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Abstract. This article considers the estimation of power and sample size in exper-
imental and quasi-experimental intervention studies, where there is clustering of
subjects within one or both intervention arms, for both continuous and binary out-
comes. A new command, clsampsi, which has a wide range of options, calculates
the power and sample size needed (that is, the number of clusters and cluster size)
by using the noncentral F distribution as described by Moser, Stevens, and Watts
(1989, Communications in Statistics—Theory and Methods 18: 3963–3975). For
comparative purposes, this command can also produce power and sample-size es-
timates on the basis of existing methods that use a normal approximation.

Keywords: st0329, clsampsi, sample size, power calculation, intervention studies

1 Introduction

Clusters are often naturally occurring groups, including, for example, schools, work
sites, hospitals, or general practices. Trials involving randomizing clusters of individ-
uals to interventions are commonly called cluster randomized trials. The implication
of cluster randomization for the design and analysis of clinical trials is widely recog-
nized (Donner and Klar 2000; Hayes and Moulton 2009). Similarity among responses
for subjects in the same cluster contradicts the assumption of independence upon which
standard methods of statistical analysis are based; the resulting dependency leads to
loss of precision and reduced power when estimating treatment effects (Murray 1998;
Donner and Klar 2000; Hayes and Moulton 2009). Clusters may also be formed for
the purpose of treatment. Examples of such clusters include exercise classes for the
treatment of musculoskeletal disorders (Hayden et al. 2005), group therapies for psy-
chological problems (Hunot et al. 2007; Bisson and Andrew 2007), and self-help groups
for smoking cessation (Stead and Lancaster 2005).

c© 2014 StataCorp LP st0329



160 Sample size and power calculations

As mentioned earlier, an important feature of trials with clustering is that the out-
come of interest for individuals within a cluster tends to be more alike because they share
the same delivery of treatment and because of interaction between individuals. The de-
gree to which responses within the same cluster are similar can be expressed by the in-
tracluster correlation coefficient (ICC), which is based on the relation of the between- to
within-cluster variance of outcome. The magnitude of the clustering effect—often called
the design effect (DE)—depends on both the cluster size and the ICC (Donner and Klar
2000). Application of a conventional sample-size estimation formula that does not ac-
count for the DE may lead to sample-size estimates that are too small, resulting in trials
that are inadequately powered.

The implications of clustering effects due to the organization of care are now re-
ceiving greater recognition. Recent guidance for reporting trials on nonpharmacologi-
cal interventions has highlighted the need to consider the effects of clustering by care
provider, because variation in outcome by care provider has the same implications for
estimating sample size and power as cluster randomized trials (Boutron et al. 2008).
In nonpharmacological trials involving a health professional activity, such as surgery,
counseling, or physical therapy, the success of the intervention could depend upon the
characteristics of the therapist.1 Where treatment and care depend on substantial skill
or training, it is realistic to assume variation in average outcome between therapists.
This variation, which implies lack of independence of patient outcomes within therapist
and, hence, intracluster correlation by therapist, has implications for the design of tri-
als of such interventions. Clustering may also be an issue in quasi-experimental studies
(Cook and Campbell 1979) used across a wide range of situations, including health and
social policy, in which comparisons are made between interventions delivered to units
using observational data.

In trials of group-administered interventions in both trial arms (fully nested design),
both the cluster size and the ICC may differ between trial arms (Roberts and Roberts
2005). Alternatively, a group-administered therapy may also be compared with an
individual therapy, resulting in no clustering effect in one arm; here the trial will consist
of partially nested data. In either design, the outcome variation in the two trial arms
may be unequal, often leading to substantial heteroskedasticity.

1. The term “therapist” is used to refer to the health professional providing therapy, irrespective of
discipline or specialty.
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Power and sample size in trials with clustering are generally based on a summary
analysis that estimates the number of higher-level units or a calculation of a DE as a
multiplier of the sample size of subjects calculated ignoring clustering (Donner and Klar
2000). While the standard sample size and power formula implemented in the power

command (sampsi for versions 12 and earlier) and sampncti command (Harrison and
Brady 2004) could be used by considering cluster level analysis, this requires estimating
the summary level variance or the DE from the posited estimate of the ICC and the
cluster size. Only the sampclus command (Garrett 2001)—acting as an adjustment to
sampsi (but not straightforward)—takes the DE into account. However, this command
is applicable only in situations where the clustering effect, in terms of both the cluster
size and the intracluster correlation, is assumed to be the same for both treatments.

