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2
Prevention and Treatment in Food Safety:

An Analysis of Conceptual Issues

James Barrett and Kathleen Segerson1

The main goal of food safety policy is to reduce the damages that would result from ingestion of
contaminated food.  Prevention of contamination is one approach to reducing potential damages.  The
majority of policies governing food safety have focused on preventing foodborne illnesses.  The U.S.
Food and Drug Administration (FDA) and U.S. Department of Agriculture (USDA) regulate many food
production processes and monitor much of the output from the food industry in an attempt to prevent
harmful products from reaching the market.  Environmental Protection Agency (EPA) regulations
governing the use of pesticides on food are aimed at not allowing more than a certain number of
additional cases of illness (usually on the order of one additional case per million per lifetime; see
National Academy of Sciences (1987) for a more thorough explanation of EPA regulations).  These
regulations are extensive and highly specific.

A second approach to reducing damages is through treatment of illnesses when they occur.  Unlike
prevention, the question of treatment of illnesses has received very little attention from government
agencies.  Yet the theoretical literature suggests that it may be more efficient to respond to illnesses ex
post with medical treatment rather than attempting to prevent them ex ante, because the responses can
be individually tailored to suit the nature of the problem and because response is only required if illness
occurs.   If society is risk neutral and treatment and prevention are equally effective at reducing damages2

caused by illness, then treatment would always be preferred.  However, in general the two approaches
will not be equally effective in reducing damages.  If prevention is more effective, then the use of some
preventative methods may be efficient.  The question then becomes:  What is the efficient combination
of prevention and treatment to use in response to the problem of food safety?

There exists very little literature that addresses the potential tradeoff between prevention and
treatment.  Using a first-order Markov process, Heffley (1982) develops a decision rule for allocating
expenditures between prevention and treatment in the health care context.  However, in his model, the
choice of prevention and treatment is made simultaneously, so that the level of prevention taken has no
effect on the level of treatment needed, and the ex ante vs. ex post nature of the problem is not fully
examined.  Polinsky and Shavell (1994) develop a model that examines the choice of accident prevention
and damage mitigation in the production of some good.  (Oil spills and toxic waste leakages are cited
as examples.)  Their focus is on how different liability rules affect the producer's behavior, and they do
not consider the possibility of a limited budget.  They focus instead on inducing the firm to employ the
optimal levels of care and mitigation, which are taken as given; they do not examine the interaction
between the choice of prevention and mitigation.  Raucher (1986) presents a theoretical framework for
measuring the costs and benefits of groundwater protection.  However, the model assumes that the
government always chooses "the economically appropriate" response to incidences of contamination.
Prevention decisions are made with treatment decisions taken as given, so that there is no need to choose
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between the two.  Although all these papers examine situations in which treatment and prevention
decisions must be made, they do not consider the efficiency implications of choosing ex ante vs. ex post
variables.

This chapter uses an economic framework to determine the extent to which limited resources should
be invested in treatment and in prevention and investigates some of the factors that influence the efficient
levels of each.  We consider three alternative social criteria by which to judge the efficiency of the
investment in prevention and treatment.  The first is standard Pareto optimality,  or the minimization of3

total social costs, where those costs include both the costs of prevention and treatment and the damages
from food contamination that might result despite the investments in prevention and treatment.  The
second criterion is expected expenditure minimization subject to a maximum damage constraint.  This
corresponds to a situation in which the authorities have determined some minimum level of safety (or
maximum level of expected damages) and the objective is to achieve this level at a minimum cost to
society.   The third criterion is expected damage minimization subject to a resource constraint.  This is4

relevant in a situation in which a planner has a limited budget available and, given that budget, the
objective is to minimize the social damages due to foodborne illnesses.

The results of our model suggest that, while the allocation of resources between prevention and
treatment under the second two criteria will usually differ from the Pareto optimal allocation, they share
some of the same properties of the Pareto optimal allocation.  Specifically, we show that the allocations
under all three criteria lie on a type of expansion path along which the rate that prevention and treatment
can be substituted for each other while maintaining a given budget is the same rate at which they can be
traded while maintaining a given level of expected damages, which is in turn equal to the rate at which
they can be traded while maintaining a given level of expected aggregate costs.  Thus, this condition for
being on the expansion path provides a rule for allocating resources efficiently that can be used 1) when
the regulatory agency faces a budget constraint, 2) when it seeks to ensure that expected damages do not
exceed some threshold, and 3) when it is unconstrained.  However, the impact of changes in certain
factors that influence the efficient allocation depends on which criterion is used.  For example, contrary
to what might be expected, when the probability of contamination occurring rises exogenously, the
efficient levels of both prevention and treatment may fall under a resource constraint, but both may rise
under a damage constraint.

