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ABSTRACT

The w1de1y used meaﬁ-varlance approach to dec151ons under uncerta1nty
»requ1res estimates of the parameters of the 301nt dlstr1but10n of returns.
When optlmal behav1or is determlned using est1mates, rather thgn the true
values, the dec151on is a random varlable. -

We examine the usefulness of mean-variance analysxs by der1v1ng the bias
'and variance-covariance matrix for the dec1s1pn vector. The latter shows that '
.decisions based oh estimated parameters can'haVe a large varianée around the .
' true optimum. The results show that opt1ma1 deC151ons can differ substan-“

tlally from those based on mean-variance analys1s.



"THE MEAN AND VARIANCE OF THE MEAN-VARIANCE DECISION RULE
1.  INTRODUCTION

SinceiMarkowita eXamined the portfolio diversification problem using_mean-
vafiaﬁée analysis, this method has been used extensively.to”model choices from
:investment‘alternatives with uncertain retnrns. ‘In addition, the technique ,
has been applied to a W1de variety of economic decxslons--examples include
' hedglng (Berck (1981)), adopt1on of new technologies (Just and Zilberman.
(1983)); corporate f1nanc1al decisions (Rubinstein (1973)); the demand for
) money (Tobin (1958)); and the allocation of fixed assets to uncertain produc-
tion processes, particularly agricultural land allocation (Freund (1956))

The mean-variance approach 1s con51stent with the w1de1y accepted von:
Neumann Morgenstern expected utility paradigm when either ut111ty is quadratlci
'orrutillty is negative exponential and the returns from.the relevant alternaj’
' tives are jointly normally distributed 1  Since ouadratic utility implies
increasing absolute risk aver51on, it is the latter which usually serves as
“the Justlflcation for mean-varlance analy51s. However, the method requ1res a
vector of means and an associated variance-covariance matrlx for the joint
distribution of returns<from the uncertain.prospects being con51dered, these
are-aimost'always unknown to the decision-maker (Markowitz (1952), p. 91),
Thns,‘the unknown parameters must be‘eStimated using,sample“or:Other informa-
“tion, making the‘optimal decision vector random. Commonly, ‘sample estinates*En
| replace population parameters and allocations are based on the resultlng est1-:

mate of optimal behavior. For obV1ous reasons, th1s approach has become known.

- as the. parameter certainty equ1va1ent (PCE) (e. g., Bawa, Brown, and Klein ,“
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:h(1979))f6£ "plug;in" approach (Pope and Ziemer‘(1984)). This estimation'pro;mi
“cedure leads to an additional source of uncertainty, estimation risk, that :
:1tself is the subJeCt ‘of a considerable body of 11terature. ‘

“In the context of the portfolio ch01ce problem, this 11terature 1nc1udes”
examlnatlons of a broad range of problems and is well summarlzed in Bawa,*
Brown, and,Klein‘(1979); DiScussionsvof estination risk in the financial
,economics literatore,have focueed on‘Monte Carlo Simulations Qf its importance
~for individualkinvestors (Frankfutter, Phillips, and Seagle (1971), Brown
: (1979))9'for‘finanCial market equilibrium‘(Bawa and Brown.(1979) A1eXander
“and ReSHle (1985)); and on the der1vat1on of optimal (Bayesian) estimators in
*the presence of estimation risk (Klein and Bawa (1979a, b)). Despite this |
attentlon to the problem, no one has establlshed the sampling propertles of
. the w1dely-used mean-variance estimators of opt1ma1 behavior.

“In this paper we examine the 1mp11cat10ns of estimation rlsk for‘the use-
vfulness of mean-varlance analy51s by explor1ng the samp11ng propert1es of the
'mean-varlance decision vector. In doing so, we cons;der a number of factors
important to determining optimal behavior'and drawing'inferencesafromvnean-
VarianCe analysis. We show first that the decision vector is a biased but
con51stent .estimator of the choices which maximize expected ut111ty, given N
knowledge of the unknown parameters. An unbiased decision vector is easily
°bt31"ed from this result. We then der1ve a variance- covar1ance matr1x for
‘b°th decision vectors, f1nd1ng that there may be an unacceptably large amount.
of variation in estimates of the optimal dec151on. We explore the factors
}that determlno the reliability of such estimates of expected ut111ty maxlmlzj

1"3'b°haV‘°l nnd then derive the ex ante expected ut111ty from u51ng such

ostimat,
ostimators, Lirom the der1vat1ons, it is clear that the bias and variance in

/

. t . . ) . . ) » ) )
an 9P fmal decision depend on the risk attitudes of the decision-maker, the
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t_lpnumber of prospects, the amount of h1stor1cal 1nformat10n ava11able, ‘the
“1funderly1ng dlstrlbutlon, and the total amount of fixed resources to be allo-.,.
' catedw. Flnally, we examine how one mlght.use these results to move from a

: p01nt estlmate of optlmal behavior toward 1nterval estlmatlon.

The paper proceeds as follows. The next section out11nes the portfollo

cho1ce>problem,and a part1cular case which leads to the wldely used linear (1nh

mean and‘variance)'objective'function.} We use the expected utility»momentQ ‘_’

'generatlng functlon approach suggested by Freund (1956) and Hammond (1974) and,
:reformulate the problem to recognlze explicitly the est1mat10n of umknown
o parameters whlch is ‘involved. In the th1rd sectlon, we,derlve the mean, b1as,-

’andvvariance of the parameter certainty equivalent estimator of the optimal

decision vector and suggest an unbiased estimator. We also dlscuss the fac-

:tors that determine the magnitude of bias and variance in this sect1on. Sec-.» :
tion four conta1ns expressions for the expected ut111ty.of the dec151on-maker

in using each of these estimators. In section five, we demonstrate the’impor-‘

tance of recognizing estimation risk for some simple portfolio allocation

' problems which have appeared in the.financeyand agricultural economics litera-

ture;*‘The last section contains a summary*and conclusionS»about the implica-

. tlons of est1mat1on risk: for both p051t1ve and normatlve analyses u51ng

’,'mean-varlance analys1s.