This article presents clsampsi—a power and sample-size calculator designed for
cluster randomized trials with continuous or binary outcomes—which is suitable for
studies with homogeneous and heterogeneous patterns of clustering (with either fully
or partially nested data). The command calculates the power for a given set of design
parameters. It can also calculate the sample size of a prespecified number of clusters or
number of subjects per cluster for a given power. Options for calculating sample size
and power for design parameters other than those prespecified are also available.

2 Statistical analysis

Consider a fully nested data model for a continuous outcome y for the jth observation
pertaining to the jth subject in the ith cluster,

yij = µ+ δIT + γxij + ui + ǫij (1)

where µ is the mean outcome, x is a matrix of baseline covariates, γ is the vector effect
of baseline covariate x, IT is an indicator variable for the treatment arm (IT = 1 for the
group-therapy arm; IT = 0 for the control-therapy arm), δ is the treatment effect, ui is
the random effect for cluster variation with ui ∼ N(0, σ2

u), and ǫij is the random effect
for subject variation within the cluster with ǫij ∼ N(0, σ2

ǫ ). Intracluster variability
is measured by the ICC (see introduction) defined by ρ = σ2

u/(σ
2
u + σ2

ǫ ). This model
assumes that all individuals are nested within clusters in both therapy arms.

A special case of (1) is the partially nested data model. Consider, for example, a par-
tially nested individually randomized trial, in which a group therapy is compared with
a control therapy with no clustering effect in the control arm, following the regression
model

yij = µ+ δIT + γxij + ITui + IT ǫij + (1− IT )rij (2)

where rij is the random effect for subject variation in the control therapy, with rij ∼
N(0, σ2

r); σ
2
u, σ

2
ǫ , and σ

2
r are the variances of u, ǫ, and r, respectively. In the control-

therapy arm of (2), each subject could be treated as a cluster of size one. Also the total
variance σ2

u + σ2
ǫ in the group-therapy arm is not necessarily equal to the variance σ2

r

in the control arm, which results in between-arm heteroskedasticity.
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Models (1) and (2) can be fit in standard multilevel software using maximum like-
lihood or restricted maximum-likelihood (REML) estimation methods such as mixed or
gllamm. Roberts and Roberts (2005) showed that using REML for the analysis of par-
tially nested data models may work well for test size (power was not explored in their
article); however, the Satterthwaite t test is the best choice for unadjusted analysis.
They also noted the need to consider heteroskedasticity—now possible in Stata (with
the mixed, residuals() option).

3 Power and sample-size calculations

3.1 Asymptotic methods

For a known number of clusters and cluster size in each trial arm, the clsampsi com-
mand calculates the power for a given set of design parameters. In this article, the
effect on power when a covariate is in the analysis model [see (1) and (2)] is not ad-
dressed. The large-sample formula for computing the power level 1 − β to detect an
unstandardized treatment effect δ in a two-sided test with significance level α is given
by

1− β = Φ




δ
[
σ2
G

NG
{1 + (mG − 1)ρG}+

σ2
C

NC
{1 + (mC − 1)ρC}

]1/2 − zα/2


 (3)

where σ2
G, NG, ρG and σ2

C , NC , ρC are the variance outcome, the total sample size, and
the ICC in each trial arm (G: group, C: control), respectively, and zα/2 is the 100×(α/2)
percent standard normal variate. The variance of the treatment effect δ̂ = yG − yC ,
where yG and yC are the mean outcomes in the two trial arms, is given by

var
(
δ̂
)
=
σ2
G

NG
{1 + (mG − 1)ρG}+

σ2
C

NC
{1 + (mC − 1)ρC} (4)

For a known group size m and power, Donner and Klar (2000) give the following
asymptotic formula derived for the required number of clusters k in each trial arm,

k =
2(zα/2 + zβ)

2

δ2
× σ2{1 + (m− 1)ρ}

m

where σ2, m, and ρ are the variance outcome, the cluster size, and the ICC in each trial
arm, and zα/2 and zβ are the 100× (α/2) and 100×β percent standard normal variates.