In other cases, our results suggest that the optimal levels of prevention and treatment move in
opposite directions in response to an exogenous parameter change.  This suggests a potential tradeoff
between the two approaches to reducing damages.  For some, the notion of reducing expenditures on
illness prevention in order to increase expenditures on illness treatment presents a distasteful choice;
reducing prevention expenditures will lead to a higher incidence of illness and thus more human
suffering.  However, every dollar that goes to prevention cannot go towards treatment of illnesses that
have occurred.  This reduction in treatment is also an increase in human suffering, so that the choice
being made is not between dollars and human suffering, but rather between two alternative means of
reducing suffering.  By allowing some additional illnesses to occur, it may be possible to treat more
illnesses once they do occur; if this is true, then it may be more efficient to allocate more resources
towards treatment.

Nonetheless, we recognize that there may be some minimum level of safety which society wants to
maintain in its food supply; providing less than that level of safety (by allowing expected damages to
go above a certain level) may be a disservice to society.  The inclusion of the second criterion, social
wealth maximization subject to a maximum damage constraint, is an attempt to address this concern.
In addition, the consideration of interim damages in the comparative-static section is an attempt to
address the fact that some portion of damages may not be treatable.



Maximize
T,A,s

W O
I & A & s

s.t. W O
V & P(A)T & P(A)D(T) % s $ W̄V ,

W̄V

21

An Overview of the Model

Consider the following situation:  There is some food that is being produced and consumed which
may or may not cause the consumer to become ill.  The producer can undertake some degree of pre-
vention that reduces the probability of the consumer becoming ill.  If the consumer does become ill, he
can seek out treatment to mitigate the damages being suffered.  For simplicity, it is assumed that the
consumer can take no preventative action to reduce the probability of illness.  Additionally, the
effectiveness of prevention and of treatment are assumed to be known with certainty.  It is also assumed
that both the producer and consumer are risk neutral or that actuarially fair insurance is available and
that all damages are monetarily compensable.  Thus, expected utility can be maximized by maximizing
expected net wealth.

Pareto Optimality

This section will explore the familiar efficiency criterion of maximizing one individual's expected
utility subject to the constraint that the other individual's expected utility not fall below some specified
level.  Given risk neutrality, maximizing expected utility is equivalent to maximizing expected net
wealth.  Thus, the problem is to

(1)

where:

W is the producer's initial wealth (I for injurer),I
O

W is the consumer's initial wealth (V for victim),V
O

is some predetermined target level of expected wealth,

A is the amount of prevention taken by the producer, with units chosen so that the price of
A is one,

P is the probability that the consumer gets ill,

T is the amount of treatment for damages sought out by the consumer, with units chosen
so that the price of T is one,

D is the damages suffered by the consumer, with 

DN < 0 so that each additional unit of T reduces damages, but

DO > 0 so that it reduces damages less as it is used more,

PN < 0 so that each additional unit of A reduces the probability of illness, and

PO > 0 so that it reduces the probability less as it is used more, and

s is an exogenous lump-sum transfer from the producer to the consumer.

We assume that the consumer has already decided how much of the product to consume.  Thus, we do
not model the consumption decision.  In a more general model where consumption is endogenous, the
probability that the consumer gets ill could depend on his consumption decision, inter alia.   The5

lump-sum transfer, s, is required to separate the distributional effects of the Pareto criteria from its
efficiency goal.  It can be set to ensure that the constraint holds with equality,  i.e.:6
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(2)

Given s and the exogeneity of the initial and target wealth levels, the problem in (1) is equivalent to
minimizing total expected social costs.  Thus, (1) becomes:

(3)

The first-order conditions for T and A are:

(4)

and

(5)

respectively.  These simply require that the marginal benefit of each is equal to its marginal cost.  The
marginal benefit of prevention is the reduced probability that treatment will be needed and damages will
be suffered.  The marginal benefit of treatment is simply the reduction in damages associated with an
increase in treatment.  Units are chosen so that the marginal cost of each is 1.  Note that under this
criterion, the optimal level of T is determined solely by (4) and is independent of the probability of an
illness.  Thus, the treatment decision is separable from the prevention decision.

In Figure 2.1, the point EC represents the minimum level of total expected costs EC = A + P(A)T* 

+ P(A)D(T) that could be incurred by society.  Higher levels of total expected costs are represented by
concentric circles or ovals (drawn as circles for simplicity) spreading out from EC .  The further from*

EC  an iso-expected-cost-circle lies, the higher the level of expected costs it represents.*

The solution to the Pareto criterion (A , T ) yields EC  and the associated level of expected damages* * *

P(A )D(T ) represented by the iso-expected-damage curve D .  Also drawn is the iso-expenditure curve* * *

for R  = A  + P(A )T .  It should be noted that at EC  the slope of the iso-expected-damage curve is* * * * *

equal to the slope of the iso-expenditure curve.  This can be demonstrated by combining equations (4)
and (5) to obtain the marginal condition:

(6)

Thus, at the Pareto optimal levels, expenditure is minimized given the associated level of expected
damages.  Likewise, expected damages are minimized given the level of expected expenditure.  It is
possible to draw an expansion path through all the points where the slope of an iso-expected-damage
curve,

,

is equal to the slope of the iso-expenditure curve, 



Minimize
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A % P(A)T

s.t. P(A)D(T) # D̄.
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FIGURE 2.1  Solution of the Pareto Optimal Problem

As shown below, the efficient levels of prevention and treatment under the second two criteria lie on this
expansion path as well.

