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ABSTRACT 

This report presents the optimal control approach to dynamic 
optimization. The presentation begins with a simple two-period 
problem and a level of analysis that should be familiar to anyone 
who has had an intermediate level course in price theory. The form 
of this problem is changed slightly to lead smoothly to the develop­
ment of the Maximum Principle of optimal control for many discrete 
time periods. This discrete time example is presented in a way that 
shows clearly the meaning of the Maximum Prinicple in continuous time. 
An example closely related to the examples given for optimization 
in discrete time is used to introduce the fundamentals of optimal 
control in continuous time and the use of phase diagrams for 
describing important characteristics of the solution. 

Appendixes provide a unified treatment of constrained optimization, 
nonlinear programming, and generalize the statement of the Optimal 
Control problem from the particular examples presented in the body of 
the report. 
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GROWTH AND HARVEST WITHOUT 
CULTIVATION: AN INTRODUCTION 

TO DYNAMIC OPTIMIZATION 

There are more things in heaven and earth, 
Horatio, than are dremt of in your phiZosophy. 

Shakespeare, HamZet, I.v.166 

I. Introduction 

To achieve the best results in a world in which events occur 
through time one must dream of things not yet possible. And, of course, 
in such speculations there can be no certaintly. But the first step 
to mastering the dynamic decision process is to solve a problem for 
which timing is important but for which risk and uncertainty may be 
ignored. 

The purpose of this report is to develop understanding of a 
technique of analysis that has become very important in agricultural 
and resource management. Many recent theses and articles in 
agricultural economics and planned research reports are based on this 
technique of dynamic analysis. But, at the beginning of 1985 
available articles and texts explaining this technique require a 
knowledge of mathematics well beyond that required for more 
traditional analyses and beyond the mathematical training of many who 
will find the technique useful. However, a practical understanding 
can be obtained using only elementary calculus and algebra. This 
report will build upon this minimum level of mathematics training. 
Furthermore, the key concepts can be explained to anyone who can read 
a contour map and has ever gone a bit out of his way to take a major 
highway rather than to go the shortest distance on back roads. 
4 



To reduce the complexity to a useful minimum, I first consider a 
crop that is curious indeed: one that is sown by nature and grows 
without cultivation but that is costly to harvest and changes value 
over time making the timing of harvest important. One advantage of 
beginning the study with this curious crop is that it avoids the worry 
of whether the formulas give a good picture of some real commodity we 
have in mind. Think of this as drawing an exact diagram of a mythical 
plant such as Jack's wonderful beansta1k. 

The primary advantage of the analysis of this curious crop is 
that it gives a good context for a statement of the Maximum Principle. 
Lest you be discouraged by such an awesome thing as "THE" Maximum 
Principle, consider this homey, but accurate, version: 

You can do as well as possible over the long run 
just by dOing your best at each moment, IF you 
take proper account of how your actions change 
your resources. 

With this you have lon1y" to determine what "proper account" to take 
of changes in your resources and you are back to solving a problem 
with which you are familiar. 

A further advantage of the curious crop is that it gives a 
sketchy but recognizable picture of a real commodity. Optimal 
control of the harvest of bay scallops in the sounds of North Carolina 
is a real problem with only a few complications added to that of the 
harvest of the curious crop. A detailed account of the application 
of this kind of model to the North Carolina Bay Scallop Fishery will 
be contained in a future research report. Other problems that might 
be well represented by a model very similar to that of the curious 
crop include the optimal grazing of a forage crop, the optimal market 
strategy for a potential plant variety, and the optimum control of 
soil erosion. Many readers may find that the best use of the curious 
crop example is to make accessible the many more complex analyses 
continually appearing in the literature. 

This report closes with a discussion of the way that such model 
results should be used: with caution and common sense. The main 
thing to remember is that people are doing what they do because to 
the best of their knowledge that is what ;s best for them. It is 
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very likely that at one time there were good reasons for them to begin 
what have become traditional practices. When there are major differ­
ences between the results presented by a model and established 
practice, it is very important to find out why those differences 
occur. Perhaps conditions have changed since the practice was 
established. But, the difference might reveal a major failure of the 
model to represent the real problem. 
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II. A PROVERBIAL EXAMPLE: THE CURIOUS CROP 

The basics of optimal control using the maximum principle with 
both discrete time intervals and continuous time flow are given in the 
appendices. Insight into many of the most important principles 
can be gained with a very simple, two-period example. This example 
doesn't model any real commodity very well but seems close enough 
to reality to help make the fundamentals of optimal control more clear 
and appealing. A slightly more realistic parable in continuous time 
adds the details to show the connection between the discrete time 
problem and continuous time problems. 

A. A Very Simple Problem 

Once there was a man who owned a tract of forest land through 
which a highway was scheduled to be cut in two years. In the 
path of the road he discovered a stand of commercially valuable herb 
that could be harvested only one time each year and could not be 

successfully transplanted or artificially cultivated. When dis­
covered, there were Ko kilograms of the herb just ready for harvest. 
The decision to be made was how much to harvest then and how much 
to leave to produce next year's crop. 

The owner called his county agent who called the state extension 
specialist and learned that 1 kilogram left unharvested this year 
would grow to more than 1 kilogram next year. With a growth rate of 
y per year, 1 kilogram now grows to (1 + y) kilograms next year. 

The specialist also said that the net price per kilogram, after har­
vesting costs, would depend on the inventory remaining because as the 
plants become more rare they become more costly to find and harvest. 
To express this dependence he wrote P(K) for the price. Therefore, 
if he harvested u1 kilograms in year 1 and u2 kilograms in year 2, the 
present value (at the beginning of the project) of net returns in 
years 1 and 2 would be 
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P(K2}u2 R1 = P(K1}u1 for year 1 and R2 = (1+r) for year 2. 

The term 1/(1+r} gives the prese~t value at year 1 when the interest 
rate is r per year. The objective was to maximize the sum of the 
present values R1 + R2. The owner then discovered an additional con­
straint. The government required that a fraction f of the original 
stock be left in what was to be the undisturbed part of the road­
side. This meant that in year 3 he had to have 

K3 ~ fKo (that is, K3 - fKo ~ O). (c) 

Since the plan for harvesting began in year 1 with the known 
initial stock, he had K1 = Ko to begin with. Since each kilogram 
that was not harvested in one year would grow to 1 + Y kilograms the 
next year, he also had the constraints 

K2 (1+y}(amount left after year 1 harvest) (1+y}(K1 - u1) (a) 

K3 (1+y)(amount left after year 2 harvest) (1+y}(K2 - u2). (b) 

These growth constraints are easier to generalize if they are 
written in the form of the change in K between years: 

K2 - K1 = g1(K1, u1} where g1(K1, u1} = yK1 - (1+y}u1 
~ - K2 = g2(K2, u2) where g2(K2, u2} = yK2 - (l+y)u2 . 

Writing the growth constraints this way shows that the change 
from one year to the next equals the amount the original stock 
would have grown (e.g., yK1) minus the sum of the amount harvested 
and the amount this harvest would have grown (e.g., u1 + YUl = 

(1+y}u1). Since the herb cannot be obtained from other sources, the 
quantities harvested cannot be negative, that is, u1 ~ 0, u2 ~ 0. 

The owner's whole problem is now laid out. He wants to solve 
the following problem: 
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Maximize R = R1(K1, u1) + R2(K2, u2} 

with respect to u1' u2 

(1) 



subject to 

K2 Kl = gl(K1, U1) Kl Ko (1a) 

K3 - K2 = g2(K2, u2) (1b) 

K3 - fK > 0 o - (1c) 

u1 > 0 u2 ~ O. (1d) 

The quantity sold, u, is the CONTROL VARIABLE the decision maker 
can manipulate directly in each year. The inventory K is the STATE 
VARIABLE in each year. The state variable changes as a result of 
previous values of the control variables and the passage of time 
but cannot be manipulated directly by the decision maker. For 
example, K2 depends on Kl and u1 but does not depend on u2. The 
TERMINAL CONDITION is an equation that imposes a requirement on the 
value of the state variable in the year following the last year in 
the time horizon. Here the terminal condition is K3 ~ fKo. 

Since there are a finite number of years with a finite number of 
state variables and control variables each year, this problem can be 
solved in the usual way with Lagrange Multipliers. See Appendix A for 
a review of optimization. Section C of Appendix A gives the implica­
tions of having inequality constraints on activities such as II no 
negative sales, u1 ~ 0 , u2 ~ 0" in this problem. Section D of 
Appendix A gives the implications of having inequality constraints on 
resources such as IIhave at least a fraction f of the original stock 

1 eft, K3 - fKo ~ O. II 
Since there are only two periods for growth and harvest, this 

problem may be shown in a two-dimensional graph of the familiar type. 
To get the problem into a convenient form to diagram, first consider 

constraint (c), the requirement for the state value in period 3, 
K3 ~ fKo· From constraint (b) we know that the amount K3 is just 
what was left from the harvest in period 2 (that is, K2 - u2) after 
it has grown for one period: 

Also, from constraint (a), the amount K2 is just what was left from 
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the harvest in period 1 after it has grown for one period (remember 

that Kl = Ko)' so 

K2 = (1+y){Ko - u1)· 

Substituting this formula for K2 into the formula for K3 gives 

K3 = (1+y)[(I+y){Ko - u1) - u2]· 

Collecting terms in Ko' u1 and u2 now gives the constraint (c) for K3 
in the following form: 

2 2 K3 = (1+y) Ko - (1+y) u1 - {1+y)u2 ~ fKo ' 

which after collecting terms in K , can be written as o 
2 2 (1+y) u1 + (1+y)u2 ~ [~I+Y) - f]Ko. (2) 

This constraint is shown in Figure 11.1. This figure is labelled to 
show that if all allowed harvesting is done in period 1, the amount u1 
will be Ko{l-f/{I+y)2). This will leave fKo/{I+y)2, which will grow 
to fKo by period 3. If there is no harvest in period 1, the maximum 
available for harvest will grow to the amount Ko{l+y){I-f/{I+y)2), 
shown as the intercept of the constraint on the u2 axis. 

With the constraints transformed in this way, the problem could be 
written as maximizing R, the net present value of harvests, subject to 
the single constraint given by equation 2. However, this form as a 
single constraint does not easily show how to generalize to more than 
two periods. What I will do is show the solution with the three 

constraints in equation 1 and then show how this gives the answer to 
the more familiar form with the single constraint. The Lagrangian for 
the problem stated in equation 1 is 

L = Rl + R2 + A1{gl - (K2 - K1)) + A2{g2 - (K3 - K2)) 

+ a(K3 - fKo) , 

with Kl = Ko· 

(3) 

This is an especially simple case of the discrete time optimal control 
problem given in Appendix C. In optimal control problems the A's are 
called Adjoint or Costate variables and the Lagrange multiplier, a, 

for the terminal constraint is written with a different symbol to show 
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that this is a different kind of constraint. 
There are two kinds of "activities" in this problem. One kind is 

K, the amount of the plant available, and the other is u, the 
amount of plant harvested. The necessary conditions for optimality 
require that the partial derivative of the Lagrangian function, L, 

with respect to each activity equal zero. Also, the partial 
derivatives with respect to each of the A's must equal zero since 
they are associated with equality constraints. In the control 

literature each of these kinds of conditions has a name that gives 
some insights into its meaning. These names help one remember all of the 
conditions and help make the connection between this little discrete 
time problem and continuous time optimal control. These necessary 
conditions are as follows: 

First, take the partial derivative with respect to the state 
variable K. 