For a given sample size, power can be maximized by changing the allocation ratio
between trial arms (Roberts and Roberts 2005):

R =
kGmG

kCmC
=

√
σ2
G{1 + (mG − 1)ρG}
σ2
C{1 + (mC − 1)ρC}

(5)
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For an unknown number of clusters or cluster sizes, clsampsi—using the sample-size
ratio NC/NG and either the ratio of mC/mG or the ratio of kC/kG, respectively—
calculates the starting values of the unknown parameters via the asymptotic approxi-
mation. These values are then modified (that is, increased) until the desired power is
reached. Now a noninteger solution is achieved. In unclustered sample-size calculations,
one can usually calculate the sample size that gives power close to that required for the
trial. In cluster randomized trials, however, this becomes more approximate as a cal-
culation: fixing either the cluster size or the number of clusters before estimating the
other may give only a rough approximate to the desired power. In trials with a more
heterogeneous pattern, the problem becomes yet more complex.

3.2 Small-sample size and unequal variance methods

The above approximation assumes asymptotic normality, which is suitable only with
large numbers of clusters. Otherwise, sample size will be underestimated, and power
will be overestimated in small trials. One option, which is implemented in the user-
written command sampncti (Harrison and Brady 2004), is to replace normal deviates
by the corresponding centiles of the t and noncentral t distribution and then use degrees
of freedom based on the Satterthwaite (1946) approximation, which in this circumstance
is given by the expression

υ =

[
σ2
G{1 + (mG − 1)ρG}

kGmG
+
σ2
C{1 + (mC − 1)ρC}

kCmC

]2

[
σ2
G{1 + (mG − 1)ρG}

kGmG

]2

(kG − 1)
+

[
σ2
C{1 + (mC − 1)ρC}

kCmC

]2

(kC − 1)

A further complication is the presence of heteroskedasticity due to differences in intra-
cluster correlation or cluster size between arms, an extreme case of which occurs in
a partially nested design. Considering a summary measures analysis, Hoover (2002)
suggested an approximate method based on the central and noncentral t distribution
(Disantostefano and Muller 1995). Unfortunately, this approximation performs poorly
when a smaller group size with smaller variance is compared with a larger group size
with a larger variance, which is the situation when group therapy is compared with
an individual therapy in a summary measures analysis of a partially nested design.
Moser, Stevens, and Watts (1989) described an exact numerical method for the estima-
tion of power for this test involving integration of the noncentral F distribution. We
have therefore implemented the exact method described by Moser, Stevens, and Watts
(1989). This method is exact only when all clusters within each arm are of equal size;
otherwise, the noncentral F itself is only an approximation. Also this method slightly
overestimates or underestimates power depending on both the sample-size ratio and the
outcome variance ratio between arms (more details are shown in Moser, Stevens, and
Watts [1989]).
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As an option, the command we present here also allows an asymptotic approximation
using the sampsi command and the noncentral t distribution method implemented in
the user-written command sampncti (Harrison and Brady 2004); table 1 compares the
three options.

Table 1. Power calculation for continuous data using sampsi, sampncti, and clsampsi

for varying allocation ratio NC/NG (NC : total sample size in individual-therapy arm
and NG: total sample size in group-therapy arm), number of clusters k, and ρ = 0.05
and 0.2. NG was held constant at 100; for each NC/NG value, 1st row: k = 5, m = 20;
2nd row: k = 10, m = 10; 3rd row: k = 20, m = 5. Here the treatment effect (δ) is equal
to 0.5, and the outcome variance is equal to 1 in both trial arms (no heteroskedasticity).