Maximum Damage Constraint

The remaining two criteria replace the Pareto optimality criterion with a second-best criterion.  In
this case, the objective is to minimize total expected expenditure subject to a constraint on the level of
damages expected to be suffered by the consumer.  The objective function is:

(7a)

It can be easily shown that (7a) is equivalent to7
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(7b)

The equivalence of the two problems implies that minimizing expected expenditure subject to an
expected damage constraint is, in fact, a constrained version of the first-best Pareto optimal problem in
(3).  It therefore yields second-best levels of prevention and treatment that will in general yield a higher
level of expected total social costs than the first-best Pareto optimal levels.  Thus, while choosing to
maintain a minimum level of health, or maximum level of expected damages, will reduce one component
of total expected social costs, namely, expected damages  P(A)D(T), it will necessarily increase the other
component, expected expenditure A + P(A)T.  The fact that (7) is a constrained version of (3) implies
that the increase in expected expenditure will always be at least as great as and generally greater than
the decrease in expected damages, thereby increasing expected total social costs.

If the constraint in (7) holds with equality,  the first order conditions for the optimal values of A and8

T under the damage-constrained problem are:

(8)

(9)

(10)

where 8 is the Lagrangian multiplier on the constraint.  The conditions (9) and (10) are clearly similar
to the conditions (4) and (5) from the Pareto criterion and would be identical if 8 were equal to -1.
Combining (9) and (10) yields the marginal condition:

(11)

which simply states that in equilibrium the slope of the iso-expenditure curve (left-hand side) is equal
to the slope of the iso-damage curve (right-hand side).  This marginal condition was also implied by the
first-order conditions for the Pareto criterion.  Thus, as noted above, Pareto optimality implies that
expected expenditure is minimized subject to the associated level of expected damages.  However,
minimizing expected expenditure subject to a given level of expected damages does not imply Pareto
optimality.   In this sense, Pareto optimality is a stronger criterion than is the efficiency criterion used9

in the damage-constrained problem.  Note also that under the damage-constrained criterion, the decision
regarding the level of treatment is no longer separable from the prevention decision.  Specifically, unlike
under the Pareto optimal criterion, the efficient level of treatment depends on the probability of an illness
occurring.  This is because the constraint requires that an increase in prevention or treatment requires
an offsetting decrease in the other, forcing them to be traded off for one another at a rate which keeps
expected damages constant.

Figure 2.2 illustrates graphically the solution to the damage-constrained problem.  Here, the level
of expected damages is constrained to be D& which we assume is lower than D .   Graphically, the* 10

efficient levels of A and T are the levels that are on the lowest (i.e., inner most) iso-expected cost curve
given the constraint.  The solution is (A ,T ), which requires that R  resources be allocated to theD D D

problem and results in expected total costs of EC .  An expansion path can also be drawn to show theD



Minimize
A,T

P(A)D(T)
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FIGURE 2.2  Solution of the Damage-Constrained Problem

different equilibrium points associated with different levels of the constraint.  This expansion path is
simply the upper half of the expansion path from the Pareto problem.

Resource Constraint

In this case, the objective is to minimize expected damages subject to a constraint on the amount of
resources that can be spent on prevention and treatment.  Note that at the time the expenditure on
prevention is made, it is not known whether or not an illness will occur and thus whether or not treatment
will be required.  We therefore specify the resource constraint in terms of the actual expenditure on
prevention plus the expected expenditure on treatment.   The problem is then to11

(12a)

Again, it can be shown that this problem is equivalent to:
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(12b)

Thus, as with the damage-constrained problem, minimizing expected damages subject to a resource or
budget constraint is equivalent to a constrained version of the Pareto optimality problem.  It thus yields
second-best levels of prevention and treatment that generate higher expected total social costs than occur
under Pareto optimality.  While the expected expenditure on prevention and treatment will be smaller,
the decrease in this component of social costs will be offset by the resulting increase in the expected
damages.  Thus, as with the damage-constrained problem, expected total social costs will increase.

If the constraint holds with equality, the first-order conditions for the resource-constrained problem
are:

(13)

(14)

(15)

where ( is the Lagrangian multiplier on the constraint.  Again, this would be identical to the Pareto
solution if the multiplier were equal to -1.  Combining (14) and (15) again yields the marginal condition:

(16)

which is equivalent to (11).  This reflects the fact that (7a) and (12a) are duals of each other.  Thus, in
order to minimize expected damages subject to an expected expenditure constraint, it is necessary to
minimize expected expenditure subject to the corresponding expected damage constraint.  As with the
damage-constrained problem, the optimal level of treatment is not independent of the level of prevention.
Specifically, it depends on the probability of illness since the constraint forces prevention and treatment
to be traded off for one another to keep the level of expected expenditures constant.