Adjoint Condition 

or (4 ) 

This is called the adjoint equation because it gives the rate of 
change in the adjoint (costate) variable A. Since Kl = Ko is a 
given constant, Kl is not a variable and there is no derivative with 
respect to K1. 

Transversality Condition 

or 

A2 = a. Also, a ~ 0 and a(K3 - fKo) = O· (5) 

The additional conditions a > 0 and a(K3 - fKo) = 0 come from 
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the Kuhn-Tucker condition (See Appendix A, Section 0, and Appendix C) 
Notice that the constraint K3 - fK > 0 is treated as a resource con-o -
straint to produce the shadow price o. This is called the transver-
salitycondition because it gives the condition that must be satisfied 
as the project transverses the planning horizon. 

The partial derivatives of the Lagrangian with respect to the 
multipliers, A's, reproduce the constraints as the 

Equations of Motion 

~ - gl - (K2 - K1) = 0 c)Al -

(6 ) 

These are called the equations of motion because they describe how the 
resource grows (moves) over time. 

Finally take the partial derivatives with respect to the control 
variables, the quantities harvested u1 and u2. 

Hamiltonian Condition 
aR 

u ~ = 0 ~=-I+Aag < 0 u1 > 0 aU I aU I 1 l/au1 lau1 

aR (7) 

~=-2+Aag <0 
aL > O. u ~= 0 u2 aU2 aU2 2 2/au2 - 2 u2 

The reason for calling these the Hamiltonian Condition will be seen 
soon when the problem is given in a different form using the 
Hamiltonian function instead of the Lagrangian. The inequalities 
enter these conditions because the harvest rates cannot be less 
than zero. The equation u1(ar./au1) = 0 says either u1 = 0 or 
aL/aul = O. If the optimal harvest rate is positive, then the usual 
equality constraint aL/au l = 0 holds. 

The form of these necessary conditions can be simplified and the 
MAXIMUM PRINCIPLE can be obtained with the following definition. For 
this example the HAMILTONIAN FUNCTION at each time period i is defined 
to be 
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THE HAMILTONIAN FUNCTION IN PERIOD i IS THE NET 
RECEIPTS FROM SALES ("PROFIT" Ri) PLUS THE VALUE 
OF THE ADDITIONS TO INVENTORY VALUED AT THE 
SHADOW PRICE Ai. 

The partial derivative of Hi with respect to ui is 

aH. aRe ago aL 
_'=_'+1.. -'=-aU i aU i i aU i au i · 

This means that the conditions of equation (7) are necessary to 
maximize the Hamiltonian at each period. Notice also how H can be 
used to write equations (4) and (6) more compactly. 

The problem of maximizing over !l! periods, given in equation 1, 
will be solved if the following problem is solved for each period i. 

Maximize Hi(Ki , ui ' Ai) 

w.r.t. ui 

together with 

Adjoint Condition (from 4) 

Transversality Condition (from 5) 

1..2 = Oa~ (K3 - fKo) 
3 

Equations of Motion 

Initial Condition 
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THE MAXIMUM PRINCIPLE SAYS THAT THE RESOURCE 
MANAGER CAN GET OPTIMAL RESULTS OVER THE WHOLE 
PLANNING HORIZON IF THE BEST IS DONE AT EACH 
MOMENT. THE CATCH IS THAT TO KNOW WHAT IS BEST 
TO DO AT EACH MOMENT, THE MANAGER MUST KNOW THE 
SHADOW PRICE, A., FOR A CHANGE IN THE STATE 
VARIABLE, K. 1 

For a more rigorous and general statement of the Maximum Principle 
see Kamien and Schwartz (pp. 201-203), Intriligator (p. 351) and 
Clark (p. 91, p. 251). The shadow prices are connected over the 
entire horizon by the Adjoint Condition and the Transversality 
Condition. 

The Transversality Condition (5) says that the marginal value 
of the resource saved to meet the government's requirement for the 
remaining stock must equal the marginal value of the resource in the 
last period of harvest. This also says that if K3, the amount of the 
resource in year 3, is more than the government's required value, fKo' 
then A2 = 0 = 0, which means there is no marginal payoff to 
leaving this much of the resource in the last period. Harvest should 
continue until either the net return goes to zero or the constraint 
on K3 becomes binding. 

At first sight, the negative sign in the Adjoint Condition, 

-aH2/aK2 = A2 - AI' is puzzling because it says that the greater the 
current marginal contribution of the stock K, the more rapidly the 
shadow price A must decrease. The Adjoint Condition is written in the 
puzzling form here because this is the form in which the Adjoint 
Condition appears in the continuous time problem and the puzzle is 
more easily solved with the discrete time problem. This puzzle is 
solved by noticing that the shadow price must be moving toward the 
end value given by the Transversality Condition, A2 = o. The shadow 
price decreases more rapidly because it starts from a higher value 
when the marginal contribution of K2 is higher. This effect is clear 
when the Adjoint Condition is written as Al = A2 + aH2/aK2 , from which 
it is clear that a greater marginal contribution of the stock must 
increase the earlier shadow price. 

Now in the Adjoint Condition (equation 4), substitute A2 = 0 

from equation (5) and ag2/aK2 = y from the definition of g2 to get 
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or 

(9) 

To find AI' the marginal value of the resource in period 1, I 
had to go to the end, find out what the marginal value would be for 
the terminal constraint, and work back to the beginning. But when I 

know the A's, the Maximum Principle tells me how to get the best results 
for all time by just doing my best one period at a time. 

As promised, I now return to the familiar form of the problem 
with one constraint to reassure the reader that the two different 
forms give the same solution. First the problem in the form shown 
in Figure 1 is given with the constraint in the form in equation 2, 
by 

subject to 

Max R1(K1, u1) + R2(K2, u2) 

w.r.t. u1 and u2 

2 2 (l+y) u1 + (l+y)u2 ~ [(I+y) - f)]Ko' 

Remember that Kl = Ko' K2 = (l+y)(Ko - u1)· The Lagrangian for this 
problem is 

2 2 Ll = Rl + R2 + ~{[(I+y) - f)]Ko - (l+y) u1 - (l+y)u2)} 

and the necessary conditions, when both u1 and u2 are greater than 
zero and the constraint is an equality, are 

with dK2/du l -(I+y). Equating these two ways of writing zero gives 
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or, 

aR1 aR2 2 aR2 - - (1+Y~K - (1+y) II = - -aU1 a 2 aU2 

since (1+y)2 - (l+y) = y(l+y), 

aR 
(1+Y)aK2 + y(l+Y)ll. 

2 

(1 +Y)ll 

(10) 

Now from the Hamiltonian equation (7), the relation between 0, A2 and 
Al from equations (5) and (9), and the fact that ag1/au1 = ag2/au2 

(l+y), when the optimal u1 and u2 are positive, 

aR1 _ aR2 aut - [(l+y)o + aR2/aK2](1+y) = aU
2 

- o(l+y) 

or 

(11 ) 

Comparison of equations (10) and (11) shows that the two methods give 
identical results with II = 0 when the single constraint is in the form 
in equation (2). 

The more familiar form of the resource allocation problem, with 
the constraint in the form of equation (2) and shown in Figure 1, can 
also be generalized to continuous time, more constraints, etc. (see 
Kamien and Schwartz, pp. 212-214 for an example). But for problems 
with many time periods or continuous time, the generalization of the 
form that has given the Maximum Principle is usually the more conven­
ient form. 

B. MORE: More Periods, More Variables, More Constraints 
The very simple problem with only one resource, one control 

variable, and two time periods is easily generalized using the 
knowledge of optimizing techniques from Appendix A. Appendices B 
~nd C give the form of the problem and equations for applying the 
Maximum Principles to problems with T discrete time intervals, n 
control variables in each period, m state variables, r constraints on 
the control variables, and s terminal constraints. It sounds terribly 
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complicated, and real research problems can require models that 
increase any or all of the numbers n, m, rand s. But it is amazing 
how well the simple two-period problem above prepares one to tackle 
the larger problems. 

In the simple problem with two periods and one control each 
period, the Maximum Principle changed it into two problems each with 
one control variable. The reader probably has already concluded that 
the Maximum Principle is not worth the trouble when you have only a 
two-period problem. In a problem with T discrete time periods and n 
controls each period, the usual formulation with a Lagrangian gives 
one problem with nT controls to be determined. The Maximum Principle 
approach with the Hamiltonian for each period changes this into T 
problems, each with n controls. This still may not be such a bargain 
until the number of periods T becomes very large. For problems 
with continuous time, however, the "number of periods" becomes infinite 
so instead of trying to solve one problem in infinite dimensions, the 

Maximum Principle changes the problem to an infinite number of problems, 
each with a finite number of dimensions. That Ji a bargain because 
an ordinary function of time can present the solution for all values 
of time. As soon as students of elementary algebra find a solution 
for y as a function of x they know how to solve an infinite number of 
problems of the form "for this value of x what is the value of y?" It 
is in this sense that an infinite number of problems are solved in the 
Maximum Principle. 

C. Continuous Growth and Harvest: 
Another Curious Crop 

Meanwhile, back in the forest, the highway has been completed 
and the herb harvest has ended. However, the landowner has discovered 

a unique variety of ornamental plant on which he has obtained a patent. 
The patent is perfectly effective for a total of T years, after which 
there will be no profit in raising this plant. Fortunately the owner 
has all the greenhouse space he can use, a ready market, and an initial 
parent stock of Ko kilograms. This plant grows year-round in green­

houses with a rate of increase g(K), depending upon the mass K of 
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parent plants under cultivation. The growth function g(K) is a 
continuous, differentiable function that changes only with K and not 
directly with time. The growth function also has the properties 
g(O) = 0, gl(O) > 0, and g"(K) < 0 where gl denotes the first 
derivative and g" denotes the second derivative. These mathematical 
conditions mean that there is no growth without some parent stock, 
g(O) = 0; that for small quantities of the parent stock the growth 
rate increases with increases in the parent stock, gl > 0 for K = 0; 

and the increase in the rate of growth decreases with increasing 
parent stock, g"(K) < 0 for all values of K. 

I like to call this plant Crusonia Curiosa because of its simil­
arity to the equally unreal Crusonia plant used as an example by 
Knight (1944). 

The harvest is in the form of cuttings that are sold by weight. 
This is the control variable that is a continuous function of time 
written as u(t). Since the plant is harvested at the moment of sale, 
there is no distinction between the rate of harvesting and the r.ate of 
selling. For this problem I assume it is always optimal to have 
positive harvest. The effects of constraints on u are shown in 
Appendix D. Because of the patent monopoly on the sales of this plant, 
revenue decreases as the rate of selling increases, (RI)I = R" ~ 0, 

even though marginal revenue is positive, RI > O. 
The ownerls objective is to maximize the present value of the 

stream of net revenue over the life of the patent, and the interest 
rate for discounting the future is r. As we go from discrete time 
intervals to continuous passage of time, the discount factor 1/(I+rf 
becomes e-rt . As usual, this rate may be interpreted as the opportunity 
cost of credit with continuous compounding. There is no "scrap value" 
to inventory remaining after the patent ends. Using the notation u(t) 
to mean the entire path of harvest over time t between 0 and T, the 
managerls problem is given by the following mathematical statement: 
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Maximize 
T 

J R(u(t»e-rtdt 
t=O 

with respect to u(t) 



subject to 

K = g(K) - u(t) 

K(O) = Ko. K(T) ~ O. 