NC/NG Integration of Noncentral t Normal
noncentral F (default) (sampncti option) (sampsi option)
ρ = 0.05 ρ = 0.2 ρ = 0.05 ρ = 0.2 ρ = 0.05 ρ = 0.2

0.25 0.494 0.343 0.500 0.342 0.536 0.392
0.546 0.456 0.547 0.459 0.572 0.483
0.569 0.526 0.569 0.527 0.592 0.546

1 0.730 0.426 0.737 0.410 0.829 0.546
0.864 0.674 0.866 0.675 0.891 0.727
0.912 0.831 0.912 0.832 0.921 0.848

4 0.767 0.425 0.771 0.424 0.921 0.605
0.939 0.738 0.941 0.739 0.970 0.817
0.979 0.918 0.980 0.918 0.986 0.937

As table 1 shows, even in the case of no heteroskedasticity, power calculated by
clsampsi is always lower—especially for a small number of clusters—than the one
using the normal approximation (assumed by sampsi) and is equal to or slightly lower
than the one using the noncentral t distribution (assumed by sampncti); only for a
small number of clusters (k = 5) and high ICC (ρ = 0.2) is power slightly higher by
clsampsi when compared with sampncti.

To estimate the sample size of a cluster, the command uses the estimated number
of clusters based on the normal approximation as a starting value. The number of
clusters is then increased until the required power is obtained. Numbers of clusters
in each arm are increased to maintain the desired ratio of subjects between treatment
arms, which will be 1:1 unless the ratio option is specified. To estimate cluster size, the
command obtains starting values based on the normal approximation, which generally
gives a noninteger value for the cluster size. The command therefore rounds down the
value before increasing the cluster size until a combination with the required power
is obtained. Cluster sizes in each arm are increased to maintain the desired ratio of
subjects between treatment arms. The option minimum() uses the value given by (5)
as a starting value before carrying out a numerical search to estimate the combination
of cluster sizes in each arm that give the minimum number of subjects for the specified
cluster sizes.
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3.3 Unequal cluster size

In all the above formulas, mi = m is assumed for all clusters i = 1, . . . k. However, equal
cluster sizes are rarely encountered in practice, and because an imbalance in cluster size
can influence the power of the trial (Kerry and Bland 2001), it should be taken into
account for the sample-size calculation. The high influence of severe imbalance in cluster
size on power when a small number of clusters and high ICC are present was also shown
by Guittet, Ravaud, and Giraudeau (2006), who investigated the effect of cluster-size
variation on power in trials with continuous outcomes. A number of authors have given
expression for the DE where subjects are weighted equally. To deal with a potential
imbalance in cluster size, Kerry and Bland (2001) proposed adjusting the DE, assuming
a cluster-level analysis on the linear scale weighting by cluster size; this adjustment is
applicable to both continuous and binary outcomes.

Following this proposal, clsampsi implements the DE as (see also a formula for a
distribution-based correction given by Guittet, Ravaud, and Giraudeau [2006])

DE = 1 +

(
m+

σ2
m

m
− 1

)
ρ

where σ2
m (varm() in clsampsi) is the variation in cluster size. If σ is the individual-

level standard deviation, then

σ

√
DE

m

is used in clsampsi to estimate the variance of the cluster level required to determine
power or sample size using the Moser, Stevens, and Watts (1989) method or a normal
or t approximation. Note that power determined using an analysis based on summary
measures taking account of variance in cluster size, assuming clusters are weighted ac-
cording to their size, will tend to be conservative when compared with REML, maximum
likelihood, and generalized estimating equations estimations that implicitly weight clus-
ters using minimum variance weight (van Breukelen, Candel, and Berger 2007).

4 Binary outcomes

clsampsi implements the formula discussed earlier for both continuous and binary
outcomes. For example, with binary data, (3) becomes

1− β = Φ


 δ
[
pG(1−pG)

NG
{1 + (mG − 1)ρG}+ pC(1−pC)

NC
{1 + (mC − 1)ρC}

]1/2 − zα/2




where pG and pC are the probabilities of an outcome yij = 1 in the grouping and control
arm, respectively. Expression (4) is given by

var
(
δ̂
)
=
pG(1− pG){1 + (mG − 1)ρG}

mGkG
+
pC(1− pC){1 + (mC − 1)ρC}

mCkC
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For partially nested data, this expression simplifies to the following (Moerbeek, van
Breukelen, and Berger 2000):

var
(
δ̂
)
=
pG(1− pG){1 + (mG − 1)ρG}

mGkG
+
pC(1− pC)

kC

For continuous data, power using clsampsi is determined assuming a model analysis
based on summary measures; for binary data, cluster proportions are used.