Figure 2.3 illustrates graphically the solution to the resource-constrained problem.  Here, the amount
of resources available is constrained to be less than or equal to R& (which must be below R  if the*

constraint is binding).  The efficient allocation of resources again is the allocation that lies on the lowest
possible (i.e., inner most) iso-expected cost curve given the constraint.  The solution is (A ,T ), whichR R

results in expected damages of D  and leaves society with total expected costs of EC .  An expansionR R

path is again drawn.  In this case it is the lower half of the expansion path from the Pareto problem.
The relationship between the three problems should now be fairly clear.  The second two criteria are

simply constrained versions of the first, unconstrained problem, and produce a family of solutions of
which the Pareto solution is a special case.  This family of solutions is the set of all combinations of A
and T which satisfy (11) (or, equivalently, (16)).  Additionally, each one of these tangency points
corresponds to a certain level of expected costs, and it can be shown that when this condition is satisfied,
the slope of the iso-expected-cost,



&

1 % PNT % PND
P % PDN
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FIGURE 2.3  Solution of the Resource-Constrained Problem

will also be equal to the slopes of the iso-expenditure curve and the iso-expected damage curve.  The set
of points where these three curves are tangent forms the expansion path drawn in Figure 2.1.  The
unconstrained Pareto problem yields a unique solution, the single point on this expansion path that
minimizes total expected costs.  The other two problems yield families of solutions that are on this
expansion path.  The exact point on the expansion path is determined by the constraint.  In the special
cases where D& equals D  for the damage-constrained problem and where R& equals R  for the resource-* *

constrained problem, the two constrained problems both yield the unconstrained Pareto solution.

Comparative Static Results

Having characterized the efficient levels of prevention and treatment under three alternative
efficiency criteria, we turn next to a consideration of some of the factors that affect those choices.  The
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first is the level of interim damages.  Since time often passes between the onset of symptoms and the
beginning of treatment, some damages are suffered in this interim.  The severity of these interim damages
can be expected to alter the efficient allocation between prevention and treatment.  For example, one
might expect that the greater the interim damages would be, the more we would want to invest in
prevention rather than treatment.  The model confirms this intuition in that it calls for an increase in
prevention, but the effects on treatment are less clear and depend on which criterion is used.  Second, the
likelihood that an illness would occur given some level of prevention is expected to affect the choice of
prevention and treatment as well.  Specifically, one might expect that the more likely the illness is, the
more we would want to invest in preventing it.  However, the model does not necessarily support this
intuition, and the results again are sensitive to the criterion examined.  This section will examine how
these two factors affect the efficient levels of prevention and treatment.  It is particularly interesting to
note that while these two second best problems are duals of each other, they can yield different
comparative static results, some of which may seem counterintuitive at first glance.

Interim Damages

When people become ill, there is often a lag between the time that the symptoms first manifest
themselves and the time that successful treatment begins.  In the meantime, some damages are suffered.
The severity of these interim damages can be influenced by any number of things, such as economic or
psychological reluctance of the sick person to see a doctor promptly, or the virulence of an illness that
causes severe damages even over a small period of time.  One would normally expect that the more
severe interim damages are, the more prevention and the less treatment would be employed.  However,
whether or not this intuition is borne out depends on which efficiency criterion is used.

A simple modification to capture the effects of interim damages under Pareto optimality yields the
objective function:

(17)

where is interim damages.  This formulation assumes that the interim damages simply shift the
damage function without altering the effectiveness of treatment in reducing damages.  The first-order
conditions for prevention and treatment are:

(18)

(19)

respectively.
Using these first-order conditions, we derive the comparative-static results

where *H * $ 0.  These results follow clearly from the first-order conditions.  An increase in interim1
damages increases the damages suffered if illness occurs, so that the marginal benefit of reducing the
probability of an accident increases, and the equilibrium level of prevention therefore rises.  Interim
damages have no effect on the marginal benefit of treatment, so that when they increase, there is no effect
on the equilibrium treatment level.
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Modifying the damage-constrained model results in the objective function:

(20)

If the constraint is binding, this yields first-order conditions:

(21)

(22)

(23)

where again 8 is the Lagrangian multiplier.  Given that the objective function is convex in A and T, it
is a relatively simple matter to obtain comparative static results,  

which is indeterminate, where *H * # 0.  Thus, under this efficiency criterion an increase in interim2
damages has the expected result of increasing investment in prevention.  However, the effect on
treatment is indeterminate.