The net rate of increase, K = dK/dt, in the stock parent plant 
(inventory) equals the rate of growth of the plant, g(K), minus 
the rate of harvest, which equals the rate of sales. 

The Hamiltonian for this problem is 

(12) 

H(t) = R(u(t))e-rt + A(t)(g(K) - u). (13 ) 

By the Maximum Principle (see Appendix D for the transition to the 
continuous time case and Appendix C for an explanation of the 
Hamiltonian), with the conditions on the derivatives and second 
derivatives of Rand g, the necessary and sufficient conditions to 
solve the problem of equation 12 are as follows: 

At every time t from 0 to T 

Maximize 

with respect to u(t) 

together with 

aH 
A = - aK 

. aH 
K =­aA 

H(t) 

(14 ) 

A(T) > 0 A(T) K(T} = 0 

K(O) = Ko K(T) ~ 0 . 

Pause a moment to reflect on the meaning of each of the elements 
in equations (13) and (14). Remember that the adjoint variable, also 
called the costate variable, A(t), gives the marginal value of the 
state variable K at time t. Therefore, the quantity A(g - u) is the 
marginal value of the rate of increase of the parent plant. Of course, 
if the rate of harvest, u(t), is greater than the rate of growth, 
g(K(t)), then A(g - u) is negative or zero since A must be greater 
than or equal to zero. The quantity Re- rt is the direct contribution 
at time t to the objective which is to maximize the integral of Re- rt 

over the planning horizon. So the Hamiltonian H(t) is the sum of the 
direct and indirect contributions of the harvest at time t. 
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Also notice the similarities and differences in the Adjoint . . 
Equation, A = -aH/aK, and the Equation of Motion, K = aH/aA. The 
negative sign in the Adjoint Equation says that the greater the 
marginal contribution of the stock of the parent plant to the value 
of the Hamiltonian objective function, the more rapidly the shadow 
price must be decreasing with time. Recall how this puzzle was solved 
in the discrete time period problem that gave equation (4): a given 
end value and more rapid decreases in the shadow price imply higher 
earlier values. The boundary condition on the shadow price of the 
parent stock is given at the end of the planning horizon. Having 
this end value condition on the costate variable makes the equations 
more difficult to solve than they would be if the initial value were 
known, as it is for the stock of parent plant, Ko. But remember that 
the shadow price contains the information about the future value of the 
stock. The state variable K tells us about the past, the costate 
variable A tells us about the future. 

Assume that the optimal harvest rate, u, will be greater than 
zero but not large enough to exhaust the stock instantaneously. Then 
the ~ecessary condition aHjau = 0 together with the equations for A 
and K from equation 14 gives the following necessary conditions to 
solve the original management problem given in equation 12. 

At each t 

(a) dR -rt 
- A = 0 ~ 

(b) A = - A~ dK A(T) > 0 A(T) K(T) = 0 

(c) K = g - u K(O) = Ko K(T) ~ O. (15) 

If the functional forms for R(u) and g(K) were simple enough, 
the conditions of equation (15) could be solved for u, K, and A as 
functions of t. Or numerical integration with a computer could be 
used to get as close approximations as required for any reasonable 
functional forms of Rand g. But, through use of the technique of 
"phase diagrams" some important characteristics of solutions can be 
Seen without getting the final solutions of the equations. Building 
up these phase diagrams is important for the study of economics or 
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resource management because they help use our knowledge of static 
problems to help understand the dynamic. Also, understanding these 
phase diagrams gives insights into the actual solution of the manage­
ment problem, whether this solution be a numerical approximation 
obtained with a computer or a less formal approximation based on 
experience and judgment without extensive calculations. 

For convenience in notation, let R' = dR/du, R" = d2R/du2, . . 
g' = dg/dK, A = dA/dt, u = du/dK. From equation (15a) 

A = R'e- rt (16) 

and differentiating A from this expression with respect to t gives 
(remember to use the chain rule since the control u is also a function 
of time) 

~ = _rR'e- rt + R"~e-rt. 

Now factor R I e -rt out of the right- hand side, 

I -rt R" . A = R e (-r + RT u). 

Recognize the value for A from equation (16), so 

R" . 
A=A(-r+RT u). (17) 

Equate the expressions for A from equations (15b) and (17) and divide 
by -A to get the following equation that does not involve A: 

R" • 
g I (K) = r - F u , 

which can be solved for u to give 
• R' 
u = w( r - g I (K» , (18 ) 

assuming that R" is not equal to zero. If R is a linear function of 
u, then R" is zero and the optimal harvest rate is either zero or 
its maximum value (so-called bang-bang control). It is clear from 
equation (18) that the optimal harvest rate is constant, u = 0, if and 
only if 

(19) 
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which implicitly gives a critical value of K, call it K , for which c 
the harvest rate is constant. This value is diagrammed as the 

vertical line labeled u = 0 in Figure 11.2. 
Reasoning through from equation (18), it becomes clear that the 

optimal harvest rate is decreasing through time, u < 0, if the stock 
is greater than the critical value, i.e., if K > Kc. The reasoning 
goes this way. Since marginal revenue is positive but decreasing 
with sales, RI > 0 and RII < 0, the sign of the optimal rate of change 
in harvest (and sales), u, is the opposite of the sign of r - gl, 
i.e., the sign of u is the same as the sign of gl - r. It has been 
assumed that the second derivative of the growth rate is negative, 
gil < 0, which means that gl is a decreasing function of K. Therefore, 
when K is greater than K (where gl = r), it must mean that the c . 
optimal value of gl is less than r, making u < O. This fact is indica-
ted by the arrows pointing down in Figure 11.2. Similarly, if the 
stock is less than the critical value, K < K , then the optimum . c 
requires u > O. This is indicated by the arrows pOinting up in 
Figure 11.2. Together these three relationships between the rate of 

change in the optimal harvest rate u and the quantity of the parent 
plant K give the first part of a PHASE DIAGRAM. 

The relationships between the rate of change in the stock K and 
the optimal harvest rate u give the second part of a PHASE DIAGRAM. 
To find the relationship for this problem, return to the equation of 
motion that shows the net growth rate 

K = g(K) - u. 

This says that the inventory of parent plant is constant over time if 
and only if the harvest rate u equals the growth rate g, 

u = g(K). (20) 

If the harvest rate u is greater than g, then the inventory must be 
decreasing, K < 0; and if the ~arvest rate is less than g, then the 
inventory must be increasing, K > O. By assumption, there is no growth 

without some parent stock, g(O) = 0, and the g function is concave, 
gil < O. Therefore, the curve of the harvest rate u as a function of K 

that would keep the inventory constant, u = g(K), has the form shown 
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Figure 11.1 Terminal constraints as a constraint on harvest 
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Figure 11.2. Direction of change in optimal harvest u 

u 
u = 0 

f 

K 

Figure 11.3. Direction of net growth in parent stock K 

u 

NOTE: This curve 
is a 
quadradic 
u = K(2-2K) 

K = 0 

u = g(K) 

NOTE: When combined these two figures give Figure 11.4. 
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in Figure 11.3. 1 The arrows show the direction of change of K with 
time in the two regions separated by the curve defined by u = g(K). 
This is the second part of a PHASE DIAGRAM. 

When combined, the information in Figures 11.2. and 11.3. give 
the PHASE DIAGRAM for the problem of continuous growth and harvest 
given by equation (12). This is shown in Figure 11.4. In each of 
the four regions (phases) of Figure 11.4., the harvest rate u and the 
inventory level K change over time as indicated by the arrows. For 
example, in the lower left-hand region, both u and K must be increasing 
to satisfy the necessary conditions for an optimal plan. Note also 

that at the value Kc ' the slope of the curve for K = 0 must equal the 
interest rate, r, 9'(Kc) = r. This has important implications that 
will be discussed after looking at some representative paths of u and 
K through time. 

Figure 11.5. shows some representative time paths of u and K 
impJied by the phase diagram for two different initial values of K 
and three different starting values of u for each initial value of K. 
Notice that when a path crosses one of the boundary curves (u = 0 or 
K = 0), the path must be perpendicular or horizontal at the boundary 
curve. This is because paths represent motion through time and the 
boundaries give points where the indicated variable is stationary in 
time, whil~ the other variable continues to change. Therefore, on the 
boundary K = 0, K is not changing with u; on the boundary u = 0, u is 
not changing with K. 

Paths A, B, and C illustrate available paths satisfying all of 

the necessary conditions from equation (15) EXCEPT the requirement 
that A(T) ~ 0, A(T) K{T) = O. The optimal path among those available 
for the given Ko is one that satisfies these conditions on A(T). 
Equation (15a), R'e- rt = A, shows the connection between the shadow 
price A and the optimal harvest rate. If the initial A is chosen too 
small, this requires R' to be too small, which means that u is too 

large. Such a choice will exhaust the parent population too soon and 
will cause A to become negative before the end time T (A must not be 
negative). Similarly, choosing an initial value of A that is too 
large causes the value of the harvest rate to be too small and both 
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Figure 11.4 Optimal Harvest and net growth phases 

u 
u = 0 

This is just Figure 
II.4 with curves 
ABCDEF added 

K = 0 

~ K 
Figure 11.5 Representative time paths of harvest rates and stock 

levels implied by phase diagram 
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A(T) > a and K(T) >0; the manager acts as if the parent stock was 
worth something at the end of the planning horizon. 

Path C clearly is not optimal no matter how long the planning 
horizon. On path C the harvest rate goes to zero and the inventory 
of parent stock will reach the highest values allowed by the environ­
ment (where the K = a curve crosses the K axis). Clearly, patch C 
does not maximize the present value of net revenues. On the other hand, 
as the planning horizon goes to infinity, a path such as B will be 
optimal. Path B approaches the equilibrium point where K = u = a and 

nothing changes. . . 
The equilibrium point where K = u = a is the pOint of optimum 

sustained yield. Recall from Figure 11.4. that at the point at which 
K = u = 0, the slope of the K = a curve, u = g(K), must equal the 
interest rate. Therefore, as the interest rate goes to zero, the 
equilibrium point goes to the highest point on the K = a curve where 
g'(K) = O. This highest point on the K = a curve is the point of 
maximum sustained yield. Some have proposed that maximum sustained 
yield be the criterion for harvest of resources such as fish. However, 
this is an extreme policy that is optimal only when the interest rate 
is zero and the planning horizon is infinite (see Clark, p. 43). 