4.1 Coefficient of variation: Another measure of the between-cluster
variability

Earlier, we discussed the ICC as a measure of the between-cluster variability. Another
measure of this variability is the coefficient of variation (CV) (Hayes and Moulton 2009).
For continuous outcomes, the CV is given by CV = σu/µ, where σu and µ represent
the between-cluster standard deviation and the mean of the continuous parameter,
respectively. When the outcome is continuous, the ICC ρ may be a more appropriate
measure to use to correct for clustering because it includes the within-cluster variability
while the CV does not. For binary data, the CV is given by CV = σu/p, where p is the
probability of an outcome equal to 1. In the latter case, Thomson, Hayes, and Cousens
(2009) show that a simple expression relating ρ and CV exists:

ρ =
CV2p

(1− p) (6)

Thus, when the CV = 0, then ρ = 0. Also because ρ < 1, an upper bound for CV is

CV <

√
(1− p)
p

For continuous outcomes, there is no simple relationship, similar to (6), between ρ and
the CV. As noted by Thomson, Hayes, and Cousens (2009), if we assume a constant CV

across trial arms, a different estimate of the between-cluster variance in the intervention
arm is taken from that found by assuming a constant ρ across trial arms. As a result,
different sample-size estimates will be estimated. The clsampsi command implements
the straightforward relation (6) for binary data only, given a fixed ρ or CV.

4.2 arcsin (angular) transformations for binary outcomes

When analyzing a clinical trial with binary outcomes, say, pG and pC (definitions were
given earlier), we frequently use the identity link to measure the treatment effect δ =
pG − pC . However, other links, such as the arcsin link (Cochran and Cox 1957), may
transform the above binary outcomes in a way that improves the stability of the variance
of the outcome. The power of a test of difference between pG and pC using the arcsin
approximation is given by

zβ = z1−α −
√
2N(arcsin

√
pG − arcsin

√
pC)
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where 1 − β is the desired power level, α is the significance level, and N is the sample
size (here we assume that the sample size of each trial arm is N).

This transformation stretches out both tails of the distribution of proportions and
compresses the middle. For this reason, one could argue that there is no clear benefit
of using this transformation for proportions, say, 0.3–0.7, that may be more likely to
occur in practice. Moreover, as suggested by Dobson and Gebski (1986), the arcsin

transformation underestimates the sample size or, equivalently, overestimates the power
of a test. The arcsin transformation has been implemented in clsampsi for estimating
power and sample sizes via the arcsin option.

4.3 Using the generalized estimating equation or the logistic random-
intercept model

Analysis using the generalized estimating equation or the logistic random-intercept
model estimates the log odds-ratio. Suppose ψ1 = loge{p1/(1 − p1)} and ψ2 = loge
{p2/(1 − p2)} are the log odds of the binary outcomes p1 and p2, respectively. One
might estimate power (implemented by the logodds option in clsampsi) by

1− β = 1− Φ

{
z(1−α/2) −

ψG − ψC

SE(ψG − ψC)

}

Using the delta method approximation for the standard error (SE) of the log odds
gives

SE(ψ2 − ψ1) =

√
1 + (m1 − 1)ρ1
N1p1(1− p1)

+
1 + (m2 − 1)ρ2
N2p2(1− p2)

5 The clsampsi command

5.1 Syntax

clsampsi #1 #2
[
, sd1(#) sd2(#) sd(#) k1(#) k2(#) k(#) m1(#) m2(#)

m(#) varm1(#) varm2(#) varm(#) rho1(#) rho2(#) rho(#) cv1(#)

cv2(#) cv(#) ni(#) alpha(#) power(#) onesided ratio(#) rangek1(#)

rangek2(#) rangek(#) minimum(#) maxm1(#) maxm2(#) maxm(#) sampsi

sampncti arcsin logodds
]
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When continuous data are used, the means#1 and#2 of sample 1 and sample 2 have
to be specified with their standard deviations. When binary data are used, proportions
#1 and #2 have to be between 0 and 1; sd1(#) and sd2(#) have to be omitted.

