

E{log(wagei)|expi, zi} = K(pi,moti) = K(pi)

whereK(pi,moti) is a function of the propensity score and motivation that is conditional
on expi and zi. The inclusion of a valid instrument in zi ensures that pi and moti are
uncorrelated, so we can simply write this function as K(pi). The MTE is then defined
as the derivative of K(pi). The MTE can be evaluated for each p in a range of values
defined by (4).

MTE =
∂E{log(wagei)|expi, zi}

∂p
= K ′(p)

By integrating MTE over p, we arrive again at the ATE.

ATE =

∫

p

MTE dp

Thus in our example, the MTE tell us how much an individual’s wage increases
when there is a small increase in the propensity score or, equivalently, how much higher
the wages of an individual that is on the margin of treatment can be expected to be
by inducing them to enroll in college via the instruments in zi. The presence of an
instrumental variable in the treatment decision model for pi ensures that the reason for
this increase is unrelated to motivation. Also, because the propensity score equals the
unobserved propensity to not enroll in a postsecondary school for indifferent individuals,
we can capture the marginal return to education for varying levels of motivation.

Notice that if motivation were observable in our example, the MTE is the same as
β(1).

E{log(wagei)|expi, zi} = α+ βpi + γ1expi + γ2exp
2
i + δmoti + θpi ×moti

MTE =
∂E{log(wagei)|expi, zi}

∂pi
= β + θmoti

If more motivated people are more likely to have enrolled in a postsecondary school and
their return to education is higher, the distribution of MTE over values of the propensity
score will show this. However, if there is more than one unobservable factor at play in
the decision to enroll in a postsecondary school (perhaps in addition to motivation,
persistence is also important), it is impossible to distinguish between the effects of the
two. The most we can say is that if motivated and persistent people are more likely to
enroll and their return to education is higher, they will exhibit larger MTEs.

In the next section, we describe how to use the propensity score to identify MTE and
ATE. Then we show how this model can be estimated using a new command, margte,
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which nests the existing command etregress (see [TE] etregress) and the movestay

command of Lokshin and Sajaia (2004) in its options. Unlike the other commands,
margte produces estimates of both the MTE and ATE by using either parametric or
semiparametric methods for estimating K(pi). Finally, we evaluate the appropriate
uses of our estimators with a Monte Carlo simulation designed to test their identification
assumptions.

2 Marginal treatment effects

In this section, we motivate the derivation and estimation of MTE within the statistical
framework provided by the generalized Roy model.

2.1 The generalized Roy model

As noted in Heckman (2010), the generalized Roy model is an example of a broader class
of treatment-effects models which jointly model a continuous outcome and its binary
treatment. MTE is a parameter of the generalized Roy model. Our description of the
model below closely follows that found in Heckman, Urzua, and Vytlacil (2006).

The potential outcomes (Y0, Y1) of a treatment D = (0, 1) are assumed to depend
linearly upon observable variables X and unobservables (U0, U1). The decision process
for the treatment indicator is posed as a function of observables Z and unobservables
V , and linked to the observed outcome YD through the latent variable I.

YD = (1−D)Y0 +DY1

Y1 = α1 +Xβ1 + U1

Y0 = α0 +Xβ0 + U0

I = Zγ − V (5)

D =

{
1 if I > 0

0 if I ≤ 0
(6)

The model is identified either through parametric restrictions on U0, U1, and V or
by including variables in Z that satisfy the following constraints: Cov(Z, U0) = 0,
Cov(Z, U1) = 0, and γ 6= 0.

Written in this way, the generalized Roy model encompasses both of the treatment-
effects models fit by the commands etregress and movestay. For instance, if Σ is the
variance–covariance matrix of unobservables and

(U0, U1, V ) ∼ N(0,Σ)
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we obtain an identical representation to the endogenous switching regression model de-
scribed in Lokshin and Sajaia (2004) and fit by the command movestay. Furthermore,
by also restricting that

α0 = α1

β1 = β0

σ2
1 = σ2

0

where σ2
i represents the variance of Ui in Σ, we obtain the treatment-effects model

described in Maddala (1983) and fit by the Stata command etregress.

The first assumption restricts the functional form of the variance–covariance matrix
of the unobservable determinants of Y and D by using what is known as a “control
function” approach to identification. The second set of more restrictive assumptions
ensures that the expectation of Y conditional on X as well as the marginal effect of X
on Y is independent of treatment status. Both commands make it possible to paramet-
rically estimate ATE as E(Y1 − Y0) by using maximum likelihood methods, or also by
using a two-step consistent estimator with etregress.

Unlike movestay and etregress, the margte command produces estimates of both
MTE and ATE by using either parametric or semiparametric methods. To see how this
is possible, consider the following. Without loss of generality, we can redefine (5) as

I > 0⇔ Zγ > V ⇔ FV (Zγ) > FV (V )⇔ P (Z) > UD

where FV is the cumulative distribution function of V , often called a link function, and
D is the treatment status of an individual. Written in this way, P (Z), the propensity
score, denotes the selection probability of treatment, while UD is a uniformly distributed
random variable between 0 and 1 representing the propensity not to be treated.

The MTE is the marginal benefit of treatment (D = 1) conditional on X and the
propensity not to be treated (UD), as shown in Bjorklund and Moffitt (1987):

MTE ≡ E(Y1 − Y0|X = x, UD = uD) (7)

This contrasts with the ATE, which captures the average benefit associated with treat-
ment conditional on X:

ATE ≡ E(Y1 − Y0|X = x)

Heckman and Vytlacil (2001b) and Heckman, Urzua, and Vytlacil (2006) show that the
ATE can be constructed as a weighted average of the MTE by integrating over UD.

The estimated propensity score P̂ (z) = Pr(Zγ > V |Z = z) allows us to define the

range of UD over which MTE is identified. Given P̂ (z), the following conditional expec-
tations of Y by observed treatment status form the basis of the parametric estimation
procedure supported by margte.