For a finite horizon, T < 00, some path such as A is optimal. 
There are several things to notice about the optimal path with a 
finite horizon. With a finite horizon, the optimal harvest rate is 
always at least as great as it would be for an infinite horizon start­
ing with the same initial stock, Ko. It ~ be optimal to start with 
a low enough harvest rate to allow the stock to increase for a while. 
It will always be optimal to harvest rapidly enough to cause the 
stock to decrease before the end time T. It may be optimal to harvest 
rapidly enough to cause the stock to decrease from the start (starting 
with Ko < Kc such a path would start above the K = a value of u). 
Whether it will be optimal to exhaust the stock on or before 
the end time T cannot be determined without more knowledge about the 
returns function, R(u). If harvest costs increased with decreasing 
parent stock, then there might be a level of stock that would not be 
profitable to harvest. In such a situation, both the shadow price, A, 
and the harvest rate, u, might optimally go to zero before the end of 
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the horizon and some parent stock might be left unharvested. 
If the initial stock K is greater than the critical value K , o c 

the available paths are represetned by paths D, E and F. Path F would 
never be optimal for the same reason as that discussed for Path C. For 
an infinite planning horizon, Path E would be optimal, whereas for a 
finite horizon, some path such as D is optimal. For this problem, the 
optimal path must lead to A(T) = 0 and the parent stock inventory K 
will go to zero exactly at the end time T since marginal revenue, Rt

, 

is positive for all levels of the parent stock. 
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III. USE WITH CAUTION 

The Maximum Principle is a powerful tool. both in concept and in 
application. As a model of the behavior of people in a dynamic world. 
it shows that one seeking optimum results will account for the value 
resources will have in future use. But the analysis shows clearly 

that the planning horizon. T. and the discount rate. r. have important 
influences on the value of resources to the decision maker. The equa­
tions of motion. which represent the growth and decay of resources. are 
now important elements of the technology. as they limit the rate at 
which the world can be changed. More usual production costs. as well 
as the benefits sought, enter the objective function. 

The modeling assumption that the objective function is additive 
and separable across time may require that some additional effects be 
treated as resources. Knowledge, skills, likes and dislikes may be 
important to treat as "resources" to be built up or torn down. It is 
in this way that a stock of experiences may be modeled to affect 
decisions. The difficulty is that many of the important elements may 
not be directly measurable or can be measured only in situations other 

than the exact setting of the problem. An important example of such a 
measurement problem is the fact that the growth response of a plant 
or animal is best measured in experiments not directly connected with the 

specific decision problem. On the other hand, human capital developed 
through schooling and experience cannot be observed directly and. 
therefore, effects must be inferred from the results of the decision 

process. 
In empirical applications estimating parameters and/or testing 

hypotheses, there often are difficult statistical problems at or beyond 
the frontiers of econometric methods. Particularly difficult problems 

arise when the dynamic model includes corner solutions in which control 
or state variables reach some limit. 

Random effects may enter dynamic models in several important 
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forms. The easiest form to handle is that in which the planning 
horizon or lifetime T is a random variable with a well behaved 
distribution. There also are known methods for analysis of problems 
in which the equations of motion are stochastic processes. See for 
example, Malliaris and Brock (1982). But there are still many diffi­
culties in estimation and hypothesis testing in models in which the 
equations of motion are stochastic processes in continuous time. 

As stated in the introduction, the main thing to remember is 
that people are dOing what they do because to the best of their 
knowledge that is what is best for them. When there are major 
differences between the results of a model and established practice, 
it is very important to find out the reasons for these differences. 
Perhaps conditions have changed since the practice was established, 
but, on the other hand, these differences may reveal a major failure 
of the model in representing the real problem. 
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Footnote 
1The quadratic form of g(K) that meets the requirements 

g(O) = 0, gil < 0 is g{K) = aK - bK2. With no harvest, u = 0, this 
gives the logistic growth function in K. In integrated form the 
Logistic function obtained from K = aK - bK2 is 

where alb is the maximum value K approaches as t goes to infinity 
and Ko is the value of K at t = O. 
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Appendix A. Principles of Constrained Optimization 

A. A Review of Optimization 

One of the first lessons one learns in calculus is how to find 
an extreme value of a smooth function, f(x), of one variable, x. 
The rules are easily visualized and remembered: 

(a) When the derivative of f with respect to x equals zero, 
df/dx = 0, the function f(x) has a (local) stationary 
point. 

(b) If for all values of x the second derivative of f(x). 
d2f/dx2, is positiv~ then f(x) has a global minimum at 
the value of x where df/dx = o. Such a function has a 
graph that looks like a valley for all x and is called 
strictly convex [Figure Al(a)]. 

(c) If for all values of x the second derivative of f(x) is 
negative, thenf(x) has a global maximum at the value of 
x where df/dx = O. Such a function has a graph that looks 
like a hill for all x and is called strictly concave 
[Figure Al(b)]. 

(d) If the second derivative of f(x) changes sign, then a local 
stationary value may be neither a local maximum nor a local 
minimum. much less a global maximum or minimum. Such a 
function is neither convex nor concave [Figure Al(c)]. 
If a function has a flat spot so that the second derivative 
equals zero for an interval of x, the function may be convex 
without being strictly convex or concave without being 
strictly concave; in this case a value of x giving a local 
stationary point may not be the only value of x to give a 
maximum or minimum [Figure Al(d), Figure Al(e)]. For this 
reason I work only with strictly convex or strictly concave 
functions in this report. 
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Figure Al Extreme values of smooth functions of a single variable 

f(x) 

df/dx t 0 

(stationary point) 

AI(a) A strictly convex function 
x 
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df/dx = 0 

(stationary point) 
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AI(b) A strictly concave function 
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Figure Al (continued) 
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AI(d) A function that is concave but not strictly concave but with 
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AI(e) A function that is concave but not strictly concave and a 
maximum at many values of x 
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When we seek the extreme points of a smooth function, f(x l , x2), 
of two variables, xl and x2' the rules are very similar to those for 
the single variable problem. Recall that af/ax i denotes the 
derivative of f(x l , x2) with respect to xl while holding x2 constant. 
Therefor~ af/ax

i 
is the rate of change of f in the xl direction. For 

a function of several variables, the conditions on the second 
derivatives for a strictly convex or strictly concave function 
become more involved. But the picture of a smooth valley or hill 
remain valid in higher dimensions 

(a) When the function f is strictly convex or strictly concave 
and the partial derivative of f with respect to xl and the 
partial derivative of f with respect to x2 both equal zero, 
af/ax i = af/ax2 = 0, the function f{x) has a maximum or 

minimum at the point (xl' x2)· 
(b) If the function f(xx' x2) is strictly convex, the function 

has a global minimum at this point. 
(c) If the function is strictly concave, the function has a 

global maximum at this point. 
Since it is difficult to draw three-dimensional diagrams, the function 
of two variables is represented by contour lines (also called level 
lines). Along each contour line the function has a single value. 
Figure 2 illustrates this problem. 

B. Maximization Subject to an Equality Constraint 

Economists frequently discuss the problem of maximizing a utility 
or objective function subject to an income or expenditure constraint. 
In this type of constraint the total expenditure on xl and x2 is 
required to be a given value. This gives a linear equality con­
straint such as 

(I) 

The problem is to attain the highest level of the objective function, 
f(x l , x2), possible while remaining on the constraint line. This 
problem and the solution point are illustrated in Figure 3. Notice 

A-4 



Contour line 

Extreme value of 
f(x

l
, x

2
) 

Xl 
Figure 2. Extreme value of a smooth function of two variables 

MuximUI:\ 
attainable point 

I Contours of 
f(x

l
, x

2
) 

Constraint PIX 1 + P
2

x
2 

= 1____ Xl 

Figure 3. Maximizing an objective function subject to a linear 
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that in the maximization problem the contours represent a "smooth 
hill sloping up toward the Northeast." To avoid complications, this 
report deals only with objective functions f(x l , x2) that are 
strictly concave. But the contours each show x2 as a strictly convex 

function of xl (or xl as a strictly convex function of x2)· 
As shown in Figure 4, the constraint on attainment of the 

objective may be a nonlinear function, such as a production function, 
of the variables xl' x2. The nonlinear equality constraint is 
written in the form 

(2) 

It is convenient to think of the XiS as activities and the g as a 

resource. The activities may be either consumption activities (e.g., 
consume xl = bread, x2 = butter) or production activities (e.g., 
produce xl = bread, x2 = butter). Both activities use the resource g, 
which is limited in quantity to b. If the amount of the resource 
available is reduced, the constraint contour would be closer to the 
origin but would have a similar shape. To avoid complications this 
report deals only with constraint functions that are strictly convex. 
But the contours each show x2 as a strictly concave function of xl 
(or xl as a strictly concave function of x2). The familiar marginal 
conditions determine the maximum of the objective if the contour of 
the constraint function is concave and the contours of the objective 
function are strictly convex. 

More formally the problem of maximization subject to an equality 
constraint is 

Maximize f(x 1, x2) 

w.r.t. xl' x2 
subject to g(x l , x2) = b. (3) 

This notation means to maximize the function f(x l , x2) with respect 
to (w.r.t.) xl and x2. By use of the device of a Lagrange 
multiplier, A, the problem (3) is changed from a constrained maximi­
zation problem to an unconstrained maximization problem. Thus, 
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the solution to (3) is found if we maximize the Lagrangian function: 

Maximize L(x l , x2' A) = f(x l , x2) + A(b - g(x l , x2)) 

w.r.t. xl' x2' A. (4) 

The Lagrange multiplier A is a finite constant and with the shapes 
I have assumed for the objective and constraint functions, it is non-
negative when we are careful to express the constraint in the form 
(b - g(x l , x2)). If A (g - b) is added to f, then A would turn out to 
have a nonpositive value. 

The necessary conditions for solution of problem (4) are 
(a) aL/ax I = af/ax I - A aglaxI = 0 

(b) aLlax2 = aflax2 - A ag/ax2 = 0 

(c) aLl aA = b - g = o. 
(5) 

Denote the optimum values, given by the solution of equations (5), 
as xl*, x2*, and A*. The reason for the necessary condition for a 
maximum with respect to x2 is as follows. Because We can increase 
or decrease x2' at the optimum values of xl and Al 

(a) if L is decreasing in the x2 direction, i.e., ~~2 < 0, 

then we would decrease x2 to maximize L. 
(b) if L is increasing in the x2 direction, i.e., ~~ > 0, 

2 
then we would increase x2 to maximize L. 

Therefore, at the optimal values of xl' x2 and A, the value of L must 
not be changing with x2' i.e., 

The reasoning for xl is exactly the same except that x2 is held 
at the optimum value. It should be clear to the reader that when the 
constraint is satisfied, g = b, and L{x l , x2' A) has the same value 
as f(x l , x2). Therefore, since the optimal values, xI*' x2*, A* 
satisfy equation 5(c), we must have L = f at the optimum values, 
xl*, x2*, A*. 

Two interrelated questions have puzzled students before they 
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before they became very familiar with the theory of mathematical 
programming. (1) How do you interpret the optimal value of the 
multiplier, A*? (2) How do you explain what determines the optimal 

value of the multiplier? 
The Lagrange multiplier, A, is often called the shadow price of 

the resource g. 

THE OPTIMAL VALUE A* OF THE MULTIPLIER TELLS 
HOW MUCH A MARGINAL INCREASE IN THE RESOURCE 
g IS WORTH. 

If f{x 1, x2) is a utility function, then A* is the marginal utility 
of g*, if f{x1, x2) is a production function,1 then A* is the marginal 
product of g. 

Figure 5 expands Figure 4 to demonstrate the effect of increasing 
the amount of resource available by the amount~. From Figure 5 it is 
clear that (before we pass the global maximum) increasing the amount 
of resource available will increase the attainable value of the 
objective function. Therefore, in Figure 6 the attainable value is 
shown as an increasing function of the amount of resource used. 