2. THE MOLEL AND ESTIMATION PROBLEM

’ ln"Single-period portfolio.choice problems, the decisionémaker must allo-

- cate'a f1xed resource, such as land or wealth among r1sky 1nvestment alternas

tlves to maximize the expected ut111ty from end-of-per1od wealth. The problem

can be formulated as



max EULW (1 + X'E)] v
_ ZeCO

subject to

y'i=1

where EU(+) denotes the expected value of the decision-maker's utility func-
“tionjin is initial wealth; y is a vector of choices from the set of alter-

natives, Co; R denotes the random vector of returns; and i is a vector of

ones. The elements in y are the shares of LA allocated to each alternative
in the vector R.

EqUiValently, thé'problem,can be expressed as

max EU(L'T)

xeC
subject to
v =
RN
and
1=i+R

Under a set of quite restrictive but frequently imposed assumptions, the above o

'probléms reduce to the maximization of an objective function which is linear .

in the mean and variance of portfolio returns. Possibilities include quadra-

tic utility or the combinationrof normal returns and a utility function of the

negative exponential form. Below, we develop the solution for the latter case

5by applying mean¥variénce analysis to the land a11dcation problem that origi-

nated with Freund (1956) and has been expanded upon in recent papers by

Collender and Zilberman (1985) and Collender and Chalfant (1986).°
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2.1. The Land Alvloc'ation Decision

The decision-maker's problem is to allocate L acres ofvland‘to k crops,
‘where returns per acre x are distributed as N (g, 2). We assume that the decision-

~ maker maximizes the expected value of an exponential utility funetion
U(w) = -exp(-rm)

where r is the Arrow-Pratt measure of risk aversion and m denotes profits:

and Ei‘is the acreage'pianted to crop i. We assume that per4acre’returns
."afe’net’bf production costs, and we treat the technologies as-predetermihed o
and consider only the acreage decision.

The first-order conditions for maximizing expected ut111ty 1nvolve the
der1vat1ves of the moment-generat1ng function, M, of the random Vector X with

respect to each t, = 7r zi."They are shown by Collender and Zilberman (1985)

to be
Ml =v Mi, ’ i = 2’ es ey kc
M M ‘

‘These conditions are then equivalent to

VM be1ng the k-vector of der1vat1ves of M and A belng a (k -1)x k matrix of

the form



~where i is used throughout the paper to denote a vector of ones.. For a multi-
variate normal moment-generating function with t = -r &, this condition

gives us -

MLIA-Mpy-rzal=0

- or

4 | b

AZf=<Apu.

Note that A I is not a square matrix so it cannot be inverted to solve for
%. It is only (k - 1) x k, and we need one more restriction on‘g, so we add

that the farm size is L:
. L
Coha-L.

Then, the system of k restrictions on & for maximization of expected utility can

be solVed; once estimates of u and I are available:

AL

~

where . estimates & and 'y estimates .

2.2. The Estimation Problem

If the true population parametérs were known, then 1 would be the optimal
decision (hereafter 1#) in the sense of maximizing expected utility; Estima-
‘tion risk exist§ when parameter eétimates must be used in place of population‘
parameters. The result is that the solution % is only an estimate‘of &f;

A A
call it x. The decision will be suboptimal if 1 differs from 1* in the sense
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AL | .
that EU(m|%) < EU(n|yx*). Furthermore, 1 is random (as it is a function of past

A
1
realizations of returns) through y and 2. Its sampling behavior is critical for
evaluating its use as a substitute for 4%. In this section we formalize the
random nature of %.

We assume that data are available on the k different returns per acre ob-
 served over n periods and are collected in a k x n matrix X. Column t of X is
a draw, at time t, from Nk(u, L), and we assume timewise independence in these

draws. Our estimates ﬁand L are obtained from

[

.E=x-i-n

=}

an’d_'

) (X-pi).

z=(n -t x-pi)

If welet Z = X - E.i; be deviations from population means so that the colums

afev independent draws from Nk(O, L), we can then write

of Z, Z i

~ l "
Mg i, v

Also, our estimator for the variance matrix, I, can be exprésSed as
‘_ “1 x “.') x '“.' '._ . -1 1
b=n-1) " (X-pi) X-pi) —(nfl)_ X P, X

=(m-1ytz P Z' = (-1 w

; g e 1 1. L o
where Pn =1 ‘~ in(in vin)‘ 1 i,n‘=,1} - % i i isa ‘syxmne,tric,- idempotent matrix
withrankn - 1and Visakx(n- l)rmatrix?formed by using the eigehvalue?

eigenvector factorizaton of Pn. Then, the expression for L becomes



F PECS '—-l -l . 1., ]

Lo meutazez TR AG g2y

&= . ‘ .
i L

L ' 4 . o ]

‘The inverse above is shown in the appendix (A.1) to equal the partitioned

-expression

, -1, » -1 » N
A[AW'AT ] (?'.f DI b Y ! (n- 1) AW'e |+ 10 : &

B Whére‘the 0 matrix is k x (k - 1) and e, denotes the first elementary vector
of length k. o |

The solution vector, &, can therefore be written as

weny e, e\ a2
| k L

. ] o
Ca= ) rawan - 1) 9:

or, upon multiplication,

amaawa) T B tage dzi) e ey - WA awre

o Itfsililinlifies -léter resuits if the first_tolmh of V', V'e,, iS'sep-
arat.éd’_‘iﬁtjjo two parts, oné orthogonal to AV. We v\write, T = AV and note that
AWAY = T | |

,. Vél = vV1:v = (T)' a+ u.