E{Y |X = x, P (Z) = p,D = 1} = α1 + xβ1 + E{U1|X = x, P (Z) = p,D = 1} (8)

E{Y |X = x, P (Z) = p,D = 0} = α0 + xβ0 + E{U0|X = x, P (Z) = p,D = 0} (9)
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Following Heckman and Vytlacil (2001a), (8)–(9) can be rewritten as

E{Y |X = x, P (Z) = p} = α0 + xβ0 + (α1 − α0)p+ {x(β1 − β0)}p+K(p) (10)

K(p) = E{U0|P (Z) = p}+ E{U1 − U0|P (Z) = p}p
to arrive at a semiparametric representation of the conditional expectation of Y also
capable of being estimated by margte. Semiparametric estimators of the MTE, how-
ever, require an additional identification assumption on the support of the estimated
propensity score, which is discussed further below.

2.2 Parametric estimators of the MTE

By assuming that (U0, U1, V ) ∼ N(0,Σ), where Σ is the variance–covariance matrix of
the three unobservables, we can estimate the MTE over the range of P (Z), that is, (0, 1).
The propensity score is generated from a probit model where P (Z) = Φ{(Zγ)/(σV )}
and Φ is the cumulative normal distribution. Following standard practice with the
probit model, we normalize its scale such that σV = 1.

Using the definition for the MTE in (7) where UD = Φ(V ),

MTE(X = x, UD = uD) = (α1 − α0) + x(β1 − β0) + (ρ1 − ρ0)Φ−1(uD)

such that ρi, i = (0, 1), corresponds to the element of Σ containing the covariance
between Ui and V . Estimation of the parameters of the MTE then follows from the
linear regressions implied by (8)–(9) using

E{U1|X = x, P (Z) = p,D = 1} = −ρ1
φ(p)

Φ(p)p

E{U0|X = x, P (Z) = p,D = 0} = ρ0
φ(p)

Φ(p)(1− p)

where the two fractions in the above expressions are the inverse Mills ratios.

It is possible to partially relax the assumption of joint normality, which also allows
P (Z) to be fit by another probability model. In this case, the command margte allows
the propensity score to be fit as a linear probability or logit model.1

Given an estimate of P (Z), (10) can be written as

E{Y |X = x, P (Z) = p} = α0 + xβ0 + (α1 − α0)p+ x(β1 − β0)p+

ϑ∑

i=1

φip
i (11)

where K(p) is approximated by a polynomial in p of chosen degree ϑ.

1. The linear probability model should be used with caution given that its range for P (Z) is not
constrained to be (0, 1).



S. Brave and T. Walstrum 197

Here the MTE is defined as the partial derivative of the conditional expectation of
Y with respect to P (Z),

∂E{Y |X = x, P (Z) = p}
∂p

= (α1 − α0) + x(β1 − β0) +
∂K(p)

∂p
(12)

such that

MTE{X = x, P (Z) = p} = (α1 − α0) + x(β1 − β0) +
ϑ∑

i=1

iφip
i−1

Its parameters are estimated by the linear regression implied by (11).2

2.3 Semiparametric estimators of the MTE

Heckman, Urzua, and Vytlacil (2006b) describe two semiparametric estimation strate-
gies for the MTE. Identification in both of these instances depends crucially on the
common support assumption for the propensity score, which requires that there exist
positive frequencies of P̂ (z) in the range of (0, 1) for individuals that do (D = 1) and do
not (D = 0) receive treatment. Verifying that a common support exists requires first
specifying a probability model, or link function FV , for the propensity score. Given an
estimate of the propensity score, the range of common support is determined by margte

before estimation of the MTE, and a histogram is presented to capture the result.

Drawing on (12), the semiparametric estimators of the MTE are computed according
to

MTE{X = x, P (Z) = p} = ∂E{Y |X = x, P (Z) = p}
∂p

= x(β1 − β0) +
∂K(p)

∂p
(13)

where, without any further assumptions onK(p), the estimation of the last term requires
the use of nonparametric techniques for local derivatives.3

One approach to estimating (13), known as local instrumental variables (LIV), is to
first run local linear regressions of X, X × P (Z), and Y on P (Z) at every observed

value of P̂ (Z) to obtain estimated residuals êY , êX, and êX×P . By then regressing êY
on êX and êX×P , we arrive at an estimate of {β0, (β1 − β0)} in a similar fashion to
Heckman et al. (1998). Alternatively, similar to the way in which the assumption of
joint normality can be relaxed in the parametric case, we can instead run the linear
regression implied by (11) to obtain {β0, (β1 − β0)}.

2. The coefficient on P (Z), φ1, in this regression includes α1 − α0 so that all the parameters of the
MTE are identified.

3. The constant terms have been subsumed in the X matrix here and in what follows.
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The remaining parameters of the MTE are then obtained from a local polynomial
regression of

Ỹ = Y −Xβ̂0 − {X ̂(β1 − β0)}P (Z)
on the common support of P (Z) to arrive at an estimate of {∂K(p)}/(∂p).4

Our semiparametric estimators use the Stata command lpoly (see [R] lpoly) to
perform the local linear and polynomial regressions in the algorithm above as well as
a modified version of its predecessor, locpoly, described in Gutierrez, Linhart, and
Pitblado (2003). We modify the latter to store higher-order approximations as local
derivatives, similar to Marsh (2006).5

3 The margte command

margte’s syntax preserves many of the stylistic features of etregress. The dependent
and independent variables of the outcome equation are first listed, leaving out the
binary treatment indicator variable. The treatment equation is then defined, listing the
binary treatment variable (defined as 0s and 1s) and its covariates, in that order, with
a separate option.