In Figure 6 look at the curve labeled Lib, which means L given 
b. When g is less than b, the curve Lib is above the curve f*. When 
g is greater than b, the curve Lib is below the curve f*. When g 
equals b, the curve Lib crosses the curve f* and the curve Lib is at 
its maximum. (Be careful to notice that in Figure 6 the optimum value 
of the multiplier A* is assumed at all times.) To see why the curve 
Lib is this way, look back at equation (4). From equation (4) we see 
that if the amount of the resource used were less than the amount 
available, b, then the Lagrangian, L, would be greater than (or equal 
to) the value of the objective f because the optimal value of the 
multiplier, A*, is a nonnegative number. Conversely, if the amount 
of resource used were greater than the amount available, then L would 
be less than or equal to f. Also, satisfying the conditions of 
equation (5) assures that L is a maximum when exactly the available 
amount of the resource is used, i.e., 9 = b. 
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g = b 

f* given b + 6 

f* given b 

g=b+6 

Figure 5. Effect of increasing the amount of resource available 

f* or L 

---- f* 

b b ' g 

Figure 6. Attainable objectives as a function of resource used 
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THE OPTIMAL VALUE OF THE MULTIPLIER, A*, IS THE 
VALUE THAT WOULD CAUSE ONE TRYING TO MAXIMIZE 
THE LAGRANGIAN, L, TO DEMAND EXACTLY THE AVAIL­
ABLE QUANTITY OF THE RESOURCE 9 IF THE RESOURCE 
COULD BE BOUGHT AND SOLD AT THE PRICE A* PER 
UNIT OF g. 

If the available amount of the resource 9 increases to b l = b + ~, 

we move to a higher path of L, labeled Llb l in Figure 6. With b l 

available, a higher level of the objective is obtained. A new value 
of A will now assure that Llb l reaches its maximum at b l

• 

The determination of the optimal value of the multiplier A* can 
also be expressed in terms of supply and demand. Think of A as the 
price on a demand schedule for the resource g. This is justified by 
noting that, as shown above, A is the increment in the objective 
function per unit of increment in the resource available. 
Thus, in consumption studies, A is the marginal utility per unit of 
resource g; in production studies, A is the value of the marginal 
product per unit of resource g. The optimal value of A is the value 
that causes exactly the available quantity of the resource to be 
demanded. See Figure 7. In this way it is natural to call A the 
shadow price of the resource. The "shadow" adjective is used because 
this price does not appear in a market and is not actually paid. 

THE OPTIMAL VALUE OF THE MULTIPLIER, A*, IS THE 
AMOUNT THAT THE OPTIMIZER WOULD BE_WILLING TO 
PAY FOR AN ADDITIONAL UNIT OF THE RESOURCE g. 
HENCE, A* IS CALLED THE SHADOW PRICE OF THE RESOURCE g. 

C. Limits on Activities (Variables xl' x2) 

1. Nonlinear Objective Functions. Now consider a slightly 
more difficult problem. Suppose that activity x might be driven to 
a lower limit ~l before the maximum sought for the problem in 
equation (3) is reached. The problem is then 

A-lO 

Maximize f(x l , x2) 

w.r.t. (Xl' x2) 
subject to g(x l , x2) = b. 

xl ~ ~l (6) 



The Lagrangian for the problem in equation (6) is very similar 
to equation (4) 

Maximize L(x l , x2 A) = f(x l , X2) + A(b - g(x l , X2)) 

w.r.t. xl' x2' A 

subject to xl ~ ~l' (7) 

but in maximizing L(x l , x2' A), some of the necessary conditions are 
different if xl is driven to ~l. The resource constraint still 
must be satisfied so b - g = O. 

Suppose that the optimum value of activity xl is the lower 
limit, i.e., xl* = ~l. This situation is plotted in Figure 8. Now, 
proceed very carefully in figuring out what the conditions on the 
partial derivatives of L must be in this situation. 

The reasoning proceeds as follows: 

(a) We cannot decrease xl below ~l' thus at the optimum we 
can have ~ < o. The condition ~ < 0 tells us that 

aXl - aX l 

we could increase L by decreas ing xl' but since xl cannot 
be below ~l' we are stuck at ~l for the optimum value of 

xl. The equality part of the ~ sign allows for the 

possibility that the limit is the unconstrained optimum. 
(b) We can increase xl above ~l' thus at the optimum we cannot 

have ~L > O. The condition ~L > 0 tells us that we 
oX l oX l 

could increase L by increasing xl. If that were so, then 

~l would not be the optimum value of xl· 

(c) At any value of xl* other then ~l,it is necessary that at 

the optimum 

~ = O. Either x * = ~ or ~ = 0 at the optimum. aX l 1 1 aX l 

This condition can be written 

(xl* - ~l)~ = O. Therefore, the necessary conditions for 
1 
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Price 
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Figure 7. Demand-supply determination of the shadow price of 
resource g 

Constraint 9 = b 

Figure 8. Maximization subject to lower limit on Xl 
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a maximum with respect to xl is, at the optimum, 

~~ ~ 0 AND (xI* - ~l)~~ = 0, xI* ~ ~l· 
I I 

The necessary conditions for solution of problem (6) are 

(a) aL _ af )...£L < O. ail - aX
I 

- aX
I 

- ' 

(b) 

aL (x * - ~ )- = 0 I I aX I 

(8 ) 

In the maximization problem any variable subject to a lower bound 
gives a necessary condition such as (8a). 

Now to demonstrate the effect of an upper bound, suppose 
that xl has no bounds, but x2 is subject to an upper bound u2. The 
problem of equation (3) is then 

subject to g(x l , x2) = b (9 ) 

The Lagrangian is again as in equation (4) but now is subject to 
x2 ~ u2• Reasoning exactly similar to that above shows that the 

necessary conditions for solution of problem (9) are 
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(b) aL af A~ > O' aX
2 

= aX
2 

- aX2 - ' 

SOLUTIONS SUCH AS THOSE THAT DRIVE A VARIABLE 
TO ITS LOWER OR UPPER LIMIT ARE CALLED CORNER 
SOLUTIONS. FOR CORNER SOLUTIONS THE NECESSARY 
CONDITIONS (8a or lOb) ALLOW FOR INEQUALITIES 

Suppose the problem is to minimize a convex function 
k(v1, v

2
), such as a cost function, subject to an equality 

constraint on a resource and a lower limit on both vI and v2• 

subject to h(v1, v2) = c 

The Lagrangian problem is 

subject to vI ? R1 

(10) 

(11) 

(12) 

A different symbol is used for the Lagrange multiplier to distinguish 
between maximization problems and minimization problems. With the 
same type of reasoning as for problem (6), we see that the necessary 
conditions for solution of minimization problem (12) is 
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(v * - i ) ~ = 0 1 1 aV l 

(v * - i ) ~ = 0 2 2 aV2 (13 ) 

The value of the Lagrange multiplier at the optimal values 
(v l*, v2*, u*) still gives the change in the objective function 
k(v l , v2) per unit increase in the resource h. However, since the 
objective is to reduce costs to its minimum, a negative value of u 
indicates a positive value of the resource in attaining the objective 
of reduced cost. 

Some analysts are more accustomed to working with minimization 
problems than with maximization problems. For minimization problems 
it is usually preferable to write the Lagrangian function in the 
form L = k(v l , v2) - u(c - h(v l , v2». Written in this way the 
optimum value of u is the negative of the change in the objective 
function and hence a positive value of u then indicates a positive 
value of the resource h in attaining the objective of reduced cost. 

When the Lagrangian is written with A (b-g) in a maximization 
problem, a negative value of A indicates a positive value of the 
resource g in attaining the objective of increased product or utility. 

2. Linear Objective Functions and Linear Constraints. If the 
objective function is a sloping plane in three dimensions (Xl' x2' f), 
the contours of f are straight lines. If the contours of the 
objective function have exactly the same slope as the constraint, all 
points along the constraint are equally good solutions. When there is 
one constraint that is a straight line with a slope different from the 

slope of the objective function, one of the activities xl' x2 must be 
limited to provide a definite solution. Such a problem would be 
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(14 ) 

Problem (14) is presented graphically in Figure 9. This figure shows 
that, unless the contours have exactly the same slope as the con­
straint, the solution must be a corner solution. 

x * 2 

Lower Limit 
to xl 

Figure 9. Maximization of a linear objective function subject to a 
linear equality constraint 

(14) is 

A-16 

The Lagrangian function problem corresponding to problem 

Maximize L(x l , x2' A ) Clxl + C2X2 + A (b - a1x l - a2x2) 

w.r.t. xlx2 
subject to Xl > O. (15) 



The necessary conditions for solution of problem (15) are as in 
equation (8). 

(a) aL _ 
- alA ~ a (x l*) (c l - alA*) = a ax- - cl 1 

(b) aL - a2A = a xl ~ a ax- = c2 2 

(c) b - alxl - a2x2 = O. (16) 

Since the optimal value of xl is zero, l6(a) may be an inequality. 
From l6(b) we find that the shadow price of the resource is 
A* = c2/a2. Interpret A* = c2/a2 as follows: 

(a) From the objective function in (14) notice that the 
objective is increased c2 units for each unit increase 
in activity (variable) x2• 

(b) From the constraint l6(c) notice that, since xl* = 0, 

for each one-unit increase in the quantity of resource 
available, b, the activity x2 may be increased 1/a2 
units so that the optimum value of x2 is x2* = b/a2 

(c) Hence, the marginal value of the resource, A*, is [the 
increase in the objective per unit increase in activity x2] 

multiplied by 
[the increase in units of x2 per unit increase in resource] 

A* = c2 . 1/a2. 

Do not introduce another equality constraint into the problem 
with two activities xl' x2 because two equations determine the 
solution for two variables: there would be no optimization problem 
left after satisfying the constraints. Also, the two constraint 
equations would have to be consistent with each other and would have 
to yield a solution in the allowed range of the activities xl' x2• 

However, to demonstrate how easily the two activity problems may be 
generalized, a problem for more than two variables with more than one 
equality constraint is shown in the following paragraphs. 

3. More Activities and Constraints. In this problem there are 
n activities xl' x2 ... , xn' and the objective is to maximize the 
value of the function f(x l , x2' •.• xn) subject to equality 
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constraints on the use of m resources and lower bounds on each of the 
activities. The main complication of this extension is the require­
ment that the number of resource equality constraints be less than 
(or equal to) the number of activities, m ~ n. If there are n 
different equality constraints, m = n, that are not contradictory 
and that have a solution in the allowed range of activities, there is 
only one pOint that satisfies the constraints and no optimization 
problem is involved. Assuming that m < n the problem is 

Maximize f(x 1, x2' . , xn) 

w.r.t. xl' x2' ., xn 

subject to gl(x1, x2' · , x ) = b n 1 

g2(x1 , x2' · , x ) = b n 2 (17) 

gm(x1 , x2' · , x ) = b n m 

xl ~ iI' x2 ~ i 2, ., x > i . n - n 

The first order conditions are straightforward generalizations 
of (8). With 

m 
L = f(x1, x2' ... , xn) \I1 ~(bi - gi(x1, x2' ... ,xn»· 

The necessary conditions are 

aL af m ag. aL 
(a) -.... -=-.... -- IA.~<O; (x.*- i.)-=O 

aXj aXj i=l' aX j - J J aXj 

X
J
' > i. 

- J 

aL (b) ~ = bi - gi = 0 
J 

j = 1, 2, ... n (18) 

for i = 1, 2, .•• , m. 

These conditions (18) are interpreted as before. The optimal shadow 
price Ai* is the marginal value of the ith resource at the optimum. 
The additional fact that should be remembered is that a change in the 
available quantity of one resource may change not only its own 
shadow price but also the shadow prices of other resources as well 
as the optimum values of any or all activities. 