The fi’rét part is a linear combination of the colurm;s‘ of T', the second a
noifnlaliy distributed random vector, u, which has a zero expectation. This

vector u is ind_ependent of the elements of T and, to make thiS true, we set
. o= (AZA')f.l A kel
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o ..where 2, 1 denotes the first column of I. This"result is'showh in the

| .'append1x (A.2).

AL
We can express % in terms of @ and u by makmg use of th1s equahty: ‘
. T(v' l) - 'rv1 - T’[T"d + ul
TT'a + Tu.
’Thi}s gives us |

‘;3 A'('I"T":)'lv n -1 A(E"' -—Zl ) + L_e-1 L_A'(TT') -1 {'IT'Q + Tu}

- ,A'(rrv)'l n-l A(E EYINE Ley - LA - 'LA'(rr")'l. Tu.
3. SAMPLING PROPERTIES OF THE MEAN-VARIANCE DECISION VECTOR

| . Web ore now ready to derlve the mean and variance of l, the mean-varlance ;
" 'demslon vector for the PC]: case. Before proceedmg, however, we note some

! key mdependence results which s1mp11fy the der1vat10ns which follow. F1rst, |
| .T AV and u are mdependent by constructmn.; It is also the case that 21
and V are 1ndependent, asshown in the appendlx (A.3). Fmally, since

= "(e - A'(Az;A")’l ) is a 11near comb1nat1on of elements in V it is

'also 1ndependent of 21 .

3.1. The M_e_an and Bias in £ and an Unbiased Alternative

 The expected value of % consists of three terms: -

‘E(x,) A" E('rr')lA"' 'u LA'a+Le1.
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. c _ A » | . o
~ The terms in our expression for x which involve u and Zi_ each have zero
expectations because those terms do; independence of T from each of them_lets
us take expectations of (T1')" -1 over T and the exPectations of u and'Zi

’separately Note that (TT') A Wishart (AZA', n - 1), wh1ch 1mp11es that

B U AU
B =D - k"D =TI n-k-1

(Anderson (1984), p. 270) and, upon substitution of this result,
E@W=(-k-D AT aloly “pag e,
n-1 .1 -1,
= m’ }-A'(AZA') AB - LA'a + Lel.

- The optimal decision when u and X are known can be shown to be

* = % A-(A);Av)'.l Ay + Le, - LA'g,

4

so an expre551on for the b1as can be obtained by subtractlon. -

BlaS (2) = B(R) - 2 = [(—Lf(—l—[> 1jaramny™ta el

The factor (n 4‘1)/(n -k-1)in E(g)'is'responsible for the bias in &}
This term is due te the:uncertainty ahout z; with only B uncertain, @‘
would be unbiased. As is evident, 2 is asymptotically unbiased, keeplng the
" number of alternatlves k flxed Also note that the bias vector, hereafter b,

must satlsfy

b.i 0
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, A : _
- since the elements in % and x* both sum to L--the total amount of land to
AN . Cy
be allocated. Thus, some elements in & will be biased upward and others
biased downward. However, the effect of this bias on the portfolio mean and
variance is unambiguous.
N LA LA ' . A s
The portfolio mean is %'u, for a given &; the expectation over &, for fixed

y, 1is

CE('W) = (2% +b)' = 4K by
the'that
b'u=cua (A Ay

where ¢ is a positive scalar. This expression is nonnegative, then, since
gA'(ALA')'l A is positive semidefinite. Thus, the portfolio chosen using
the PCE method will, on average, have a higher mean than the optimal choice
w*,
. ) - , A
An unbiased estimator, %, can be obtained by rescaling I by the offend-
ing constant:

-1/1,°

(n- k- 1)L awe 1 Ay

&)
N
e

]
v
S’

[ ]

o
|
>
= »

j=1
Ll
L]

S I y . R
By repeating the steps in the Appendix, the inverse above can be shown to dif-
fer from the previous case only in that (n - k - 1) replaces (n - 1), so that

~ the unbiased decision vector is

=tz ko tagedzi) - e - ot + Le.
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,3.2. Sampling Variance of the Decision Vectors

- In this section, we derive the sampling variance for the unbiased decision
vector, Z, obtained above. It is easy to adjust the result to find a simi-
lar expression for 2 Our goal is most easily accomplished by finding an
expression.for the characteristic function of the difference between zand
its expectétion. | | |

The deviation of Zfroni E(I), shown previously to be the same as the

optimal choice, 2*, can be written as

PR PR LB UL, S B(TT) 1 Au

n-K-1," o'yl g or 2 a' pre'y-1
A E(TT )™ A Zi_ LA* (TT )™~ Tu.

+

Again, the matrix T and the vectors z= Zi_n and u are normally distributed

with zero expectations. v
We turn now to deriving the characteristic function for z - E(z). In
doing so, _{ge will use some results for Zi and u established in the appendix

(A.4).

The characteristic function of the random vector % - E(2) is given by

o(t) = Efexplit(x - E(L))1)

-

= Bexpit' (22X = L acrr)7t - ECr) " HAp\

semfig(Ppta () )]
. exp[— iL't 'A (TT')7 Tg]’}.