3.1 Syntax

Parametric normal model

margte depvaro varlisto
[
if
] [

in
]
, treatment(depvar t varlist t)

[
first

link(string) common nocommongraph csbarwidth(#) xvalues(#, #, . . .)

constraints(#, #, . . .) mlikelihood mlopts(string) degree(#)

kernel(kernel) ybwidth(#) xbwidth(#) savepropensity noplot

plotci(string) noboot level(#) bca bsopts(string)
]

Parametric polynomial model

margte depvaro varlisto
[
if
] [

in
]
, treatment(depvar t varlist t) polynomial(#)

[
first link(string) common nocommongraph csbarwidth(#)

xvalues(#, #, . . .) constraints(#, #, . . .) mlikelihood mlopts(string)

degree(#) kernel(kernel) ybwidth(#) xbwidth(#) savepropensity noplot

plotci(string) noboot level(#) bca bsopts(string)
]

4. Local polynomial estimation techniques are explained in Fan and Gijbels (1996).
5. In keeping with the naming conventions already established, we call this command locpoly2. Only

the ado-version of this command is currently supported. Additional details can be found in the
accompanying help file for locpoly2.
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Semiparametric LIV model

margte depvaro varlisto
[
if
] [

in
]
, treatment(depvar t varlist t) semiparametric

[
first link(string) common nocommongraph csbarwidth(#)

xvalues(#, #, . . .) constraints(#, #, . . .) mlikelihood mlopts(string)

degree(#) kernel(kernel) ybwidth(#) xbwidth(#) savepropensity noplot

plotci(string) noboot level(#) bca bsopts(string)
]

Semiparametric polynomial model

margte depvaro varlisto
[
if
] [

in
]
, treatment(depvar t varlist t) polynomial(#)

semiparametric
[
first link(string) common nocommongraph csbarwidth(#)

xvalues(#, #, . . .) constraints(#, #, . . .) mlikelihood mlopts(string)

degree(#) kernel(string) ybwidth(#) xbwidth(#) savepropensity noplot

plotci(string) noboot level(#) bca bsopts(string)
]

3.2 Options

treatment(depvart varlistt) specifies the treatment equation that estimates the pro-
pensity score. The first variable in the list is the dependent variable and all follow-
ing variables are the independent variables. The independent variable list should,
in most cases, contain at least one variable that is not in the outcome equation.
treatment() is required.

polynomial(#) specifies the degree of the polynomial in the propensity score used to
fit K(p) for the parametric and semiparametric polynomial models. If the option
is not specified, margte will fit the parametric normal or semiparametric LIV model
depending on whether the semiparametric option is also present. polynomial()

is required when specifying a parametric polynomial model or a semiparametric
polynomial model.

semiparametric specifies that the semiparametric LIV model or, when combined with
the polynomial() option, the semiparametric polynomial model be fit. The op-
tion semiparametric is required when specifying a semiparametric LIV model or a
semiparametric polynomial model.

first specifies that margte display the first-step estimates of the treatment equation
before estimation. If the model is estimated by maximum likelihood, margte will
display the output from movestay.

link(string) specifies the link function used in estimating the propensity score. It
can be estimated using probit, logit, or the linear probability model (lpm). The
default, link(probit), is also the only link function allowed if margte is fitting the
parametric normal model.
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common specifies that the common support be calculated and graphed. For UD from 0.01
to 0.99 in increments of 0.01, a given value of UD is in the common support if both
treated and untreated observations are in the neighborhood |UD(obs)−UD| < 0.005.
MTE is identified for semiparametric models only at values of UD that have common
support, thus margte automatically invokes this option if a semiparametric model is
specified. Parametric models do not depend on common support for identification
and by default do not invoke common.

nocommongraph suppresses the graph generated when the option common is specified.

csbarwidth(#) specifies the width of the bars in the common support graph. The
default, csbarwidth(0.1), gives a consistent appearance regardless of the graph’s
dimensions.

xvalues(#, #, . . . ) specifies the values of varlisto at which to calculate the MTE.
The values must be separated by commas and follow the order of varlisto. The
default is to evaluate the MTE at the means of varlisto.

constraints(#, #, . . . ) specifies linear constraints on the model’s parameters. Type
help constraint within Stata for more information.

mlikelihood fits the parametric normal model with maximum likelihood. When the
option mlikelihood is specified, margte calls movestay and reformats the output to
conform with the standard described here. To see the original output from movestay,
specify option first as well. Postestimation hypothesis testing is allowed, but use
caution because e(V) contains 0s when covariances are undefined. In such circum-
stances, test (see [R] test) may return an invalid answer.

mlopts(string) controls the maximization process in movestay. (Type help movestay

and help maximize within Stata for details.) These options are seldom used.

degree(#) specifies the degree of the polynomial in the nonparametric regression of
Ỹ on K(p) for the semiparametric LIV model. The regression provides dK(p)/dp,
which is then used to calculate the MTE. The minimum degree allowed is 1. The
default is degree(2). The semiparametric polynomial model matches the degree to
that specified in the polynomial() option. (Type help locpoly2 within Stata for
details.)

kernel(kernel) specifies the kernel function used in the nonparametric regressions of
the semiparametric models. The default is kernel(epanechnikov). (Type help

lpoly within Stata for details.) kernel(epan2) is not allowed.

ybwidth(#) specifies the half-width of the kernel for depvaro, that is, the width of
the smoothing window around each point. The specified value applies to all non-
parametric regressions involving depvaro. If left unspecified, margte uses lpoly’s
rule-of-thumb (ROT) bandwidth estimator.
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xbwidth(#) specifies the half-width of the kernel for varlisto, that is, the width of the
smoothing window around each point. The specified value applies to all nonpara-
metric regressions involving varlisto. If left unspecified, margte uses lpoly’s ROT

bandwidth estimator.

savepropensity saves the propensity score as the variable p. If any of the variables in
memory are named p, then margte will return an error.

noplot suppresses the plot of the MTE.

plotci(string) specifies which confidence intervals to plot for the MTE from those
provided by bootstrap (see [R] bootstrap). string can be normal, percentile,
bc, and bca. Type help bootstrap within Stata for a detailed exposition on the
differences between the options.

noboot turns off standard error bootstrapping. No closed-form solution for the standard
error of the MTE exists. Because bootstrapping is computationally intensive, it may
take a long time for margte to run.

level(#) specifies a confidence level for all standard errors. The default is level(95).

bca computes acceleration for the bias-corrected confidence intervals. bootstrap auto-
matically computes normal, percentile, and bias-corrected confidence intervals, but
bca must be called separately because it is computationally intensive.

bsopts(string) specifies other bootstrap options. Useful options include reps(#) and
cluster(varlist). (Type help bootstrap within Stata for more information.)