Figure 2.4 shows the effects of an increase in interim damages on the damage-constrained problem.
The inner iso-expenditure curve and iso-expected-damage curve represent the original case, and the outer
pair represent what happens when interim damages increase.  Two different effects can be identified.
The first is the damage-shift effect.  The increase in interim damages shifts the iso-expected damage
curve outward, requiring an increase in expenditures to keep the constraint satisfied.  (Both iso-expected-
damage curves represent the same level of expected damages.)  This moves us to a new iso-expenditure
curve, R , which is parallel to the original iso-expenditure curve, R .  The second effect is the damage-2 1

D D

substitution effect.  The increase in interim damages causes the iso-expected-damage curve to become
steeper.  This occurs because reducing the probability of illness through increased prevention now
reduces the probability of suffering a greater level of damages than before.  It would take a greater
amount of treatment to match the reduction in expected damages, thereby increasing the marginal rate
of substitution and making the iso-expected-damage curve steeper.

Both of these effects tend to increase prevention, and it is shown to rise unambiguously from A  to1
D

A .  However, the effects work in opposite directions on treatment; the damage-shift effect tends to2
D

increase treatment, and the damage-substitution effect tends to decrease it.  It is impossible to say which
effect would dominate without making additional, somewhat arbitrary, assumptions.  The diagram is
drawn such that treatment does not change, T  equals T , but it should be clear that either an increase1 2

D D

or decrease is possible.
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FIGURE 2.4  Effect of an Increase in Interim Damages on the Damage-Constrained Problem

In the resource-constrained case, the problem is now to:

(24)

This yields the first-order conditions:

(25)

(26)

(27)

where ( again is the Lagrangian multiplier.  This time, however, (assuming convexity) the comparative
static results are consistent with a priori intuition:
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where *H * # 0.3
Figure 2.5 shows the effect of an increase in interim damages in the resource-constrained problem.

In this case, the increase in interim damages does not shift the constraint.  However, as before, there is
a damage-substitution effect, which causes the iso-expected-damage curves to become steeper.
However, the fact that expenditures cannot go up in this case means that the level of expected damages
must rise.  The second iso-expected-damage curve, D , represents a higher level of expected damages2

R

than the original, D .  (Recall that higher iso-expected-damage curves represent lower levels of expected1
R

damages.)  The damage-substitution effect makes D  steeper than D , and, as in the last case, tends to2 1
R R

decrease treatment and increase prevention.  Without a shift in the constraint to mitigate the damage
effect on T, it is clearly shown that prevention increases and treatment decreases unambiguously in this
case.

FIGURE 2.5  Effect of an Increase in Interim Damages on the Problem
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Change in Probability

One would expect the probability of any given individual becoming ill to depend on factors other
than the amount of prevention taken to avoid getting ill.  In the context of food safety, exogenous
parameters can be expected to play a role in the probability of illness.  For example, weather could affect
the probability of a Salmonella or other bacteriological illness occurring, as warm weather is more
conducive to bacterial growth.  This section examines how an exogenous increase in the probability of
illness affects the choice of prevention and treatment.  One might expect that such a change would tend
to decrease treatment and increase prevention because increasing the probability of illness increases the
probability that the treatment will actually have to be employed which is akin to raising the price of
treatment.  Again, however, whether or not this occurs depends on which criterion is used.

Modifying the Pareto optimal problem gives the unconstrained objective function:

(28)

where " is the exogenous parameter that affects the probability of illness.  We define " such that the
partial derivative, P , is positive.  This yields first-order conditions:

"

(29)

(30)

Using these conditions, we derive the comparative-static results:

the sign of which is the opposite of the sign of the cross-partial P , and
"A

where *H * $ 0.  Again, the results are fairly intuitive.  Because " only affects the probability of an4
accident and treatment is chosen without regard to the probability, a change in " will not affect the choice
of treatment.  The effect of a change in " on the choice of prevention depends on the sign of P .  If P

"A "A
is negative, then the increase in " has made prevention more effective in reducing the probability of an
accident, and more prevention should be used to take advantage of this.  If P  is positive, then

"A
prevention has become less effective, and less should be used.  If P  is equal to zero, then the increase

"A
in " has had no effect on the effectiveness of prevention, and the equilibrium level of prevention does
not change.  Since it seems more likely that an increase in " would reduce the effectiveness of prevention,
the rest of the comparative-static results will be based on the assumption that P  is positive.

"A
Modifying the damage-constrained version of the model gives the problem:

(31)
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The solution to this problem gives the first-order conditions:

(32)

(33)

(34)

where 8 again is the Lagrangian multiplier.  Assuming convexity of the objective function, we obtain the
following comparative-static results:

where *H * # 0.  The sign of both of these depend on the cross-partial derivative, P .  If P  is positive,5 "A "A
then

The sign of

depends not only on the sign of P , but also on its size.  If P  is positive and large enough,
"A "A

otherwise

sFigure 2.6 shows the effects of a change in " on the damage-constrained problem, assuming P  i
"A

positive.  The inner iso-expenditure curve R  and iso-expected-damage  represent the original case,1
D

and the outer pair, R  and , represent the situation after " increases.  This time, three different2
D

effects can be identified.  The first is the damage-shift effect.  As was the case with interim damages, the
increase in " shifts the iso-expected-damage curve outward so that more resources are required to
maintain the same level of expected damages.  (Again, the two curves  and  represent the same
level of expected damages.)  This requires that we move to a higher iso-expenditure curve, R .  This2