Observe that, by properties of normal random vectors,
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‘Elexp(i k'z)] = exp(- S n k' £ k)

~and

Elexp(i k' u)]l = exp % Zk'k),

. where Z is the scalar defined in the appendix (A.4). Then, taking expecta-
o tioﬁs over z and u, we obtain

Q)(E) = Ew exp 1£' (n_;_l;_:_l A' W AE)

2
-°exp-%(n-k2- L v A" WAZ A WAL

nr-

. exp(-%LZ,f:_i_:' A wAE)

~ where W = ('I'l“')'l and W= W - E(W).
- One convenient substitution in the above expression involves the term

WA A" W. This can be replaced using the identity
WAZA" WeWALA W+ ——t i+ (n-k- 1) EW
or

WAZA W+ —f W+ -k-1D2@zan™t

When this is substituted into the characteristic function for 7 - E(2),

" the result is

o(t) = Bfexpit' B2k =D v fpyfexpl- 3k o p Az A

nr
'.'-’ exp- L —-———-—-(“}' 2 e ( k- >At exp -|3 {0k - 1) k-1, _aza)! At
z nr? 2 S o v(n-k-.l)z_'—‘

-exp( 2-14 Lt' A'WAt)}
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the middle three exponentials are the result of the substitution. The first
two terms will remain, but a few substitutions make the last three exponen-
tials more convenient. We rearrange until one term involving t' A' W At and

-1

onéxinVOlving t' A'(A 2 A') T At are obtained.

We can write

(1) = E, exia(ig“““___F__lA'wAg) eXp[ l(n'k'l) t A'WAZA'WAt]

v.exp -%Z(H;rlzc-l)i' A'WAE exp ___z_t’ A'(AEA')IAt

. eXp(- AN AN WA_t_) * exp [1%1,2 It A" EW) At]

by s1mp11fy1ng the third and fourth exponentials and multiplying by the last -
one whlch changes noth1ng Combining term 5 and the p051t1ve part of term 6,

‘we obta1n
'vexp(-%lef:_t_'A'WAE)
and the h;gative’paft in term 6 is
exp[ z(n-k-l) b2ieaa Z.A')lAE].

Hence, the former combines with term 3 above and the latter with term 4; the

result is

: ) VA '
¢(£)=Ewexp(i_§'9—1—%—;—l-A'WAE)exp -%(_H;LZLL). t'A"WAZA WAL
" nr » -
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"_,' éxp (_. % Z-. .LZ + 2(n I;;]z( -1) Et' Av WA£>

R I A8 S 1 | 1,

o cexp |- x-T1* tTAMAZAY) AL .
This expression can now be differentiated twice with respect to t to find
~ the variance-covariance matrix for %, E{[% - E(L)] % - E(2)]'}. Since the eﬁx'.- |
' 'p'eéted value of [Z_ - -E(g)] is zero, the first derivative serves only to obtain

the Sécond' derivative:

39 _ : . .n-k-1,,n _(n°k‘1) R
ot Ew exp() 1 , T A' WAy —-—-————-—nrz A' WA ZA'"WAL
N Y 2{n -k - 1) n _ L L 1 | )
L — ATWAL - I =% =1 7 [arazanlac |\,

nr o : nr

where exp(+) denotes the set of four exponentials inside the .expectation
above. Differentiating once again, with respect to t', we obtain first the
~expression above times the transpose of the exponent's derivative and then a.

- term due to the dependence of the bracketed expression above on t:

22

—d—'—L-= . ° . - . (n - k - 1) oAl C -
aE BE' i Ew exp( ) [] [ ]" Ew exp( ) —— nrzb A'} w,A LA'"WA
. . ‘ _ ‘ |
= .2 (n-%k-1) - - IL 1 -1 1L
+12L +,2_—_——-——‘an ‘ Av WA +(n e 1,+nr2)Av(A£A.) A .

'The exponentials vanish at t = 0, leaving

V() = - '524-'% = -E‘w "iz -(—n—-—lzs———l)- A' WAL u' A" WA
: - T |



2 - - -k - -
e dm k- D A Aar WA+ Bl 2 Do K-1)aga
W 2 Z
nr nr |

' - .2
L L 1 ofa = aiy-1
+(n_7_1+ 2>A(A£Av) A
. nr
 'The'first~term reduces to

(n - k - 1) E A" W Ap p' A" WAJ, !
r

and the last term is a constant with'respect to W. From the middle two terms,

~only the first remains since the second has a zero expectation over W. Thus,

2

. 2 . -
v(&)=ﬂ-;%u%A'WA(£g'+%z)A'WA +(n§ﬂL<-1T L
_ .

{A'(A Ayt A] .

The first term is difficult to simplify, requiring still more substitutions.

It is Shown in the appendix (A.5) that the variance matrix reduces to

VQ'Z_) %HA'(A):A') LAy A'(AZA') 1A

= 2
(n-k-1), £12 1 \amzagla
(:;r (n - k)z ‘- '\1) nr2:> :

A similar series of steps can be used to show that the PCE decision vec-

A\ .
- tor, %, has a larger sampling variance. The only difference is that (n - 1)

L replaces (n - k - 1) when the latter appears in V(z); hence

V() = ;%’;T‘%ZA'(A At Aappratazayla



L AN -1
— * A'(AZA') T A
k - 1) an »
‘Thls shows that the unblased dec1slon vector L has a smaller varlance

matrlx, in the sense that V(l) - V(E) is p051t1ve sem1def1n1te.