4 Examples

In this section, we present example output of the margte command using simulated data
from the generalized Roy model as described in section 2. To better illustrate the use
of margte and to give interpretation to its output, we generate the simulated data with
the accompanying command margte dgps based on a model of the returns to education
like the example in section 1.

4.1 Returns to education example

In keeping with our earlier example and the generalized Roy model in section 2.1, we
take the treatment to be the decision of whether to enroll in a postsecondary school and
the outcome to be the individual’s future wages. More formally, the treatment equation
consists of a binary decision model for postsecondary school enrollment, enroll, which
depends on the sign of the continuous latent variable I where

I = γ0 + γ1distCol+ γ2momsEdu− V

enroll =

{
1 if I > 0

0 if I ≤ 0
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and the variables distCol and momsEdu are drawn from the literature on the returns
to education describing environmental factors impacting the enrollment decision. The
variable distCol captures whether an individual grew up near a college, and momsEdu is
the highest education level attained by the individual’s mother. The outcome equation
is a linear model for the log level of hourly wages, log(wage), such that

log(wage) = (1− enroll) log(wage)0 + enroll× log(wage)1

log(wage)1 = α1 + β11exp + β12exp
2 + β13momsEdu+ u1

log(wage)0 = α0 + β01exp + β02exp
2 + β03momsEdu+ u0

where exp is work experience and u0, u1, and V are i.i.d. unobservable random variables.
Subscripts of 1 reference those individuals who enrolled in a postsecondary school, while
0 subscripts reference those who did not.

This model’s simulated data-generating process is specified in margte dgps and is
intended to capture the relationship between wages, college enrollment, work experience,
mother’s education, and distance to the nearest college, as described in chapter 5 of
Wooldridge (2010). Experience, mother’s education, and distance to the nearest college
are generated as uniformly distributed random variables with means of 20 years, 12
years, and 25 miles, respectively. Their coefficients are then set such that the mean
hourly wage rate for those who enroll in college is about $34 per hour and is roughly
$25 per hour for those who do not.6

Notice that the binary decision model is equivalent to

enroll =

{
1 if γ0 + γ1distCol+ γ2momsEdu > V

0 if γ0 + γ1distCol+ γ2momsEdu ≤ V

where transforming the above by using the cumulative distribution of V , FV , yields the
propensity score function, P (distCol, momsEdu),

FV (γ0 + γ1distCol+ γ2momsEdu) > FV (V )

P (momsEdu, distCol) > Uenroll

where Uenroll is a uniformly distributed random variable between 0 and 1 and serves as
a standardized measure of a person’s unobservable propensity not to enroll in a post-
secondary school. Individuals who have a Uenroll close to 1 exhibit a large unobservable
propensity to avoid postsecondary education. This will be an important feature to keep
in mind when interpreting the output of the margte command.

Taking the expectation of the linear model for the log level of wages, we obtain
the expected log wage conditional on experience and mother’s education, where the
conditional expectation for enroll is P (momsEdu, distCol) = p, the propensity score.

E{log(wage)} = (1− p)× E{log(wage)0}+ p× E{log(wage)1}
6. Depending on the magnitude of the simulated unobservables, our calibration does not rule out

negative wage rates. These instances occur at a rate of 1 in 6,000 observations, and they have no
discernible effect on the results of our simulations.
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Average and marginal returns to education conditional on experience and mother’s
education are then given by

ATE = (α1 − α0) + (β11 − β01)exp + (β12 − β02)exp2 + (β13 − β03)momsEdu
MTE = ATE+ E(u1 − u0)

according to their definitions in section 2.1. The margte command allows the user to
specify the values of experience, experience squared, and mother’s education at which
to calculate the conditional expectations above. The default is the mean of the variables
and is used here and in all the examples that follow. The average return to education
in our simulated data is 32 log points, or about 38%.

To estimate MTE, the researcher must make an assumption about the joint distribu-
tion of u0, u1, and V . The margte command allows V to have a marginal distribution
that is normal (probit), logistic (logit), or uniform between 0 and 1 (regress). The
marginal distributions of u0 and u1 are then determined by the choice of one of the
four MTE estimators described in section 2. Each estimator calculates E(u1 − u0) in a
slightly different way, as described in section 2, based on the implied joint distribution
of the model’s unobservables.

The most common distributional assumption for the model’s unobservables, and
the one chosen by the Stata command etregress and the movestay command of
Lokshin and Sajaia (2004), is the multivariate normal assumption. For our simulated
data, we assume that u0, u1, and V are generated from a trivariate normal distribution
with a known variance–covariance matrix, Σ. Our calibration of Σ is then guided by
the example in the introduction where individual motivation is an unobserved variable.

Consider the case where ν0, ν1, and ǫv are i.i.d. unobservable random variables

V = γvmot + ǫv

u1 = γ1mot + ν1

u0 = γ0mot + ν0

such that if γ1 > γ0, then more-motivated individuals have a higher return to education.
If γv 6= 0, then the model exhibits selection on unobservables. Furthermore, if γ1 6= 0 or
γ0 6= 0, so that motivation plays a role in the return to education, the model also exhibits
selection on returns. We calibrate Σ such that the model above exhibits selection on
unobservables and selection on returns.