D

effect tends to increase both prevention and  treatment.  At the same time, the damage-substitution effect
tilts the iso-expected damage curve so that it becomes flatter.  This also tends to increase treatment but
tends to decrease prevention.  The third effect is a resource-substitution effect.  The change in " rotates
the iso-expenditure curve so that the rate of substitution between prevention and treatment changes.  In
the absence of a constraint on expected damages, the increase in " would cause the iso-expenditure
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FIGURE 2.6  Effect of an Exogenous Increase in the Probability of Illness on the Damage-Constrained
Problem

curve to tilt inward, resulting in a higher level of expected damages (a lower iso-expected damage curve).
However, the expected damage constraint does not allow that, so that the iso-expenditure curve merely
rotates, rather than tilting inward, remaining on the same iso-expected damage curve.  The direction of
the resource-substitution effect depends on which way and how much the iso-expenditure curve rotates.
This is determined by the size of P .  If P  is large, the iso-expenditure curve will get steeper, and the

"A "A
resource-substitution effect will add to the damage-substitution effect's tendency to decrease prevention
and increase treatment.  If P  is small (or negative), the iso-expenditure curve gets flatter as it rotates,

"A
tending to decrease treatment and increase prevention.  If this flattening effect were large enough, then
the combination of the resource-substitution effect and the damage-shift effect would dominate the
damage-substitution effect's tendency to decrease prevention, and prevention would increase.  Otherwise,
the damage-substitution effect would dominate, and A  will decrease.D

In the diagram, the second iso-expenditure curve is shown to be flatter than the original, but only flat
enough so that prevention doesn't change (P  positive and small).  It should be easy to see that if it were

"A
to get even flatter, prevention would go up, and if it were to get any less flat or steeper than the original
iso-expenditure curve, then prevention would go down.
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Under the resource-constrained criterion, the problem becomes:

(35)

This yields the first-order conditions:

(36)

(37)

(38)

and the comparative static:

where *H * # 0.  As in the damage-constrained problem, the signs of the comparative statics depend on6
the size and sign of the cross-partial P .  If it is positive and large,

"A

If it is positive and small,

Figure 2.7 shows the effect of an increase in " on prevention and treatment in the resource-
constrained problem.  The outer iso-expenditure curve  and iso-expected-damage curve D1

R

represent the situation before the change in ", and the inner pair  and D , represent the situation2
R

after the change, where  and  represent the same level of expenditures.  Again, three effects can
be identified.  First, the resource-substitution effect again rotates the iso-expenditure curve, this time
flattening it unambiguously.  Unlike the previous case, because the level of expected-damages is not
constrained, the resource-substitution effect is accompanied by a resource-shift effect.  This is analogous
to the income effect in standard microeconomic theory, as the increase in P raises the expected price of
treatment.  The resulting decrease in purchasing power makes both prevention and treatment less
affordable, so that they both tend to decrease.  Since treatment is now more likely to be needed, the same
actual levels of prevention and treatment result in a higher expected level of expenditures, so that a
reduction in both is required to satisfy the resource constraint.  The combination of these two effects
results in the new iso-expenditure curve.  At the same time, the damage-substitution effect flattens
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FIGURE 2.7  Effect of an Exogenous Increase in the Probability of Illness on the Resource-Constrained
Problem

out the iso-expected-damage curves, so that D  is flatter than D .  This adds to the resource-shift effect's2 1
R R

tendency to reduce prevention, but moves treatment in the opposite direction, tending to increase it.  If
the resource-substitution effect is large enough, when combined with the resource-shift effect, it will
dominate the damage-substitution effect's tendency to increase treatment, and treatment will fall.  If not,
the damage-substitution effect will dominate, and T  will increase.  The diagram is drawn so thatR

treatment does not change, but it should be clear that a larger rotation of the iso-expenditure curve will
cause T  to fall, and a smaller rotation will cause T  to rise.  There is no damage-shift effect in thisR R

scenario because the resource constraint keeps expenditures from increasing, so that there is no outward
shift in the iso-expenditure curve.

Uncertainty

Many elements of the food safety problem are characterized by uncertainty.  One important source
of uncertainty is the effectiveness of the means used to reduce the expected damages caused by
foodborne illness.  Using a method first introduced by Lichtenberg and Zilberman (1988) and further



Pr { P(A) @ D(T) $ D̄} # 1 & D.

P(A)[µ(T) % Z(D) @ F] # D̄,
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developed by Lichtenberg et al. (1989), this section examines how uncertainty regarding the
effectiveness of treatment in reducing damages affects the efficient allocation of resources between
prevention and treatment.  This "safety rule" approach allows for "uncertainty-compensated tradeoffs
between risk and social cost ... reflecting both uncertainty about risk and decision-makers' preferences
regarding that uncertainty" (Lichtenberg et al. 1989).  Under this approach, the policymaker sets a risk
standard and a safety margin, D, expressed as a percentage.  The object is to ensure that the risk standard
is violated no more than 1 - D percent of the time at a minimum cost to society.