3.3. Factors Affecting the Bias and Variance of'rhevPCE Estimator

From inspection of the terms for the bias and variance of the PCE esti-
,vmator, it is olear that several factors affect their mégnitudes} For the
~ bias, these factors include the underlying population parameters as weil'as-
the sample size;vnumber of alternative enterprisesv(investments),‘and'the éb-
»solure measure of‘risk aversion. The variance is affected by the same factors
'~plus the 1n1tlal wealth or fixed resource constraint. Table 1 preseﬁts rates
of change for the bias and variance with respect to each of these factors, |
o with the exceptlon of the number. of alternative enterprises. The effect of k B
is more difficult to dotermine since it affects the dimensions of thévmétrices
4 and A and the vector u. | |

| It is clear,onvinspection that both the bias and variance converge to zero
as either the sample size or thenmeasurevof absoloté risk aversion gets
large. It is also clear that as L increases the variance 1ncreases. An ih—o
'crease in My will 1ncrease both the variance and the b1as of the estlmated
‘},allocat1on of L to alternative i but will have an ambiguous effect on the bias
of other alternat1ves. An increase 1n the variance of a part1cular alterna-
tive will increase both the bias and variance of the PCE.estlmator, but an
increase in‘a:oovariahce'will hare ambiguous effécts. These 1ast results are-
1mportant for analy21ng the effects of technologlcal or other changes on the

~ impact of estimation risk, all else held constant.



"TABLE- 1

Factors Affecting the Bias and Variance of @ ;.
Partial with | R A ‘ — — T — — 4
respect to Bias Variance )
| -k ‘ A, cn -(n+ k-2) a1 1, e k-2)
n (sample : — A'(A LAY) T Ap <O —g———3~| A'(AZA') " App' ATA ZA') A [t
size) r(n- k- 1) r“(n - k) ‘ | fnrtn = k)T
' ' 202 o ’
: n-1 L 1 aryl
- - - A'(AZA') A<D
: [nzr'z(n - k)z} (n-k- 1)* ﬂzl'z}: .
Jbsol -k ia s ] -2(n - 1) el 1, | 2m-1)
r (absolute A"(A2ZAY) " Ap<O AAZA' )Y " App' A'"(AZA) T A -
. Z <z 2 B
risk aversion) |r'(n - k - 1) [r (n - k) ] nr(n - k)
s Lfnmzantaco
nr ' ) 1
—
o
1
L (initial port- : IL 1, < =<
folio size) B 7 ‘ Z,r_‘k—_T)'n ~ - A'(ALAY) " A 5 0 as L 3 0 )
i ey A'A 5 A Ae, Sn-b @zt Ag; e, AALANTA > 0
: Lr (n - k) : : ’ :
) L - - : o o - o
v, i AT A LA agg o ANA £ AT Ay T_""r(?n _lz) Taazan Theyej A s AN Ayt AA s A e e
, L. . -~ .
>0 if 1= -1 -1 il 1|, SET -1
AT(A LAY T A s [T D e — A(AZA") " Re, e . A'(A LA 1A
nrz(n -xye Wn-k-D ;';2' ‘ 1= : ‘
>0 if i=j

note: e, = '_i_th column of lk'
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4, EX‘ANTE EXPECTED UTILITY FROM PCE ESTIMATORS

Tovsummarize the results so far, we have considered ‘the éffect of estima-
"tlon risk on the stat15t1ca1 properties of the commonly used PCE approach to.
estlmatlng optlmal mean-variance decisions. With returns follow1ng a multl-
- variate normal Ny(y, I) and u and I unknown,;fhé,deciSion vector g_obtained’i
using sample‘estimates is biased aS»éﬁ estimator of the unkhoﬁn'opfimum l*; |
A'It'élsb has greater variation than the unbiased vector we derived, 'I,imaking‘ h
'the latter an improved rule for mean-variance dec151ons in terms of est1mat1ng
&f; of nece551ty, both EU(wIE) and EU(nlz) are less than EU(w|e*) so estimation
risk must reduce average (ex ante) welfare. '_ | ‘, |
Ituls possible to show that &.domlnates &_in’térms}Of‘eXVante éxpeéted
‘ utiiit&il To see this, consider thé certainty equivalent assbciated with each
ééfiméféf of &,3 For the case of multivariate normal returns and a negativé

eXponential utility function, the certainty}equivalent is

- ._-',’:CEﬁ_L) = El4'y - -lz r4'24]
with knowiédge of H;ahd i. This reduces to

-

| CE(!L*) 9.*'3 zrm*'m*

Con51der now the certalnty equ1valent assoc1ated w1th the unblased

dec151on vector, m.

~ CE(R) = Elg'y - % rs'zx]

' =.£*'H - %- r-e E‘ltri'ﬁi]:, .,



EZO?.

&*'H -‘%- T ' trm(ﬁ’)

Ry - 21- r e _trz[V(i) + Qruxt]

S N R

CE* - 7 r tr[IV(R)] < CE».

"Iv"hé ‘inéqua}ity hoids because tr[zv(X)] > 0, which can be éroven using thi‘s fact:

for A posit;iVe semidefinite (PS‘D) ‘and P _nbnsingular, P'AP is PSD. ‘Wrivvte Z as Pp!
and note that tr_(PP'V('Z)] = tr[P'V(I)P].[ The latter term is f:h’e sum of nonzero
le»igénvéiues _which are all positive since the matfix is PSD.