The MTE then tells us how much higher or lower an individual’s wage is expected
to be given a small increase in the propensity score. The presence of an instrumental
variable in the treatment equation means that the reason individuals with the same
mother’s education were induced to attend college (in this instance, happening to live
closer to a college) is unrelated to unobserved motivation. Thus people at the margin
of the treatment decision identify the MTE for everyone whose Uenroll = p. If more-
motivated people are more likely to attend a postsecondary school and their return to
education is higher, MTE is decreasing in Uenroll.
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4.2 Parametric normal

We first estimate the parametric normal version of the MTE from section 2.2 with the
margte command. Standard errors are calculated using Stata’s bootstrap command.
Because a closed-form solution for the standard error of the MTE does not exist, this is
the preferred method of measuring the uncertainty surrounding its estimate. However,
for the model’s remaining parameters, bootstrapping may be overridden by specifying
the option mlikelihood, which uses the maximum likelihood routine of movestay to
estimate the parameters and their standard errors.

Without specifying the mlikelihood option, the generalized Roy model is fit in
stages: first running the probit regression of enroll on distCol and momsEdu to obtain
the propensity score p and the inverse Mills ratio k, followed by linear regressions of log
wages on a constant, exp, exp2, momsEdu, and k for both treated and untreated cases.
This two-step procedure is similar to that used by the Stata command etregress, but
it is less restrictive in the sense that marginal effects and error covariances are not
constrained to be equal for treated and untreated cases.

The output is organized by equation, displaying the parameter estimates for both
the treated and untreated cases. Without specifying first as an option, the parameter
estimates for the treatment equation are not displayed. Instead, its output is sum-
marized by displaying the link function at the top of the table. For the purpose of
exposition, we include this option here and report the estimates of the first-stage probit
regression. In the next section, we examine the consequences for our MTE estimates of
misspecifying the underlying model for the propensity score.

The example output below exhibits selection on unobservables, that is, the coeffi-
cients on the inverse Mills ratios (rho1 and rho0) are statistically significant from 0 and
statistically different from each other (rho1 − rho0 < 0). The direction of selection is
such that individuals who enrolled in a postsecondary school have unobservable char-
acteristics that are negatively correlated with their unobservable wage determinants V ,
whereas those individuals who did not enroll exhibit a positive correlation. Our example
also exhibits selection on returns, although this will not be readily apparent until we
examine the estimated MTEs.

Before doing so, however, we describe the second-stage estimation results. Log
hourly wages (lwage) are estimated to increase in work experience (exp) and mother’s
education (momsEdu) and decrease in experience squared (exp2) for both treated and
untreated cases, with marginal effects that are slightly larger for the treated cases.
Calculated at the mean of the independent variables, this implies an estimated average
return to education (E(Y1-Y0)@X) of about 40%, in line with the true ATE of 38% that
we used to simulate our data.
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. margte lwage exp exp2 momsEdu, treatment(enroll momsEdu distCol) first

Iteration 0: log likelihood = -3465.7259
Iteration 1: log likelihood = -2497.5662
Iteration 2: log likelihood = -2492.236
Iteration 3: log likelihood = -2492.232
Iteration 4: log likelihood = -2492.232

Probit regression Number of obs = 5000
LR chi2(2) = 1946.99
Prob > chi2 = 0.0000

Log likelihood = -2492.232 Pseudo R2 = 0.2809

enroll Coef. Std. Err. z P>|z| [95% Conf. Interval]

momsEdu .1418175 .00918 15.45 0.000 .123825 .15981
distCol -.0617553 .0016309 -37.87 0.000 -.0649517 -.0585589

_cons -.1734692 .1112346 -1.56 0.119 -.3914849 .0445466

(running parametric_normal on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Parametric Normal MTE Model Number of obs = 5000
Treatment Model: Probit Replications = 50

Observed Bootstrap Normal-based
lwage Coef. Std. Err. z P>|z| [95% Conf. Interval]

Treated
exp .1427322 .0046789 30.51 0.000 .1335618 .1519026

exp2 -.0012403 .0001169 -10.61 0.000 -.0014693 -.0010112
momsEdu .0727007 .0052843 13.76 0.000 .0623436 .0830578

k -.1300469 .0294245 -4.42 0.000 -.187718 -.0723759
_cons .3788084 .0869809 4.36 0.000 .2083291 .5492877

Untreated
exp .1158638 .0037582 30.83 0.000 .1084979 .1232297

exp2 -.0013701 .0000912 -15.02 0.000 -.0015488 -.0011913
momsEdu .0483552 .0038956 12.41 0.000 .04072 .0559904

k .2279336 .0215992 10.55 0.000 .1856 .2702672
_cons .944638 .0598158 15.79 0.000 .8274013 1.061875

Mills
rho1-rho0 -.3579805 .0356468 -10.04 0.000 -.427847 -.2881141

ATE
E(Y1-Y0)@X .3378193 .0304774 11.08 0.000 .2780848 .3975538

MTE, because it is conditional on a given realization of the propensity score, is
omitted from the table.7 It is instead plotted separately (see figure 1) over the range
of Uenroll (or UD in the notation of section 2) consistent with the MTE estimator that
is chosen [in this case (0, 1)]. Shaded error bands corresponding with a 95% confidence
interval are also plotted, as is a dashed line for the ATE as a reference point.

7. Following Heckman, Urzua, and Vytlacil (2006b), margte calculates MTE over the range of values
from 0.01 to 0.99 in increments of 0.01.
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Figure 1. MTE over the common support of P (Z)

The estimated MTE in our example is decreasing in Uenroll, reflecting that the
marginal return to education is increasing in the propensity of an individual to en-
roll in a postsecondary school. Our estimates range from a return of slightly more than
100% for individuals with the highest propensities for enrollment to roughly −50% for
those with propensity scores near 0. The magnitude of the MTE results is consistent
with our calibration of Σ (see appendix).

4.3 Parametric polynomial

The parametric polynomial version of the MTE from section 2.2 is obtained by specifying
the desired degree of the propensity score used in estimating the expectation of log wages
conditional on the propensity score. A link function other than probit may be specified.
The example output below assumes a logit link function (estimation results not shown)
and a fourth-order polynomial expansion of the propensity score. These options are not
mutually exclusive: specifying an alternative to probit necessitates using a polynomial
expansion of the propensity score.