In the original model by Lichtenberg and Zilberman (1988), and in subsequent applications by
Lichtenberg et al. (1989) and Harper and Zilberman (1992), the random variable of interest is the
probability that a randomly selected individual will experience some adverse health effect of a fixed
magnitude; there is no possibility for treatment or remediation.  Additionally, their models consider
several parameters of which overall risk is a multiplicative combination.  The assumption is that these
parameters are distributed lognormally so that the log of health risk is the sum of the logs of the
parameters.  In the problem considered here, the random variable is the level of expected damages.  The
distribution of this random variable depends on the level of treatment.  Instead of a probabilistic risk
standard, the policymaker chooses an expected damages standard, D&; actual expected damages should
exceed D& not more than 1 - D percent of the time.  Rather than consider several sources of uncertainty,
here we focus only on uncertainty regarding the effectiveness of treatment in reducing damages.  As a
result, there is no need to assume a lognormal distribution, and we assume instead that the damage
function is distributed normally about some mean.  Additionally, the original models and applications
assume that some parameters affect mean risk more than the variance of risk and that the opposite is true
of other parameters.  Here, we assume that the variance of damages, F , is constant, and that only the2

mean of damages, µ(T), is affected by treatment.12

Formally, in the context of our model, the safety rule approach can be expressed as:

(39)

Because damages are normally distributed, it is possible to express this in terms of the mean and
standard deviation of damages:

(40)

where Z(D ) is the critical value of the normal distribution that is exceeded with probability 1 - D.
Rather than minimizing social costs subject to a constraint determined by the safety rule, as was

done in the original safety rule models, the model here will focus only on the resource constrained
problem.  Assuming that (39) holds with equality, we consider two different objective functions that are
minimized with and without the resource constraint.  The first objective is to minimize the probability
that the given standard, D&, is violated, and the other is to minimize the standard (making it as stringent
as possible) which will be violated 1 - D& percent of the time, where D& is taken as given.  We then
examine how an exogenous change in the standard deviation of damages, F, affects the allocation of
resources between prevention and treatment.  Again, some results confirm our initial intuition while
others do not, and the results are shown to depend upon which criterion is used.

Minimizing the Standard

As mentioned above, in this formulation, the objective is to find the most stringent standard that can
be expected to be satisfied a given percentage of the time.  This may seem the opposite of how standards
are set in real life situations, but this formulation is effective in demonstrating the sensitivity of the
comparative static results to model specification.  The unconstrained problem is to
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(41)

This yields the first-order conditions:

(42)

(43)

These simply require that prevention and treatment be used until the probability and mean damages of
an illness can be reduced no further.  It should be clear that this must be the case.  In the absence of any
cost considerations in the objective function or through a constraint, the marginal cost of both prevention
and treatment is zero, and they will both be employed until their marginal benefits are also zero.  It
should also be clear that the variance of damages has no effect on the equilibrium levels of prevention
and treatment.

With a resource constraint, the problem becomes:

(44)

Assuming that the constraint holds with equality (and suppressing arguments for ease of exposition),
this yields first-order conditions:

(45)

(46)

(47)

where 8 is the Lagrangian multiplier.  These yield the comparative static results

where *H * # 0.7
Figure 2.8 shows how an increase in the standard deviation affects the choice between prevention

and treatment.  The iso-expenditure curve is drawn and labeled R&.  As in the resource-constrained
version of the interim damage case, only one effect exists.  Because the change in F does not affect the
relative “prices” of prevention and treatment, there is no resource-substitution or resource-shift effect.13

Because the constraint on resources means that the iso-expenditure curve does not shift outward, there
is no damage-shift effect either.  The only effect that still exists is the damage-substitution effect which
makes the iso-expected-damage curve steeper, rotating from D  to D , so that equilibrium treatment falls1 2
from T  to T  and equilibrium prevention rises from A  to A .  This is consistent with intuition in that1 2 1 2
we would expect an increase in the uncertainty regarding the usefulness of one of our tools to reduce the
extent to which it is employed.  As the effectiveness of treatment becomes more uncertain, we would
expect that society would be more reluctant to rely on it, thus shifting resources toward prevention and
away from treatment.
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FIGURE 2.8  Effect of an Increase in the Variance of Damages Given a Resource Constraint and a Fixed
Margin of Safety

Minimizing the Probability of Exceeding the Standard

In this scenario, the policymakers have chosen some minimum level of expected damages to serve
as the safety standard, and the objective is to choose the levels of prevention and treatment that minimize
the probability that the standard is violated.  The objective function is to:

(48)

or, equivalently,

(49)
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It is clear from (49) that under this criterion,

Thus, with this formulation, an increase in uncertainty regarding the effectiveness of treatment has no
effect on the amount of resources invested in prevention or treatment.