' A
Now consider using the biased estimator, &:
oB@ k[ iu-dnn]

| N AL A
. Recall that E(%) = 4* + b, where b denotes Bias (£). Thus,

© o CB(D = st v [Bias(W)]'w - 4 r erz(va) + E(R) B(R)']

o= b'e- 2oVl - 3 roerE(R) B

a4 b - Droerv@@) - & roerzlen « b1 x4 b)Y

BA' + by - 31 V) - 3 rles + bl e + b

CE* + b'u - 21 trIv(e) - 3 rbrgb - 3 1« 2brzar.
It is easy to see that

b'u = bt
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“using earlier results. Thus, CE(%) becomes
' -‘ s 1ot 1, B
. CE(x) = CE* - 5 r trlzv(4)] - 5 rb'Ib.
‘The certainty equivalent associated with £ is less than that associated with
‘ﬁg,,Sihce‘the last two terms are negative;' | | ‘
- It is also the cése'that
tr{zv(w)] > trizv(e)]
: A ~ : _ :
since V(&) - V(&) was shown earlier to be positive semidefinite. Hence
CE(x) < CE(2).
Tnus,ithe commonly used PCE estimator Q_is biased, inefficient, and leads to
" a lower expected utility than does the unbiased estimator. |
5. EXAMPLES FROM FINANCE AND AGRICULTURAL LAND ALLOCATION
v,Td illgStrate the importance of these findings, we performed some calcula-
tions using our results and parameters from published papers in agricultural
"économiﬁs,and finance. We proceed as follows. Assume that the’repotted sam-
- ple estimates of the mean vector and covariance matrix are in fact the populaf

tion parameters of the joint normal distribution of returns to various

enterprises‘(inveStments). Using results from section three of this paper,‘We

 calculate the mean, variance, and certainty equivalent of the PCE estimator as

" well as the mean (also équal to the true optimum‘&f), variance, and cer-. .
tainty equivalent of the unbiased estimator. We repeat this proéess for sev-
eral levels of risk aversion and varying sample sizes for each example.

‘Results are presented in Tables 2 and 3.
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TABLE 2

Effects of Risk Aversion and Sample S1ze on Rellab111ty of PCE Estimates
_ of Land Allocation and on Certainty Equ1va1ents

Expected values of PCE allocations and certa1nty equivalents ‘

Acres in
~Carrots Celery ‘Cucumbers Peppers CE
—  r-0.002024 »
6  68.14 28.33  88.29 15.24  -474.63
o (20.25) (7.37) (20.43) . (8.80) - :
30, 68.61  28.27  88.24  14.89  27854.15
| (6.72) (2.45) (6.78) (zon)
100 68.65  28.26 88.23  14.86  30372.70
' (3.54) (1.29)  (3.58) (1.54) )
Optimal decision  68.66 ~  28.26  88.23 14.85  31343.34
— ; T = 0.00029
6  56.18 30.00 89.67  24.16  50680.40
o (32.89) (11.34) (31.17) (15.87) %
30 60.90 29.34 89.13 20.64  59642.12
,' ' (8.64) (3.10) (8.56) (3.89) .
100 61.32  29.28  89.08 20.32 60078.62
N ’ (4.50) (1.62)  (4.47) (2.02) o
Optimal decision  61.49- 29.26  89.06--  20.20  60238.95
s T . — = 0.0000355 ——
6 -39.00 43.24 100.67 95.10 16203.81 -
o (213.77)  (71.2)  (1%.3)  (108.75)
30 o 0.44 37.87 96.21  66.36 67296.04
(45.17) - (15.77)  (43.43)  (21.33) R
100 ©3.04  37.39  95.81 63.76 68866.00
| o - (23.08) (8.09)  (22.29)  (10.82) v o
Optimal decision 4.38 37.20 195.65  62.76 69407.08

Note:‘ Figures in parentheses are standard deviations of PCE est1mators of land
allocation. : :
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TABLE 3

Effects of Risk Aversion and Sample Size on Reliability of PCE
Estimates of Stock Portfolio Allocation and on Certainty Equivalent

Expected values of PCE allocations and’certalnty egulvalents '

Dollars in
= _ New York ’
Sample size Chrysler Shipping Bulova CE
- v T = 0.0001
6 2242.00 480.00 7277.00 |
(14723) (11113) (15167) -3013.00
(11942) (9005) (12294) -1573.00
30 2346.00 1249.00 6405.00 .
(4676) (3477) (4768) 742.00
(4526) (3365) (4615) 768.00
100 2358.00 1341.00 6301.00
(2467) (1831) (2512) 1039.00
| (2444) (1814) - (2489) - 1041.00
Optimal decision 2363.00 1377.00 6259.00 1153.00
r = 0.00001 _
6 -3206.00 -39882.00 53088.00
(143576) (108573) (148092) -35735.00
(114877) (86870) (118490) -21333.00.
30 -2168.00 -32194.00 44362.00
(45107) (33595) (46043) 151.00 .
(43553) (32438) (44456) 414.00
100 -2045.00 -31279.00 43323.00 :
(23770) (17675) (24236) - 2923.00
(23530) (17496) (23992) 2944.00
Optimal decision -1995.00 -30913.00 42908.00 3984.00
=0.000001
6 -57689.00 -443507.00 511196.00 |
(1435387)  (1085474) (1480557) -368202.00
(1148311) (868380) (1184447) -224182.00
30 -47311.00 -366626.00 423937.00 '
(450899) (335834) (460262) -9505.00
(435351) (324254) (444391) -6876.00
100 -46076.00 - -357473.00 413549.00 | .
(237612) (176683) (242272) 18188.00
_ (235212) ~ (174898) (239825) 18404.00
Optimal decision -45581.00 -353812.00 409394.00

28795.00

Note: Figures in parentheses are standard deviations of estimates of optimal-

allocations.