The generalized Roy model is again fit in two stages: a first-stage logit regression
to obtain the propensity score p, followed by a linear regression of log wages (lwage)
on a constant, exp, exp2, momsEdu, and their interactions with p (expXp, exp2Xp, and
momsEduXp) along with its polynomial terms (p1, p2, p3, and p4). Estimated coefficients
and their standard errors are reported. Both the ATE and MTE are presented as above.
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Log wages in this model are estimated to increase in work experience and mother’s
education, with their marginal effects also increasing in the propensity to have enrolled
in a postsecondary school (that is, the coefficients on expXp and momsEduXp are both
greater than 0). The fitted model also exhibits selection on unobservables and returns,
because the linear and higher-order polynomial expansion terms of the propensity score
are jointly statistically significant.8

This estimator performs almost as well as the parametric normal estimator at esti-
mating the average and marginal returns to education in our example (see appendix).
In the next section, we examine whether the reverse is true when the error structure of
the model is nonnormal.

. margte lwage exp exp2 momsEdu, treatment(enroll momsEdu distCol) polynomial(4)
> link(logit) noplot
(running parametric_polynomial on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Parametric Polynomial MTE Model Number of obs = 5000
Treatment Model: Logit Replications = 50

Observed Bootstrap Normal-based
lwage Coef. Std. Err. z P>|z| [95% Conf. Interval]

Parameters
exp .1187656 .0068602 17.31 0.000 .1053199 .1322112

exp2 -.0014112 .0001628 -8.67 0.000 -.0017304 -.001092
momsEdu .044385 .0084363 5.26 0.000 .0278501 .0609199

expXp .0204441 .0098372 2.08 0.038 .0011635 .0397247
exp2Xp .0002205 .000226 0.98 0.329 -.0002224 .0006634

momsEduXp .0277618 .0159079 1.75 0.081 -.003417 .0589407
p1 1.819088 .8074025 2.25 0.024 .2366086 3.401568
p2 -7.799666 3.404652 -2.29 0.022 -14.47266 -1.12667
p3 10.69073 5.089589 2.10 0.036 .715315 20.66614
p4 -5.190432 2.568135 -2.02 0.043 -10.22388 -.1569803

_cons .8440723 .1026043 8.23 0.000 .6429716 1.045173

ATE
E(Y1-Y0)@X .3825122 .071144 5.38 0.000 .2430725 .5219518

8. Tests such as this one for essential heterogeneity are discussed in Heckman, Schmierer, and Urzua
(2010).
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4.4 Semiparametric LIV and polynomial

A semiparametric version of the generalized Roy model proceeds by specifying the option
semiparametric. This fits the model with the LIV procedure described in section 2.3.
If left unspecified, margte uses the default kernel and ROT bandwidth of lpoly. We
allow for separate bandwidths to be specified for the local linear regressions used in
estimation of the MTE with the options xbwidth() and ybwidth(). Specifying the
option ybwidth() also determines the bandwidth used in the local polynomial regression
estimated by locpoly2.9 Only one kernel can be specified.

. margte lwage exp exp2 momsEdu, treatment(enroll momsEdu distCol)
> semiparametric xbwidth(.01) ybwidth(.2) noplot nocommongraph
(running semiparametric on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Semiparametric LIV MTE Model Number of obs = 5000
Treatment Model: Probit Replications = 50

Observed Bootstrap Normal-based
lwage Coef. Std. Err. z P>|z| [95% Conf. Interval]

Parameters
exp .1190972 .0054138 22.00 0.000 .1084864 .129708

exp2 -.0014177 .0001278 -11.10 0.000 -.0016681 -.0011673
momsEdu .0438542 .0095762 4.58 0.000 .0250852 .0626231

expXp .0200417 .0094316 2.12 0.034 .0015562 .0385272
exp2Xp .000232 .0002201 1.05 0.292 -.0001993 .0006633

momsEduXp .0278976 .0159799 1.75 0.081 -.0034224 .0592175

ATE
E(Y1-Y0)@X .3756926 .0629642 5.97 0.000 .252285 .4991002

The table output for this model resembles that for the parametric polynomial model.
Regression coefficients and normal-based bootstrap standard errors are presented for
the independent variables and their interactions with the propensity score. Advanced
options of margte are available that instead allow for percentile as well as bias-corrected
and accelerated standard errors. The ATE estimate is displayed at the bottom of the
table, while the MTE estimates are again plotted separately in an accompanying figure
(not shown).

When estimated using semiparametric methods, MTE is calculated only at values
that fall within the common support of the first-stage estimates of the propensity score,
shown graphically in figure 2. We recommend using this chart as a guide to gauging
the reliability of MTE estimates over the range of values for UD. Although the MTE

is plotted as long as positive frequencies of treated and untreated cases exist, these
frequencies often will be small and the MTE results should be appropriately discounted.

9. We highly recommend testing the sensitivity of the MTE estimates produced by margte to different
choices for both bandwidths.
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Figure 2. The common support of P (Z)

. margte lwage exp exp2 momsEdu, treatment(enroll momsEdu distCol)
> semiparametric polynomial(4) ybwidth(.2) noplot
(running semiparametric on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Semiparametric Polynomial MTE Model Number of obs = 5000
Treatment Model: Probit Replications = 50

Observed Bootstrap Normal-based
lwage Coef. Std. Err. z P>|z| [95% Conf. Interval]

Parameters
exp .1186367 .0055981 21.19 0.000 .1076645 .1296088

exp2 -.0014083 .0001326 -10.62 0.000 -.0016683 -.0011484
momsEdu .0447926 .0098547 4.55 0.000 .0254776 .0641075

expXp .0207143 .0090892 2.28 0.023 .0028998 .0385287
exp2Xp .0002149 .0002164 0.99 0.321 -.0002092 .000639

momsEduXp .0273449 .016126 1.70 0.090 -.0042615 .0589512
p1 1.46855 .7444064 1.97 0.049 .0095401 2.92756
p2 -6.555712 3.016014 -2.17 0.030 -12.46699 -.6444331
p3 9.000845 4.373326 2.06 0.040 .429283 17.57241
p4 -4.405606 2.166042 -2.03 0.042 -8.650971 -.1602414

_cons .8700232 .0989947 8.79 0.000 .6759971 1.064049

ATE
E(Y1-Y0)@X .3665734 .0951283 3.85 0.000 .1801254 .5530214
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By further specifying a degree for the polynomial expansion of the propensity score,
we arrive at the final estimator of the MTE. Our semiparametric estimates for this
example are in line with their true values (see appendix), exhibiting both selection on
unobservables and selection on returns. In the next section, we demonstrate the impact
that a limited common support can have on the reliability of semiparametric estimates
of MTE.