To save space we will now frequently use the notation ~ to stand 
for all of the activities (xl' x2' ... , xn), and A to stand for all 
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of the shadow prices (AI' A2' .•. Am)· Remember also the meaning of 

n 
the summation notationi~1 Yi = Yl + Y2 + ••• + Yn· 

O. Inequality Constraints on Resources 

In problems with several resource constraints, it usually is not 
desirable to require that the constraints be satisfied as equalities. 
A firm may have a maximum of ten machines that can be used in produc­
tion, but the optimal mix of production activities frequently may 
leave one or more of the machines unemployed. An inequality 
constraint gives only the limit on a resource, it does not require 
that all of a resource be used. 

Begin by considering a problem with two activities and two 
resource inequality constraints. This problem is diagrammed in 
Figure 10 in which only the points between the origin and the resource 
constraints are attainable. Notice that since the constraints are 
inequalities the two constraints do not completely determine the 
solution for the value of the two activities. In Figure 10 the 
optimum point is pOint A. Since A is inside of the boundary for the 
first constraint, gl(x1, x2) < b1 , this means that some of the 
available resource gl is unemployed. If there were no constraint on 
resource g2' the optimum would be at point B where all of resource gl 
would be employed. 

Stated formally, the problem depicted in Figure 10 is 

Maximize f(x1, x2) 

w.r.t. Xl' x2 
subject to gl(x1, x2) ~ b1 

g2(x1, x2) ~ b2· 

(19) 

It is wise to follow Baumol's (1977, p. 160) suggestion and for 
a maximization problem arrange the inequalities in the form 
b. - g. > 0 so that the Lagrangian will be written in the same form 
11-

as in equation (14) and yield nonnegative multipliers. To convert 
problem (19) into a problem that you know how to solve, subtract 
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Constraint 
b - 9 > 0 
22-

Constraint 
b - 9 > 0 

1 l-

Figure JO. Maximization with respect to two activities subject to 
two inequality resource constraints 
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nonnegative "slack" variables 5i > 0 from each bi - gi. Problem 
(19) can then be written 

Maximize f(x1, x2) 

w.r.t. xl' x2' 51' 52 

subject to b1 - gl(x1, x2) - 51 = 0 

b2 - g2(x1, x2) - 52 = 0 

51 ~ 0, 52 ~ o. 

(20) 

Adding two new "activities," 51 and 52' to the problem gets rid of the 
inequalities in the constraints. It does not matter that the 5' s are 
not in the objective function; those partial derivatives are just 

af zero, e.g., as- = O. There is a side benefit from having resource 
1 

constraints as inequalities; now the number of constraints is less 
than the number of activities in the objective function because a new 
activity is added for each constraint and this assures that there are 
more activities than there are equality constraints in the problem. 

Now solve problem (2) in the same way as problem (17). Form the 
Lagrangian function 

L(x1, x2' AI' A2' 51' 52) = f(x1, x2) 

+ A1(b1 - gl(x1, x2) - 51) 

+ A2(b2 - g2(x1, x2) - 52) 

subject to 51 ~ 0 52 > 0 

and write the necessary conditions. There are no limits on the 
activities xl' x2 ,but the slack variables must be nonnegative. The 
necessary conditions are 

aL af ag1 ag2 (a) - = - - A - - A2 ~x = 0 aX1 aX1 1 aX1 a 1 

~ = ~ _ ag1 ag2 
aX

2 
aX

2 
Al aX

2 
- A2 aX

2 
= 0 



(b) ~ = - A aS1 1 < a S * ~ = a 1 aS1 
Sl > a 

aL _ 
- A2 ~ a S * ~ = a S2 ~ a (21) aS

2 
- 2 aS2 

(c) 
aL _ 

- gl - Sl = a ax- - b1 1 
aL 

- g2 - S2 = O. ax- = b2 2 
The conditions (21) are more elegant and more easily interpreted if 
a few algebraic manipulations are performed. Multiply the first half 
of (21b) by -1 and substitute into the second half of (21b) to get 
the conditions in the form 

A. > a , - S.*A.* = a , , i-I, 2. 

Condition (21c) shows that if S;* = 0, then bi - g{~*) = 0, so sub­
stitute b,. - g.{x*) for S.* in conditions (21b). Also, write , - , 
condition (21c) in the original form of the constraints. Therefore, 
the necessary conditions for the solution of problem (20) are 

aL af mag,. 
(a) - = - - L A. - = a j = 1, 2 

aXj aX j i=l' aXj 

(b) Ai ~ a Ai*{b i - gi{~*)) = a 1, 2 (22) 

i = 1, 2 

THE SHADOW PRICES ARE NONNEGATIVE. THEY ARE ZERO 
IF ANY OF THE RESOURCE IS UNEMPLOYED IN THE OPTIMAL 
SOLUTION. 

The cook wouldn't pay for additional pans if he already had more 
than enough pans to bake all of the cakes he wanted to bake. With the 
conditions shown in Figure 10, Al = a since at A some of resource 1 
is not used, gl < b1· The solution at point A is, therefore, as if the 
constraint on resource 1 did not exist. 

With a convex feasible region, which gives a concave boundary as 
in Figure 10, and a concave objective function, which gives convex 
contours as in Figure 10, 
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THE CONDITIONS OF EQUATION 22 CAN BE SATISFIED 
SIMULTANEOUSLY ONLY AT THE MAXIMUMIPOINT. 

There are two facts that the reader should note: 
{l) The "slack" variables, S's, work 1 ike catalysts; they 

help the process but do not appear in the final product. 
(2) With two inequality constraints, as in Figure 10, there 

is the possibility of a corner solution at point C even 
though there are no limits on the range of the activities 
xl and x2 other than the resource constraints. If the 
objective function is such that point C is the optimum 
feasible choice, the conditions of equation (22) still 
hold, but the highest contour attained ~ not be tangent 
to the frontier of either constraint. This possibility is 
diagrammed in Figure 11. 

Before proceeding with additional complications to this problem, 
a numerical example may help. The fact that the slope of the 
objective function contours need not be tangent to either constraint 
frontier seems obvious from Figure 11. However, this possibility is 
not so obvious in the mathematical equations (22) for the necessary 
conditions. In the following subsection a numerical example 
demonstrates this pOint. It is not necessary for the reader to 
follow through this example in order to proceed with the main 
discussion; therefore, the reader may wish to skip the following 
section for the present. 

E. An Example of Maximization Subject to Inequality Constraints 

For an example of constrained maximization, turn to one of 
economists' favorite literary characters. Robinson Crusoe has only 
two activities by which he survives: production of food, F, and 
clothing, C. His utility function for F and C is U = F2/3C1/3. 
He produces food and clothing with only two resources: land, L, and 
his own effort, E. During the production season he can work a 
maximum of 150 days and has 100 ares of land for cultivation 
(100 ares = one hectare = 2.47 acres). Each unit of food produced 
requires a day of effort and an are of land. Each unit of clothing 
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Constraint b 2 - g2 ~ 0 Constraint b l - gl ~ 0 

Figure 11. Maximization with two activities and two inequality 
constraints leading to a corner solution 

produced requires three days effort and an are of land. 
Rob's constraint on effort is 150 days, so F + 3C ~ 150. If he 

put all of his effort into producing food, he could produce at most 
150 units with unlimited land; if he put all of his effort into 
producing clothes, he would produce at most 50 units with unlimited 
land. His constraint on land is 100 ares, so F + C ~ 100. If there 
were no limit on his effort, he could produce either 100 units of food 
or 100 units of clothing. 

Ignoring for now the requirement that both food and clothing must 
be produced in nonnegative amounts, Rob's problem is 

Maximizing U(F, C) = F2/3C1/3 

w.r.t. F, C 
subject to F + 3C ~ 150 

F + C < 100 
(effort constraint) 
(acreage constraint) 

with Lagrangian 

L(F, C, AI' A2, $1' $2) = F2/3C1/3 + AE(150 - F - 3C - $1) 

+ AA(100 - F - C - $2)· 

Following equation (22), the necessary conditions for solving this 
problem are 
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AE*(150 - F - 3C) = 0 

AA*(100 - F - C) = 0 

(24) 

(c) F + 3C < 150 

F + C < 100. 

Here AE* is the optimal shadow price of a day of effort and AA* is 
the optimal shadow price of an acre of land. 

This problem is drafted rather precisely in Figure 12. From 
this figure it is seen that the optimum production is 75 units of 
food and 25 units of clothing. All resources are fully utilized, 
since the maximum utility (52.00 units of utility) is attained at 
the junction of the frontiers of both constraints. Substituting 
F = 75, C = 25 into (24a) and solving yields the values 

, * = 1(1)1/3 , * = 1(1)1/3 
I\E 6 3 I\A 2 3 • 

The shadow price of effort relative to that of land is AE*/Aa* = 1/3. 
The relative price of effort with respect to that of land is deter­
mined despite the fixed proportions of resource used in production. 
As emphasized by Friedman (1976, p. 174) 

SUBSTITUTION IN CONSUMPTION SUBSTITUTES FOR 
SUBSTITUTION IN PRODUCTION IN DETERMINING 
THE RELATIVE PRICES OF RESOURCES. 

We are assured that the point F = 75, C = 25 is the maximum attain­
able because the slope of the contour of the objective function at 
this point is between the slopes of the constraints that converge at 
this pOint. The slope of the utility function at this point (75, 25) 
is obtained from the implicit differentiation rule 
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Clothing 
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25 

o 
50 75 

Maximize 
w.r.t. F, C 
Subject to 

Solution: 

F + 3C < 150 

F + C < 100 

F* = 75 C* = 25 

Effort A* = 1/6(1/3)1/3 
E 

Land A* = 1/2 (1/3) 1/3 
A 

Maximum U = 52.00 

Constraint 
< 150 

U=56.16 

Land Constraint 
F + C ~ 100 

100 F 
Food 

Figure 12. Example of maximization subject to inequality constraints 
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where the notation ~~Iu means the change of C with respect to F along 

the function U(F, C}. 
The slope of the land constraint is ~~ = -1 and the slope of the 

effort constraint is ~~ = -~. If, at the point (75, 25), the slope 

~Iu were less than -1 (greater than 1 in magnitude), then we would 
know we should move southeast along the land constraint to find the 
optimum. Conversely, if the slope ~Iu were greater than -1/3 (less 
than 1/3 in magnitude) we would know we should move northwest along 
the effort constraint. 

A POSITIVE SHADOW PRICE ON A RESOURCE SAYS THAT 
WE SHOULD INCREASE THE USE OF THAT RESOURCE 
IF WE ARE NOT STOPPED BY THE CONSTRAINT ON THAT 
RESOURCE. 

Similarly, a negative shadow price tells us to reduce the use 
of that resource in order to achieve a maximum. BUT REMEMBER: 
having these "correct" signs on the multipliers depends upon setting 
up the constraints as we have done. Recall that in a maximization 
problem the shadow price gives the rate at which the objective 
function would increase with increased supply of the constraining 
resource. 

To assure yourself that conditions (24) would not be satisfied 
by some other point, use (24a) to calculate the values of Al and A2 
at the point (SO, 20) ,which also lies on the frontier of the attain­
able region. At (SO, 20},the AI' A2 values would be determined by 

~(SO}-1/3201/3 - Al - A2 = 0 

~(SO}2/320-2/3 - 3A1 - A2 = O. 