For each level of risk aversion and sample size, the

first figures in parentheses are the standard deviations of the PCE
estimators and the second line of figures in parentheses are the

standard dev1at10ns of the unblased estimators.
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"~

The f1rst example uses data from Hazell's (1971) article 1ntroduc1ng M1n14:j.,"

}‘?m1zat10n of Total Absolute Deviations (MOTAD) The example he uses is the
| allocat1on of 200 acres ‘of land among four vegetable crops (carrots, celery,

. cueumbers, and peppers) with sample moments

13

Bel23 w3 284 516]"
and |
[[ 11264  -20s48 1424 -15627
20548 125145 -27305 29297
1424 -27305 10585  -10984 |.

- =15627 29297 -10984 93652

We consider three levels of r (.002924, .00029, .0000355) and three sample

' sizes (6, 30, and 100). The range of risk attitudes can be characterized as

extreme to moderate for the gamble under con51derat10n.. This range was chosen**‘

for a purely pract1ca1 con51derat1on--at lower levels of risk aver51on, the
‘solution is not an interior one, but the derivations in this paper only apply o

to 1nter10r solutlons. Nonlnterlor solutions involve either truncations or

2

'negat1ve allocations to some crops; the latter are, of course, impossible. .. . .

=
Results are.reported in Table 2. In the context of this example,.it is .

intereStiné,to note that the sample size used in the original article was six.

" The second example is based on the experiment perforﬁed by‘Frankfurter

etfal.‘(1971). They examined the effect of estimation risk en effieient port- - o

~ folios of $10,000 using three assets (securities of Chrysler, New York Ship-
' ping, and Bulova) with returns and variance of returns per dollar invested

given by

0= (.1664  .0664 .2135)"
and | |

A | .21001 . -,0115 - .1115

I= |-.0115 .1664 -.0037 |.

<1115 - -.0037 .2223 |
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- ~'Unlike the case of land allocation, negative allocations are reasonable and;”"*

" constitute short sales, which we assume are costlessly made. For this ex-

’?ample, we use the same sample sizes but allow the measure of absolute risk -

v?:aver51on to take'the values (.0001,'.00001, and .000001). Results are
;. »presented in Table 3.

| The reader should note that T, the measure of absolute risk avers1on, can-b
hot be chosen arbitrarily by the researcher. Ideally, the 1nd1v1dual decision-
’maker would be able to provide information about his risk prefefences. More- '
‘likely, the researcher will,have other indieatiohs about the appropriate risk‘d
attltudes for the decision-maker (or group of decision-makers). For example,
'_Blohe (1980) arguesythat’the appropriate measure of relative risk aversion in |
'ﬁ;“S; financial markets appears to be about 2. This would imply r = 3*10 -5
' for tﬁeﬁland allocation example or r '5'2*10-4 for the stock portfolio ex-
ample. If thls characterization is 1ndeed approprlate, our examples illus-
trate the degree to which recommendatlons based on the PCE estimators of
opt1mal portfolio allocations should be hedged given limited historical data.%
| Consider, for instance, the land allocation example and a decision-maker withn-
"rv=-0.0b00355. Even~wlth,30 observations, for the crop with the hlghest~mean‘v
'tetufﬁ; the ratio of the expected amouﬁt‘of land to be allocated to its |
Standafd‘deviation is 3.11. For the stock portfolio example, with r = 0.0001,
the same ratio is only 1.34. Thus, a large interval of possible decisions

cannot be excluded from consideration on the basis of the PCE estimator.
7. SUMMARY AND CONCLUSIONS

“ In this paper we have developed expressions for the sampling properties of
the»widely used PCE estimator of’optimal portfolio allocation under uncer-

tainty. Since it‘ignores an important source of uncertainty, that due to
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5.unknown parameters in the distribution of returns from risky investment oppor?
';tun1t1es, the sampling properties of the PCE estimator--especially with small -
vsample sizes--can be quite poor. We have demonstrated that the PCE estimator
'1s, 1ndeed biased and inefficient and have suggested an unb1ased alternat1ve

’;wtth a lower variance.

hAnothefvimportant result in this paper is the distinction between the ex-

‘pected utility from allocating ones's portfolio according to the true optimum

decision vector and the expected utility of using an estimator of that

- vector-#thé latter being necessarily less than the former. However, we showed
‘that thexdifference is less for the unbiased alternative than for the PCE

dec151on vector.

Although the results in this paper strictly apply to the commonly assumed B

but,Spec1al_case of normally distributed investment returns and negative ex-

~ponential utility, several points are of general concern. First, uncertainty .

about the nature of the distribution of returns, including uncertainty- about

the true pdpulation parameters of that distribution; is-an-important source of

"?fuﬁeeftaiht§ above and beyond any Tisk recognized im the-data. -The presence of -

‘v this uncertainty makes the optimal decision vector random and, therefore, sug-

.

» gestshthat53ny prescriptions‘made'shouid include some acknowledgment of this

uncertainty such as confidence intervals or standard deviations of the esti-

mates. To d0'otherwiSe~implies greater eertainty as. to the proper course of

aCth'n ‘than is actually pOSSible-

A second point of general interest is the implication of this research for

generating iﬁformation on the statistical behavior of returns from risky acti-

 vities. Our expression for V(1) suggests that researchers can determine the
~value of collecting more information to lower the uncertainty of estimates of

' optimal-behavior. It would be worthwhile to use these results to develop
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better'estimates of optimal behavior. At a minimum, they show that, in manyv;
5;-cases; it will be impértant‘to'réport results as interval estimates, rather