5.2 Options

sd1(#) specifies the standard deviation of sample 1. If sd1() is specified without
sd2(), the standard deviation of sample 2 is set equal to the standard deviation of
sample 1.

sd2(#) specifies the standard deviation of sample 2. If sd2() is specified without
sd1(), the standard deviation of sample 1 is set equal to the standard deviation of
sample 2.

sd(#) specifies the standard deviation of sample 1 and sample 2 assuming equal stan-
dard deviations in both samples.

k1(#) specifies the number of clusters in sample 1 (it has to be at least 2; otherwise,
the program cannot run). If k1() is specified without k2(), the number of clusters
in sample 2 is set equal to the number of clusters in sample 1.

k2(#) specifies the number of clusters in sample 2 (it has to be at least 2; otherwise,
the program cannot run). If k2() is specified without k1(), the number of clusters
in sample 1 is set equal to the number of clusters in sample 2.

k(#) specifies the number of clusters in sample 1 and sample 2 assuming equal number
of clusters in both samples.

m1(#) specifies the cluster size in sample 1. If m1() is specified without m2(), the
cluster size in sample 2 is set equal to the cluster size in sample 1.

m2(#) specifies the cluster size in sample 2. If m2() is specified without m1(), the
cluster size in sample 1 is set equal to the cluster size in sample 2.

m(#) specifies the cluster size in sample 1 and sample 2 assuming equal cluster size in
both samples.

varm1(#) specifies the cluster-size variation in sample 1. If neither varm1() nor
varm2() is specified, the default is varm1(0). If varm1() is specified without
varm2(), the cluster-size variation in sample 2 is set equal to the cluster-size varia-
tion in sample 1.

varm2(#) specifies the cluster-size variation in sample 2. If neither varm1() nor
varm2() is specified, the default is varm2(0). If varm2() is specified without
varm1(), the cluster-size variation in sample 1 is set equal to the cluster-size varia-
tion in sample 2.
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varm(#) specifies the cluster-size variation in sample 1 and sample 2 assuming equal
cluster-size variation in both samples. To have a noticeable effect on power when
using the varm(#) option, varm(#) needs to be larger than m(#) (and rho(#) >
0).

rho1(#) specifies the intraclass correlation coefficient in sample 1. If neither rho1() nor
rho2() is specified, the default is rho1(0). If rho1() is specified without rho2()
and the cluster size of sample 2 equals 1, then clsampsi assumes the intraclass
correlation coefficient of sample 2 is 0.

rho2(#) specifies the intraclass correlation coefficient in sample 2. If neither rho1() nor
rho2() is specified, the default is rho2(0). If rho2() is specified without rho1()
and the cluster size of sample 1 equals 1, then clsampsi assumes the intraclass
correlation coefficient of sample 1 is 0.

rho(#) specifies the intraclass correlation coefficient in sample 1 and sample 2 assuming
an equal intraclass correlation coefficient in both samples.

cv1(#) specifies the coefficient of variation of outcome in sample 1. If neither cv1()
nor cv2() is specified, the default is cv1(0). If cv1() is specified without cv2(),
the coefficient of variation in sample 2 is set equal to the coefficient of variation in
sample 1.

cv2(#) specifies the coefficient of variation of outcome in sample 2. If neither cv1()
nor cv2() is specified, the default is cv2(0). If cv2() is specified without cv1(),
the coefficient of variation in sample 1 is set equal to the coefficient of variation in
sample 2.

cv(#) specifies the coefficient of variation of outcome in sample 1 and sample 2 assuming
an equal coefficient of variation of outcome in both samples. The cv(#) option
is available here only for testing proportions; there is no simple relation between
rho(#) and cv(#) for testing means.

ni(#) specifies the sample size for integrating the noncentral F distribution. The
default is ni(10000).

alpha(#) specifies the significance level of the test. The default is alpha(.05).

power(#) specifies the power of the test. The default is power(.90).