These equations imply that Al = A2 = ~(i}I/3. However, this 
solution is inconsistent with condition (24B). Since the pOint 
(SO, 20) is inside the effort constraint, 150 - F - 3C = 
150 - SO - 60 = 10 > 0, which the first equation of (24b) tells us 
requires Al* = O. Therefore, the conditions of equations {24} are 
not satisfied at any point except (75, 25). 
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F. More Variables and Constraints 

Problem (19) is easily generalized to contain more activities, 
more resource constraints and limits on the scope of the activities. 
For a more extensive developmen~ see Lancaster (1968). First consider 
the maximization problem 

Maximize f{x1, x2' ..• xn) 

w. r. t. xl' x2' ., xn (25) 

subject to gi{x i , x2' 

x. > R.. 
J - J 

., xn) < b. 
- 1 

1, 2, 

j 1, 2, 

Following the convention of writing the resource constraints for a 
maximization problem in the form b. - g. > 0 and adding a slack 

1 1-
variable for each resource inequality, the Lagrangian problem is 

m 
Maximize L(~, ~, !) = f{~) +.1 Ai{b i - gi - Si) 

1=1 

w.r.t. xl' x2' . xn 

Sl' S2' ... Sm 

AI' A2,· . Am 

subject to x. > R.
J
. 

J -
j + 1, 2, ... n. 

(26) 

m 

n. 

{Recall that the notation ~ stands for (xl' x2' ... xn), ~ stands 

for (S1' S2' ... Sm)' and! stands for (AI' A2' ... Am).) 
Combining the results from solving problems (19) and (6), the 
necessary conditions for the solution of problem (25) are 

aL af m ag. aL 
(a) - = - - l: A. _._1 < 0; (x.* - R..) - = 0 ax

J
. ax . . 1 1 ax. - J J dX • 

J 1= J J 

x. > R.. 
J - J 

j = 1, 2, n 

(b) A. > 0; 
1 - Ai*(b; - g .(x*» = o· 

1 -
1, 2, . m 

(c) g . (x) < b. 
1 - 1 

1, 2, . m. 

(27) 

Equation (27) gives the famous Kuhn-Tucker conditions for the 
solution of problem (25). As in problem (9), if there is an u~ 
limit to any activity such as xk ~ Uk' the necessary condition 
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corresponding to (27a) is 

~ = ~ _ ~ gi (* ) aL 
~ ~ LA,. ---X

k 
~ 0, Xk - Uk ~xk = o. 

oXk oXk i=l 0 (2la) 

The extension of the minimization problem (11) is similarly 
generalized to more variables and inequality constraints. The problem 
is 

Min im i ze k (y l' Y 2' . . . y m) 

w. r • t . (y l' Y 2 ' . . . y m ) (28 ) 

subject to hj(Yi' Y2' 

Yi ~ ti 

. vm) > c. j = 1, 2, .. n 
- J 

i = 1, 2, .. m. 

Again follow Baumol's advice and for a minimization problem 
write the constraints in the form c. - h. < O. Note carefully the 

J J-
difference in the direction of the inequalities for the minimization 
problem (28) as compared to that of the inequalities for the maximiza­
tion problem (25). Then add a nonnegative slack variable, S., to each 

J 
cj - hj and form the Lagrangian using ~j as the symbol for the jth 
Lagrange multiplier 

n 
L (1., S) = k (y) + I ~ . (c. - h. (1.) + S.). 

- j=l J J J J 
(29) 

The Kuhn Tucker conditions for this minimization problem are 

(a) ~ = 1L - 1 ~ . ~ > o· (y . * - R,.) ~ = 0 
ay i ay i j=l J ay i -' , , ay i 

y. > R,. , - , = 1, 2, . m. 

(b) ~. > 0; ~.*(c. 
J - J J 

- hj (Y8» = 0 j = 1, 2, n 

(c) h. (1.) > c. j = 1, 2, n· 
J - J 



Footnote to Appendix A 

II digress to show mathematically that at the optimal values of 
the activities, xl and x2' and the shadow price, A, the shadow price 
equals the total derivative of the objective, f, with respect to b 
and also equals the partial derivative of the lagrangian with respect 
to b. This is a special case of the "envelope theorem" and I follow 
the presentation of Varian (1978, p. 268). 

let f*(b) be the optimal value of f(x1, x2), which is attained 
at x1*(b), x2*(b), A*(b), and let g* be the value of g at these 
values. Note that the optimal vaJues are functions of b, the amount 
of resource available. The problem is given in equation (3), the 
lagrangian problem in equation (41 and the necessary conditions in 
equation (5). By direct differentiation as follows 

But af*/ab = D since f* is not directly a function of b. 

From the necessary conditions of equation (5), af*/ax1 = A*ag*/ax1 
and af*/ax2 = A*ag*/ax2. Therefore, df*jdb = A*(ag*fox1 + ag*/ax2). 
Since the optimal values x1* and x2* must identically satisfy 
the constraint so that g(x1*' x2*) = b, differentiating this identity 
gives 

which means that 

df*/db = A*. 

Finally, observe that for all x and A, al/ab = a(f + A(b - g))/ab = 

af/ab + A - Aag/ab = A, so in particular al*/ab = A*. 
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Appendix B: Representing the Problem 

Two types of variables are used to model the dynamic decision 
problem. The state variables represent the condition of the system 
at a given time. Many of the state variables in economic and 
business systems are stocks such as the weight or volume of a 
commodity. But sometimes a state variable is a flow such as the 
velocity of a stream. The other types of variables are the control 
variables or activities that the decision maker can change directly. 
The objective function is to be optimized with respect to the control 
variables. Control variables frequently are flow variables such as 
the rate at which a factor is used. Sometimes, however, controls are stock 
variables such as the opening or closing of a gate. 

i) System of Equations of Motion 
For discrete time periods, the state variables in period tare 
written 

t = 1, 2, ... , T 

and the control variables in period t are written 

t= 1, 2, T. 

For continuous time, the state variables at time t are written 

!(t) = (K1(t), K2(t), ... ~(t)) 

and the control variables at time t are written 

with the notation ~ used to represent all values of ~(t). 

The equations of motion of the system represent the change of the 
state variables as functions of the level of the state variables and 
the control variables. For discrete periods, the change in state 
variable k from period t to period t+1 is written as the function 
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gkt(Kt , ut ) 

Kk t+l - Kkt = gkt(Kt , ~t) k = 1, 2, ... m, 

where the subscript t on g means that g may also be a function of the 
time period considered. The values of the state variables must be 
known at some specified time. For all examples in this report, the 
starting values are known and are written 

k = 1, 2, .•. m. 

For continuous time, the rate of change in the state variable k 
is written as the total derivative of Kk with respect to time 

dKk(t) 
~ = gk (K(t), -'y(t), t) k 1, 2, m. 

o < t < T 

In continuous time, the initial values of the state variables at 
t=O are known and these values are written 

Kk (0) = KkO k 1, 2, .•. m. 

ii) The Objective Functional 1 
For each discrete time period there is a function that gives the 

amount added to the initial objective of the decision maker. This 
increment may be a function of the state variables and the control 
variables chosen at that time increment as well as the time of the 
period. This increment is written 

Allowing this to be a function of the period t allows for discounting 
form period t back to the time of the decision at the initial time. 
With the assumption that the effects from the different periods are 
additive and separable, the quantity that the decision maker seeks to 
optimize is 

The term separable means that the value of a variable in one period 
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does not directly affect the value of V in another period. The 

optimization is with respect to the values ~t' t = 1, 2, ... T. 

For continuous time, there is at each moment a function for the 

rate at which the objective is being changed such that the objective 

to be optimized is the integral of this function. This function may 

also be directly a function of time. This fact allows discounting. 

The objective must be separable and the generalization of additivity 

means that the quantity that the decision maker seeks to optimize is 
the integral 

T 
f V(K(t}, u(t}, t}dt. o - -

The optimization is with respect to the values ~(t) for all 
O<t<T. 

It is important to remember that the optimization is with respect 

to all of the values of the control variables over the time horizon 
out to time T. 

iii} Constraints 

As with the one-period optimization problems reviewed in Appendix 

A, the problem often requires inequality constraints on the control 

variables (activities). When there are R such constraints, write 

h.(u(t}, t} > 0 
1 - -

i = 1, 2, ... p, 

so that in general the control constraint may depend on the period t 

but not on the state variables. Adding constraints on the state 

variables introduces more complications (see Kamien and Schwartz, 

pp. 215-225). Constraints on control variables often arise because 
the procedure divides the use of a single resource among several uses. 

For example, suppose there are three uses and the shares in each of 

the uses are u1 ~ 0, u2 ~ 0, u3 = 1 - ~1 - u3 ~ O. 
Constraints on the state variables at the terminal time are often 

required. For example, the net value of assets may have to be non­

negative at the end of the planning horizon. These end point 

conditions can be included without much complication because the 

Kuhn-Tucker conditions can be applied to the shadow price at the end 

of time. If there are s of these terminal constraints on the state 
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variables, with discrete time increments write 

t = 1, 2, ... s 

and with continuous time write 

t = 1, 2, ... s. 

In discrete time increments, the maximization problem is 

Max 

w.r.t. 

subject to 

Kk t+ 1 - Kk t = ~ t (ft , ut ) k = 1, 

t = 1, 

Kkl = KkO 

hit (!!t) ~ 0 i = 1, 

f t (fT+l) ~ 0 t = 1, 

In continuous time, the maximization problem is 

Max 

-+ w.r.t. u 

subject to 

Kk(O) = KkO 

h i (~( t ), t) ~ 0 

B-4 

T 
f V(f(t), ~(t), t)dt 
o 

k 

t 

k 

i 

= 

= 

= 

= 

2, ... m 

2, ... T 

2, p 

2, s. 

1, 2, ... m 

1, 2, ... T 

1, 2, ... m 

1, 2, ... p 



Q, = 1, 2, ... s. 

Appendixes C and D show how to solve this problem. 
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Footnote to Appendix 8 

IThe tenn functional is used because i.n continuous time 

problems there are an infinite number of time values in any finite 
interval and this causes the relationship between the objective and 
the controls to go beyond the usual definition of a function. With 
discrete period~ a similar situation arises when the horizon T goes 
to infinity. 
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le 

As shown in Appendix B, with discrete time increments the 
maximization problem is 

subject to 

Max 

w.r.t. 

Kkl = KkO 

hit (.!!t) ~ 0 

f R, (!T+l) ~ 0 

.!!1' .!!2' ... .!!T 

k = 1, 2, m 

t = 1, 2, T 

i = 1, 2, p 

R, = 1, 2, s. 

To solve the discrete time optimal control problem given in 
Appendix B, form the Lagrangian 

m T 
+ L L Akt(gkt + Kkt - Kk t+l) 

k=1 t=1 

+ ~ 1 ~·t h· t + I OR, fR, • 
i=1 t=1 ' , R,=1 

Here Akt ;s the shadow price of the change ;n resource k at time t 
and is associated with the equality constraint of the kth equation 

of motion at time t,gkt + Kkt - Kk t+l = O. In control problems the 
C-l 



A shadow prices are called costate variables or adjoint variables 
because they are associated with the rates of change in the state 
variables. The multiplier ~it is the shadow price associated with 
the ith limit on the controls at time t; and a~ is the shadow price 
of the ~th constraint on the state variables at the end of the plan. 
Since there are a finite number of Kls, XiS, AIS, ~'s, and a's in the 
problem, the necessary conditions for optimization are just those 
developed in Appendix A. Although the state variables, Kls, are not 
directly under the control of the optimizer, it is still necessary 
that the partial derivatives equal zero since the Kls can be changed. 