5 Monte Carlo simulation

In this section, we evaluate our four MTE estimators with Monte Carlo simulation tech-
niques. We draw 5,000 different random samples, each with 5,000 observations, from
the generalized Roy model according to the example of section 4. Using the options
of margte dgps, we specify both the model’s assumed error structure (normal versus
nonnormal) and which of the four MTE estimators to apply to each random sample. To
approximate a nonnormal error structure, we simulate data for the conditional expec-
tation of log wages by using a polynomial of degree 4 in the propensity score.

The tables in the appendix report the actual values of the generalized Roy model’s
parameters along with the sample mean and standard deviations of their estimates.
Bias can be assessed in the tables by comparing the sample mean and actual values,
while the standard deviations are equivalent to the root mean squared error between
the actual and estimated values. All four estimators produce unbiased estimates of the
parameters when the simulated data have a normal error structure, except where the
common support is limited in our example (that is, in the upper and lower tails of the
distribution of the propensity score).

The parametric normal MTE estimator provides the best fit of the simulated data
with a normal error structure (that is, the lowest sample standard deviations).10 In
contrast, it performs poorly in terms of bias when the error structure is nonnormal. Each
of the other three MTE estimators are unbiased in this case; but the more semiparametric
the method of estimation, the less precise the estimates tend to be.

To gauge the potential reliability of margte in real-world situations, we use the
additional options of margte dgps to modify the data-generating process to break cer-
tain identifying assumptions. To assess the impact of using an invalid instrument, we
make the distance-to-college variable a direct function of the model’s unobservables for
one-third of the population. To test the effect of a limited common support for the
propensity score, we reduce the magnitude of the coefficients on the observables in the
treatment equation by 75%. Finally, we examine the result of reducing the sample size
from 5,000 to 500 observations.

Figure 3 plots the sample mean of the MTE estimates for the parametric normal and
semiparametric LIV estimators against their true values using our normally distributed
simulated data with an invalid instrument. Neither MTE estimator produces an unbiased

10. Parametric normal MTE estimates calculated using the maximum likelihood routine of movestay
are also unbiased with slightly smaller sample standard deviations.
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estimate of the MTE in figure 3 except in a small region around the ATE (that is,
UD = 0.5). The MTE estimates are also now increasing in UD, that is, decreasing in the
propensity score, because of the positive correlation induced between the instrument
distCol and u0. The example highlights the crucial role played by the propensity
score in the identification of the MTE so that its misspecification is a first-order concern
regardless of whether parametric or semiparametric methods are used by margte.
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Figure 3. Estimating MTE with an invalid instrument

Figure 4 plots the sample mean of the MTE estimates of the parametric polynomial
and semiparametric LIV estimators using our normally distributed simulated data with
a limited common support for the propensity score. The range of values [0.3, 0.7] for
UD with a well-defined common support in this example is typical of many empirical
applications of MTE methods. Within this range, both estimators are unbiased. Outside
this range, however, both suffer from a lack of identification, although the parametric
polynomial estimator is not as imprecise because it retains some identification from its
parametric restrictions.

Figure 4 also highlights the importance of examining the common support figure
produced by margte whenever semiparametric estimation methods are used. Although
positive frequencies of treated and untreated cases exist in this example at several values
of UD above 0.7 and below 0.3, they are often very small. This will have an effect on
both the bias and the variance of the estimates. The same can be said for the variance
of the estimates with small sample sizes, regardless of the estimator. Figure 5 plots 95%
confidence intervals based on the sample standard deviation of the parametric normal
MTE estimates in figure 3 with observation sizes of 500 and 5,000.
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Figure 4. Estimating MTE with a limited common support
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6 Summary

MTEs are quickly becoming a part of the toolkit for applied econometricians. The
methods described here have been extended to include multinomial treatments and
discrete instruments among other things.11 They offer a convenient way to characterize
the impact of a treatment that varies within a population in correlation with unobserved
characteristics, and they serve as a reference point for conventional estimates of ATEs.

The margte command makes it possible to estimate both parametrically and semi-
parametrically ATEs and MTEs given a binary treatment and continuous outcome within
the framework of the generalized Roy model. By nesting the existing Stata command
etregress and the movestay command of Lokshin and Sajaia (2004) in its options,
margte can also be used to produce two-step consistent and maximum likelihood esti-
mates of traditional selection models for comparison and evaluation.12

Through a Monte Carlo simulation, we described the bias and variance properties
of the four estimators supported by margte. All four produce unbiased estimates of
ATE and MTE when the model for the propensity score is well specified and the range
of values for the selection probability into treatment is well defined for both treated
and untreated individuals. Parametric estimators do so with greater precision when
the generalized Roy model is jointly normally distributed. When the joint distribution
of the generalized Roy model is nonnormal, however, semiparametric estimators offer
distinct advantages for both bias and variance.
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A Appendix

Table 1 lists the actual values of the parameters of the generalized Roy model used to
simulate the multivariate normally distributed data discussed in sections 4 and 5 by
specifying the option model(pnorm) of margte dgps. It also reports the sample mean
and standard deviation (in parentheses) of the estimates of these parameters across all
5,000 random samples, as described in section 5.