onesided indicates a one-sided test. The default is a two-sided test.

ratio(#) specifies the allocation ratio between sample 2 and sample 1 (= N2/N1,
where N1 and N2 are the total sample sizes of sample 1 and sample 2, respectively).

rangek1(#) adds (#− 1) clusters to the prespecified k1(#) number of clusters.

rangek2(#) adds (#− 1) clusters to the prespecified k2(#) number of clusters.

rangek(#) adds (#− 1) clusters to the prespecified k(#) number of clusters.

minimum(#) determines the minimum sample size of subjects required to achieve the
specified power(#) for given m1() and m2().
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maxm1(#) specifies the maximum cluster size desired in sample 1 when estimating
cluster sizes. The default is maxm1(8/rho(#)).

maxm2(#) specifies the maximum cluster size desired in sample 2 when estimating
cluster sizes. The default is maxm2(8/rho(#)).

maxm(#) specifies the maximum cluster size desired in sample 1 and sample 2 when
estimating cluster sizes assuming equal cluster size in both samples; the default is
maxm(8/rho(#)).

sampsi determines the power of a summary comparison of means or proportions using
the standard sampsi command.

sampncti determines the power using the sampncti command (Harrison and Brady
2004) and the nct2 program (Steichen 2000).

arcsin determines the power for the comparison of two proportions (only) with angular
transformation, which improves the stability of the variance of the outcome. When
the arcsin option is used, power is estimated using the Satterthwaite approximate
F test (default). The arcsin plus sampsi options and arcsin plus sampncti op-
tions are also available using the z approximation (sampsi) and the noncentral t
distribution (sampncti) for comparison of proportions, respectively.

logodds determines the power for the comparison of two proportions (only) using the
generalized estimating equation or the logistic random-intercept model estimate of
the log odds-ratio. When the logodds option is used, power is estimated using
the Satterthwaite approximate F test (default). The logodds plus sampsi options
and logodds plus sampncti options are also available using the z approximation
(sampsi) and the noncentral t distribution (sampncti) for comparison of propor-
tions, respectively.

5.3 Stored results

clsampsi stores the following in r():

Scalars
r(k1) number of clusters in sample 1
r(k2) number of clusters in sample 2
r(m1) cluster size in sample 1
r(m2) cluster size in sample 2
r(N1) total sample size in sample 1
r(N2) total sample size in sample 2
r(N) total sample size in both samples
r(rho1) ICC in sample 1
r(rho2) ICC in sample 2
r(varm1) cluster-size variation in sample 1
r(varm2) cluster-size variation in sample 2
r(estpower) estimated power
r(delta) difference between the two (continuous or binary) outcomes
r(ratiom) ratio of m2()/m1()
r(ratiok) ratio of k2()/k1()
r(ratioN) ratio of N2/N1
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6 Low back pain trial: Example

A randomized controlled trial was planned to compare two interventions for the treat-
ment of chronic lower back pain. A group-administered treatment comprising active
exercise and education delivered by physiotherapists was compared with information on
self-management; a detailed description of the study is given by Johnson et al. (2007).
Based on previous data among persons consulting with back pain, a within-treatment
standard deviation of six Roland–Morris disability questionnaire points was assumed.

Assuming that the sample size in the group-therapy arm is a multiple of group size
m = 5, we wish to calculate the number of clusters required to have 90% power to
detect a minimum clinically important difference of three points in the Roland–Morris
disability questionnaire (Roland and Fairbank 2000) using a two-tailed test and 5%
significance level. There is no prior information on the ICC for the group-therapy arm;
we use ρ = 0.05 as a prior guess.

clsampsi suggests that 19 groups of 5 people in the group-therapy arm and 98
people in the individual-therapy arm are required to achieve 90% power to detect the
prespecified treatment effect.