The partial derivatives with respect to the state variables are 
required even though only the control variables can be changed 
directly by the decision maker. It wou1d be very awkward to try to 
include the indirect effects of the control variables through the 
state variables in any other way. Cannon, Cullum and Polak (1970) 
present a rigorous treatment of discrete control, whereas Clark (1976) 
just presents the equations without elaboration. The presentation 
in this appendix takes a middle road to give some explanation without 
all of the mathematical details such as in Cannon, Cullum and Polak. 

Sometimes it helps to use the approximation Akt - Ak t~1 = Ak t+l - Akt 
so that Ak t+l can be calculated from values known from period t. The 
names given to each group of equations are those that have been adopted 
in the control literature. 

(a) Costate or Adjoint Conditions {so called because they give 
the criteria for the rate of change of the costate or adjoint 
variables}. The notation k* is used to represent the index of summa­
tion when there might be confusion using k in two different ways in 
one equation. 

a L a v t m agk*t 
a Kkt = a Kkt + k *~1 (Ak*t aKk*t} + "kt - Ak t-l o 

or 

k = 1, 2, m 

t = 2, 3, T 
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Since the first period value of each state variable, Kk1 , is a 
given constant, there are no derivatives with respect to 

Kkl k = 1, 2, ... m. 
(b) Transversality Conditions (so called because they are the 

criteria to be met when the system reaches the 'itransversal" or end 
time) . 

or 

R,.: 1, 2, ... s. 

This means that the end time value of the kth costate variable is 
given by the sum of the worth of the marginal effects of the state 
variable on the terminal constraint functions, fls. 

(c) Hamiltonian Conditions (so called after the mathematician 
Hamilton and the important use of the Hamiltonian function 
in the next paragraph). 

aL aVt m agkt -=-.r,;-+ LA -aUjt OUjt k=1 kt aUjt 

with ~'t > 0 and ~'th't = 0 , - " 

j 1, 2, 

t .: 1, 2, 

n 

T 

i = 1, 2, ... p 

(Remember that this means that either ~it = 0 or hit = 0) 

or 

~'t > 0; ~'th't = O. , - " 

introduced 

(d) Equations of Motion {so called because the original system 
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of equations for the rates of change in state variables are regained). 

or 

k .:: 1. 2. 

t = 1. 2. 

m 

T 

as in the original equations describing the system dynamics. 

The Hamiltonian 

Notice how. in the alternate forms given above. the function 
m 

Vt + L Akt gkt appears in the Costate Conditions and in the 
k=l 

Hamiltonian Conditions. Notice also how this function is similar to 
a Lagrangian for a given time t. As an aid to notation and memory. 
define the Hamiltonian at time t to be 

The necessary conditions can then be written 
(a) Costate Conditions 

(b) Transversality Conditions 

(c) Hamiltonian Conditions 

].lit > O· - . 
j = 1. 2. 
t = 1. 2. 

C-4 i = 1. 2. 

k = 1. 2. 
t = 2. 3. 

m 

T 

k .:: 1. 2 •... m 

0i ~ a 0ifi = a 
i=1.2 •... s 

].lithit = a . 
n 

T 

P 



(d) Equations of Motion 

dH
t 

Kk t+l - Kkt = ax-- ' 
kt 

since dH/dAkt = gkt. Notice the symmetry between the costate con­
ditions and the equations of motion. The costate conditions say that 
the rate at which a costate variable decreases must equal the partial 
derivative of H with respect to the corresponding state variable. The 
equations of motion say that the rate at which a state variable 
increases must equal the partial derivative of H with respect to the 
corresponding costate variable. 

These same conditions are necessary for a solution to the follow­
ing problem. 

At each time t 

subject to 

Max Ht 

w.r.t. ~t 

k = 1, 

t = 2, 

oR, :: 0 

R, = 1, 

t = 1, 

i = 1, 

2, m 
3, T 

0R,fR, = 0 

2, s 

2, T 

2, ... p 

The Hamiltonian equations are obtained by forming the Lagrangian 
for each t 

Ht + r llOthOt 
i=1 1 1 

and taking the partial derivatives with respect to the controls at t. 
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P 
__ d __ (H + L ~ithit) = 0; 
dU jt t i=1 ~it ~ 0; ~ithit = 0 

j 1, 2, n 

i = 1, 2, ... p. 

There are two important interpretations: 

THE HAMILTONIAN FUNCTION IN PERIOD t IS THE NET 
"PROFIT" FOR PERIOD t ALONE, PLUS THE WORTH OF 
THE CHANGES IN THE STATE OF THE SYSTEM WITH THE 
CHANGES VALUED AT THE SHADOW PRICES Akt · 

THE MAXIMUM PRINCIPLE SAYS THAT THE DECISION 
MAKER CAN OBTAIN THE BEST RESULTS OVER THE LIFE 
OF THE PROJECT IF THE NEW OBJECTIVE H IS OPTIM­
IZED AT EACH MOMENT. THE CATCH IS THAT TO DO 
WHAT IS BEST AT TIME t THE DECISION MAKER MUST 
KNOW THE SHADOW PRICE, Akt , FOR THE CHANGE IN 
EVERY STATE VARIABLE. 

The shadow prices are connected over the entire horizon by the Costate 
Conditions and the Transversality Conditions. The main difficulty is 
that although the values of the state variables are known at the 
initial period, the known boundary conditions for the costate 
variables are at the end time T. 

Gains from Using the Hamiltonian 
The problem to mazimize the Lagrangian L with which this appendix 

began is a problem with one objective function, max L,. and nT control 
variables since there are n controls, u's, in each of T periods. In 
the equivalent Hamiltonian form there are T problems to be solved, 
since for each period t = 1, 2, •.. T there is the problem max Ht . 
This may not seem like such a bargain in the discrete time problem 
with a finite number of periods, but with continuous time any finite 
interval has an infinite number of infinitesimal periods. In the 
continuous time model, the maximum principle will take a problem with 
an infinite number of control variables and turn it into an infinite 
number of problems each with "only" n control variables. That is a 
bargain because an ordinary function of time can present the solution 
for all values of time. As soon as students of elementary algebra find 
a solution for y as a function of x, they know how to solve an infinite 
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number of problems such as: "For this value of x what is the value 
of y?" It is in this sense that an infinite number of problems are 
solved in the maximum principle. 

Salvage or Bequests 

Now suppose the state variables remaining in period T+1 are worth 
something such as for salvage or bequests. If this worth is given by 
the function 

B(J~T+l' T+1), 

the objective function is then 
T 

Max L Vt(ft , ~t' t) + B(fT+1, T+1) 
t=l 

w. r . t. ~ l' ~2' ... ~T 

and the same constraints still hold. The Hamiltonian is the same 
and the necessary conditions for maximization are the same, except 
now 

m 

i = 1, 2, s. 

Thus, the marginal contribution of the kth state variable to the 
salvage value B is added to the shadow price of state variable Kk 
at time T. 
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Appendix O. The Maximum Principle with Continuous Time 
(Fixed End Time) 

For this problem the notation such as !(t) = (K1(t)~ K2(t), 
... ~(t)) is used to conserve space. If there are any questions on the 
meaning of notation, refer to Appendix B for analogous variables. 
Alternatively, the reader may, for a first reading, ignore the compli­
cations of several control and state variables and read !(t) as if it 
referred to a single state variable. Also, there are n control varia­
ble~~(t), that are functions of t. The entire time path of all 
these control variables from t = 0 to t = T is denoted by~. There 
are m state variables, !(t), that are functions of time with known 
initial values, !(O) =!c. At each time the objective is a function 
of the state variables, the control variables and the time, V(!(t), 
~(t), t). For the objective to be additive separable at each t now 
means that the total objective is the integral of V(!, ~, t) over 
the interval 0 ~ t ~ T. The value of the objective attained depends 
on the initial state, K(O), and the time path chosen for the controls, 
~(t) . 

These values are constrained by the rate at which the state 
variables can change in response to the levels of the state variables 
and the values chosen for the control variables. The rates of change 
of the state variables at time t are given by the equations of motion. 

dK 
-it =' .9. (!, ~, !J. 

The constraints on the state variables at the end time T are written 

.!.(!(T)) ~ 0, 

and the constraints on the control variables at any time tare 

~ (~ ( t ), t) > O. 
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The objective functional is 

-+ w.r.t. u 

T 
f V(K(t), u(t), t)dt. 

t=O - -
Max 

Therefore, in continuous time this maximization problem is 
T 
J V(K(t), u(t), t)dt 

t=O - -
Max 
w.r.t. u 

subject to 

dK 
cff = .9.(~, -'!' t) 

~(O) = ~ 

f(~(T» > 0 

1!(-'!(t), t) ~ 0 . 

The Hamiltonian for this problem is 
m 

H(~(t), -'!(t), t) = V(~, -'!, t) + I Ak(t) gk(t), 
k=l 

which is of the same form as deveJoped in Appendix C for discrete time 
periods. The maximum principle says that the above problem will be 
solved if the following problem is solved for each t between 0 and T. 

Max H 

w.r.t. -'!(t) 

together with 
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_f(~(T» > 0 

!!.(~(t), t) > 0 . 

at each 0 < t < T 



To include the last two constraints, form the Lagrangian for each t 

L (! ( t ), .!! ( t ), t) = H +! )J . ( t ) h . (.!!) + I (J n f n 
i=1 1 1 R,=1 N N 

and solve the problem 

Max L(!(t), .!!(t), t) 

w.r.t . .!!(t) 

together with 

R, = 1, 2, ... s 

!(O) = !o 

With this form it is now clear that the necessary conditions to solve 
the original problem are, for each 0 ~ t ~ T, 

aL aH R ah i 
a.!! = a.!! \11 )Ji a.!! - 0 )Ji(t) > 0 

dK = aH 
dt aA 

.!J!(T)) = 0 

Q{.!!{t), t) ~ 0 • 

)Ji(t) hi{.!!{t)) = 0 

i = 1, 2, ... p 

R, = 1, 2, ... s 

K{O) = K 
- -0 

Often there are direct restrictions on the control variables, 
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such as ~(t) ~ 0, in addition to the constraints h ~ O. Two approaches 
might be taken. One option is to consider the constraint ~ ~ 0 as a 
very simple function h(~) and include these constraints in the set of 
constraints h ~ O. The other approach is to apply the Kuhn-Tucker 
conditions directly to get 

aL > 0, ~ u. = 0, ~. > 0, ~.h. = 0 1, 2, 

j 1, 2, 

p 
au - au . J 1 - 1 1 - J 

For many problems, some·of the state variables are worth some­
thing at the end time T. Examp1es of this would be the "salvage 
value lt of machinery, the market value of buildings or the utility 
of bequests to one's heirs. When this end worth is given by the 
function B(!(T), T), the objective functional is 

Max T 

-+ w.r.t. u 
J V(K(t), u(t), t)dt + B(K(T), T). 

t=O - - -

When the problem is subject to the conditions above, 

dK 
crt = .9. 

h (~( t ), t) > 0 

f(!(T) ~ 0 , 

then the shadow prices of the state variables at the end time must 
equal the marginal contribution of !(T) to the value of B plus the 
sum of the values of the contributions to the constraints f > O. 

n. 

at
f
t t = 1, 2, ... s. 

For additional cases, especially cases when the end time is open to 
choice, see Kamien and Schwartz, pp. 147-148. 
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