These results are less intuitive at first glance.  Figure 2.9 shows the distribution of expected damages
in the absence of any prevention or treatment and the distribution after prevention and treatment are
employed (but before F increases).  Prevention and treatment are used to shift the distribution of
expected damages downward (to the left) by decreasing the probability of an illness occurring and by
reducing the mean of damages if an illness does occur.  This has the effect of reducing the area of the
distribution which lies above the expected damage standard, D&.  Figure 2.10 shows the left most
distribution from Figure 2.9 before and after F increases.  The increase in F widens the distribution, so
that a greater area of the distribution is above D&.  However, prevention and treatment can do no further
good in reducing this area, because they have already shifted the distribution as far left as possible, given
the resource constraint.

FIGURE 2.9  Distribution of Expected Damages Before and After Treatment and Prevention Are
Employed
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FIGURE 2.10  Effect of an Increase in the Variance of Damages Given a Resource Constraint and a
Fixed Level of Expected Food Safety

Conclusions

While theory suggests that the use of treatment may be a useful means of dealing with the problem
of food safety, it has received very little attention from regulators and theoreticians alike.  If society were
risk averse and prevention and treatment were equally effective at reducing expected damages, treatment
would be preferred.  In general, we do not expect that they will be equally effective, and some
combination of the two is preferred.  This leads us to ask:  What is the optimal combination of
prevention and treatment, and what factors affect this combination?

In an attempt to answer these questions, we began by trying first to determine what is the appropriate
definition of efficiency in the food safety context.  We find that the three seemingly different criteria
considered here are in fact closely related, and each yields a set of solutions that are merely subsets of
a larger family of solutions.  All three criteria yield solutions on a common locus of solutions; the exact
location of the solution on the locus depends on which criterion is being examined.  The resource-
constrained and damage-constrained definitions are constrained versions of the Pareto definition and thus
provide second-best solutions, of which the Pareto definition is a special case.  Turning to the factors
which affect the optimal allocation of resources between prevention and treatment, we find, despite the
similarities of the definitions, that the effects of these exogenous factors depend on which definition is
used.  While the results may seem to contradict intuition at first, they do confirm microeconomic theory.

Our results suggest, on the one hand, that more attention should be paid to the tradeoff between
prevention and treatment and that more attention should be focused on the use of treatment as a policy
tool for reducing the damages caused by foodborne illness.  On the other hand, our results show that the
definition of efficiency against which prevention and treatment allocations are judged may play a more
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important role than is generally thought.  Efficiency is often defined without much thought regarding
alternative definitions or the fact that these alternatives might yield different, sometimes opposite,
conclusions.  In situations where ex ante and ex post variables are substituted for one another, the
definition of efficiency plays a pivotal role in how allocations are viewed.

Notes

James Barrett is a Ph.D. Candidate, Department of Economics, University of Connecticut and1

Kathleen Segerson is Associate Professor, Department of Economics, University of Connecticut.  The
authors wish to thank the Food Marketing Policy Center at the University of Connecticut for funding
support of this project.

For a seminal work covering this and other issues, see Raiffa 1968.2

Given linear utility functions (constant marginal utilities) and the availability of exogenous wealth3

transfer mechanisms, Pareto optimality is equivalent to aggregate wealth maximization.  See Miceli and
Segerson (1995) and Shavell (1987) for a thorough discussion of these issues.

For other examples of this type of formulation, see Lichtenberg and Zilberman (1988), Lichtenberg4

et al. (1989), and Harper and Zilberman (1992).
It is also possible to model these choices per unit of consumption or production, which would also5

abstract from the consumption decision.
See Miceli and Segerson (1995) and Shavell (1987) for a thorough discussion of this and related6

issues.
(7a) and (7b) can be shown to be equivalent by comparing the Lagrangians.  The Lagrangian for7

(7a) is:

and the Lagrangian for (7b) is:

or

A comparison of the two Lagrangians shows that the only difference between them is the value of the
multipliers which, of course, will not affect the optimal levels of A and T.

If the constraint is not binding, (7b) reduces to (3).8

This is analogous to the result that profit maximization implies cost minimization, but cost9

minimization does not imply profit maximization.
If D& $ D , the constraint in (7a) is not binding and the solution is identical to the Pareto optimal10 *

solution.
An alternative is to specify a constraint that requires the sum of actual expenditure on both (A +11

T) to be less than or equal to the resources available.  However, under such a constraint, resources would
be "wasted," i.e., the constraint would not be binding, if no illness occurred and thus no expenditure on
treatment was needed.

We make this assumption in order to consider exogenous increases in the level of uncertainty.12

Alternatively, we could specify F  = F ($,T) where $ is an exogenous parameter that shifts F  given T.2 2 2

We would not expect this to be the case if F affected P, thus changing the slope of the expenditure13

line.
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