. clsampsi 3 0, sd1(6) sd2(6) m1(5) m2(1) rho1(0.05) rho2(0)

Calculating Number of Clusters for Specified Cluster Size(s) and Power

Design with N2/N1 approximately 1

Estimated power/sample size using the Satterthwaite approximate F test for
two-sample comparison of means with clustering

Test Ho: mu1 = mu2, where mu1 is the mean in population 1
and mu2 is the mean in population 2

Assumptions: alpha = 0.0500 (two-sided)

Sample 1 Sample 2

Mean (mu) 3 0
Total St. Dev.(sd) 6 6

Number of Clusters (k) 19 98
Cluster Size (m) 5 1

Cluster Size Var.(varm) 0 0
Sample Size (N) 95 98

Intra-Cluster Corr. (rho) .05 0
SD (summary level) 2.93939 6

Total Sample Size: 193
Allocation ratio (N2/N1): 1.03

Ratio of Number of clusters (k2/k1): 5.16
Ratio of Cluster sizes (m2/m1): .2

Satterthwaite´s degrees of freedom: 52.47
Sample size (ni) for integration: 10000

Estimated power: 0.9006

In this example, we assumed that all the groups in the group-therapy arm are of equal
size. For unequal groups, however, as the variation of the mean group size increases,
more groups will be needed depending on the ICC. Suppose that the distribution of
cluster size has Poisson distribution with mean µm; then the variance in cluster size is
also µm. Assuming variance in cluster size is equal to 5 in the above example (varm1(5)),
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the total sample size in both trial arms increases from 193 to 200 subjects, as shown
below. Assuming varm1(25), the total sample size required in both trial arms increases
from 193 to 214 (results not shown here).

. clsampsi 3 0, sd1(6) sd2(6) m1(5) varm1(5) m2(1) rho1(0.05) rho2(0)

varm2 must be specified; varm2 is set equal to varm1
Calculating Number of Clusters for Specified Cluster Size(s) and Power

Design with N2/N1 approximately 1

Estimated power/sample size using the Satterthwaite approximate F test for
two-sample comparison of means with clustering

Test Ho: mu1 = mu2, where mu1 is the mean in population 1
and mu2 is the mean in population 2

Assumptions: alpha = 0.0500 (two-sided)

Sample 1 Sample 2

Mean (mu) 3 0
Total St. Dev.(sd) 6 6

Number of Clusters (k) 20 100
Cluster Size (m) 5 1

Cluster Size Var.(varm) 5 5
Sample Size (N) 100 100

Intra-Cluster Corr. (rho) .05 0
SD (summary level) 2.997 6

Total Sample Size: 200
Allocation ratio (N2/N1): 1

Ratio of Number of clusters (k2/k1): 5
Ratio of Cluster sizes (m2/m1): .2

Satterthwaite´s degrees of freedom: 54.90
Sample size (ni) for integration: 10000

Estimated power: 0.9056
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Assuming clusters of equal size (varm(0)), increasing the 19 groups by two additional
groups will also increase power as suggested below by clsampsi.

. clsampsi 3 0, sd1(6) sd2(6) k1(19) k2(98) m1(5) m2(1) rho1(0.05) rho2(0)
> rangek1(3)

calculate power for specified number of clusters k and cluster sizes m

Estimated power/sample size using the Satterthwaite approximate F test for
two-sample comparison of means with clustering

Test Ho: mu1 = mu2, where mu1 is the mean in population 1
and mu2 is the mean in population 2

Assumptions: alpha = 0.0500 (two-sided)

Sample 1 Sample 2

Mean (mu) 3 0
Total St. Dev.(sd) 6 6

Number of Clusters (k) 19 98
Cluster Size (m) 5 1

Cluster Size Var.(varm) 0 0
Sample Size (N) 95 98

Intra-Cluster Corr. (rho) .05 0
SD (summary level) 2.93939 6

Total Sample Size: 193
Allocation ratio (N2/N1): 1.03

Ratio of Number of clusters (k2/k1): 5.16
Ratio of Cluster sizes (m2/m1): .2

Satterthwaite´s degrees of freedom: 52.47
Sample size (ni) for integration: 10000

Estimated power: 0.9006

Power for increasing combinations of k1 and k2

k1 k2 k2/k1 N1 N2 N2/N1 N Power
19 98 5.158 95 98 1.032 193 0.9006
20 98 4.900 100 98 0.980 198 0.9093
21 98 4.667 105 98 0.933 203 0.9168
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