Table 2 lists the actual values of the parameters of the generalized Roy model used
to simulate the nonnormally distributed data in section 5 by specifying the option
dgp(poly) of margte dgps. It also reports the sample mean and standard deviation
of the estimates of these parameters across all 5,000 random samples, as described in
section 5.13

As an additional robustness check, we replicated the results in Heckman, Urzua,
and Vytlacil (2006b) by using the margte command and the data that are available at
http://jenni.uchicago.edu/underiv. The results of this exercise may be obtained from
the authors upon request.

13. To compare the LIV estimator with the other polynomial estimators, we use margte’s degree()

option to specify that a fourth-order polynomial expansion be used in the nonparametric regression
of Ỹ on K(p).
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Table 1. Actual and estimated parameters from simulated normal data

Parametric Semiparametric
Parameter Actual Normal Polynomial LIV Polynomial

β
exp
1 0.14 0.14 0.14 0.14 0.14

(0.00) (0.01) (0.01) (0.01)

β
exp2
1 −0.0012 −0.0012 −0.0012 −0.0012 −0.0012

(0.0001) (0.0004) (0.0004) (0.0004)
βmomsEdu1 0.08 0.08 0.08 0.08 0.08

(0.00) (0.02) (0.02) (0.02)
ρ1 −0.15 −0.15

(0.03)
α1 0.30 0.30

(0.07)
βexp0 0.12 0.12 0.12 0.12 0.12

(0.00) (0.01) (0.01) (0.01)

βexp20 −0.0015 −0.0015 −0.0015 −0.0015 −0.0015
(0.0001) (0.0001) (0.0001) (0.0001)

βmomsEdu0 0.05 0.05 0.05 0.05 0.05
(0.00) (0.01) (0.01) (0.01)

ρ0 0.25 0.25
(0.03)

α0 0.90 0.90
(0.06)

ATE(x) 0.32 0.32 0.32 0.32 0.32
(0.03) (0.07) (0.10) (0.10)

MTE(x, p = 0.1) 0.83 0.83 0.84 0.84 0.84
(0.06) (0.34) (0.44) (0.43)

MTE(x, p = 0.2) 0.66 0.66 0.66 0.65 0.65
(0.04) (0.11) (0.29) (0.29)

MTE(x, p = 0.3) 0.53 0.53 0.53 0.53 0.53
(0.03) (0.11) (0.16) (0.16)

MTE(x, p = 0.4) 0.42 0.42 0.42 0.42 0.42
(0.03) (0.10) (0.15) (0.15)

MTE(x, p = 0.5) 0.32 0.32 0.32 0.32 0.32
(0.03) (0.07) (0.14) (0.14)

MTE(x, p = 0.6) 0.22 0.22 0.22 0.22 0.22
(0.03) (0.10) (0.14) (0.14)

MTE(x, p = 0.7) 0.11 0.11 0.11 0.11 0.11
(0.03) (0.11) (0.16) (0.16)

MTE(x, p = 0.8) −0.02 −0.02 −0.02 −0.01 −0.01
(0.04) (0.11) (0.28) (0.28)

MTE(x, p = 0.9) −0.19 −0.19 −0.20 −0.21 −0.20
(0.06) (0.33) (0.42) (0.41)
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Table 2. Actual and estimated parameters from simulated polynomial data

Parametric Semiparametric
Parameter Actual Normal Polynomial LIV Polynomial

βexp 0.12 0.13 0.12 0.12 0.12
(0.00) (0.01) (0.01) (0.01)

βexp2 −0.0015 −0.0014 −0.0015 −0.0015 −0.0015
(0.0001) (0.0001) (0.0001) (0.0001)

βmomsEdu 0.05 0.07 0.05 0.05 0.05
(0.01) (0.01) (0.01) (0.01)

βexpXp 0.02 0.01 0.02 0.02 0.02
(0.00) (0.01) (0.01) (0.01)

βexp2Xp 0.0003 0.0001 0.0003 0.0003 0.0003
(0.0000) (0.0002) (0.0002) (0.0002)

βmomsEduXp 0.03 −0.01 0.03 0.03 0.03
(0.00) (0.02) (0.02) (0.02)

βp 3.40 3.40 3.40
(0.76) (0.76)

βp2 −12.00 −12.02 −12.02
(3.07) (3.07)

βp3 16.00 16.03 16.03
(4.54) (4.54)

βp4 −8.00 −8.01 −8.01
(2.26) (2.26)

α 0.90 0.84 0.90 0.90
(0.07) (0.11) (0.11)

ATE(x) 0.32 0.32 0.32 0.32 0.32
(0.03) (0.07) (0.11) (0.11)

MTE(x, p = 0.1) 2.37 0.58 2.37 2.36 2.36
(0.06) (0.33) (0.43) (0.42)

MTE(x, p = 0.2) 1.18 0.49 1.18 1.18 1.18
(0.05) (0.12) (0.28) (0.28)

MTE(x, p = 0.3) 0.58 0.42 0.58 0.58 0.58
(0.04) (0.12) (0.16) (0.16)

MTE(x, p = 0.4) 0.35 0.37 0.35 0.35 0.35
(0.03) (0.10) (0.14) (0.14)

MTE(x, p = 0.5) 0.32 0.32 0.32 0.32 0.32
(0.03) (0.08) (0.14) (0.14)

MTE(x, p = 0.6) 0.29 0.27 0.29 0.29 0.29
(0.03) (0.10) (0.14) (0.14)

MTE(x, p = 0.7) 0.06 0.21 0.07 0.07 0.07
(0.04) (0.12) (0.16) (0.16)

MTE(x, p = 0.8) −0.54 0.15 −0.54 −0.54 −0.54
(0.05) (0.12) (0.28) (0.28)

MTE(x, p = 0.9) −1.73 0.06 −1.73 −1.73 −1.72
(0.06) (0.34) (0.43) (0.42)