- than treating as certain what are in fact only estimates of optimal behavior. -
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APPENDI X
- | (n- 1)1 aw:
A.l. Verification of the inverse of . ‘
e’ . iy,
I, must equal
| -v ' -1 17 o : : _
(n-1)"" AW! 9 | -AW'e, |
' (n - 1) A'(AW'A') Lyr—=1|*0ie)
S | I o
- k' o - . | '
- ar
-1 : : ! :
(n - l) AW -1 I -1
(n- 1) A"(AW'A") "I, ) + Q. -A'(AW'A") "AW'e, + e |
i L 1 .
L k! o
“which is of the form _ i
A AC AD
k-1 k C pl= [k1 k1 k-1 1
B | |kk1 k1 BC BD
1k L1 k-1 1 1]

* For the product to equal I, we must find that AC = I, ,, BD = 1,

BC = 0* [of dimension 1 x'(k --1)], and AD = 0 [of dimension (k -"1) x 1]. = =& =i

-

-1

R ]
AC -;(n -1)7 (- 1) AWAT(AW'AD T T, = L
= A Y a1 ayve
'BDv 1k[A(AWA) AWel-u-el]
=i e - i A'(AW'A")L AW
S °1

= 1.

- The term in BD involving i A' vanishes since the rows of A (columns of A')

’e_'ach sum to 1. This also holds for BC making that product 0'.
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~ Finally,

(n - 1)1 awr -aravvrany ! AWle + e

]

“tn- 1 awarawary awre, « (n - 1) awre, = 0.
1 1 “Q.E.D.

'A.2. Derivation of a and u.

E[AW'e

ELAW), ] | = EAVI(AV)'g + ul}

E[AW'A'a + AVu]

A E(W') A'a + 0.

since B(W') = E(z P_ 2') = (n - 1) Z, E(AW,,) = E(AW'e;) = Al(n - 1) £] e, =
(n-1) Az,l, where Z-l is the first column of I. Therefore, a must solve
(n-1)AZ,; =Al(n - 1) 2] A'a
or
= 1y-1
a= (AZIA') © AL,

10

This defines the linear combination of the columns of (AV)' that separates
V'e1 into two parts, one indépendent of AV.

\ .The desired result, E(AVu) = 0, is obtained:
! V'A?
y; = Vlo - V g

= V(e - A'g)
and

E(AVu) = E[AW'(e; - A'a)]
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E(AW'e ) - E(AW'A'a)

(n- 1) AL, - AE(W') A" (AA)™D Az )
s-DAL - (-1 AR @)l

=(n-1) Azfl -(n-1) AL, =0.

v A3 -Independence of V and Zip:

We_ have

2P 2'=ZUDU' 2' = W'

since Pn is’Aof rank n - 1 and has eigenvalues 0 or 1. D can be taken to be

~ the matrix
In-l ‘ -0-
o o/
Hence,

L .:.. n-1
=¥ ZUA=2U
SRR 9!

so that
n-1
V..= I 2Z.

U | -"o »
1) p=1" ip pJ
A typical element of Zin, the kth one, is

n
L 2.
=1 ke
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- We now show indépendence of typical elements of V and Zip:

s G- Lo g
ELV..* (Zi ), J=El 2 ¥ Z. U .1
;J =n’k p=1 4=1 ip 'pj k&
n-1  ]
= I U.: ElZ. 12
p=1 PJ 7ip kp
n-1
= I U_.Z.
 pel pj “ik
(since ElZip Zkzl = 0 unless p = &)
n-1
=L, 2 U_..
ik p=1 PJ
- Now, sincelié Ph =_Q',}we are guaranteed that Eg;i Upj = 0:
' ' In'l 2
0'=i P =i UDU'=i U u'
' In-l 9;)
=i U
-1 9| 0
n-1 '
=>, 5 U.=0 for all j=1, 2, ..., n - 1.
Elzzz, U A .22 1=Ez2zz2Z, U_A_.-*2Z ]
L il “4p P) n kn 2 pn i “4p ‘pg kn

E[f ; Zig Ui (0 unless p = j) » 2 _1I.

Now, unless 4 = n, then E(Ziz an) = 0, by timewise independénce. Hence,

we obtain
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BLVyj = (Zighd = BLZ 23, Up; 2]

 The inner product of i and any characteristic vector of P , such as
‘u., must be 0, which gives the desired result. Every element in V and in
Zin is normally distributed; we have now shown that every element in V has a

zero correlation with every element in Zin, implying independence.

A.4. Expectations Involving Zip and u.
A‘firét step in simplifying is to evaluate EZ(Zini;Z'). Consider a

‘typical element, the i,jth one; its expectation is

“which is the expectation of the ith row sum in Z times the jth row sum in Z.

~ The flrst term is the sum of observat1ons through time on the random variable -

-

1’ whlch s the 1th return x minus its mean My The second term is -

" the sum ofiobservat1ons through time on Zj.
_FOI,ahy i,j combination, there are n terms in the product of these sums
with expectations equal to the i,jth element of I, the rest vanish by time-

wise independence. Hence, the term above has expectation n Zij’ and

[

; blZl 1 'l =n 2.

Of course, E(Zip) = 0. When E(Ziy) appears alone, it vanishes.

We also need E(uu'). Recall that

u=Vie -A'a]



 fand'fhét‘V cah'be'wriftén as
V=2UA
'?where_v iskx(n-1) and A = 1.

.. Then

~ E(uu') B[_V'(el - A?a)‘(el - A'a)' VJ

E[A' U Z'(e1 - A'a) (e; - A'Q)' ZU Al

A' U E(2'(e, - A'a) (e) - A'Q)' Z] U A

Consider any expectation of the form
E[z'b b'Z].

The expectat1on of a typlcal ‘element i,j is the expectatlon of the 1th

element in the column vector Z'b times the jth element in the row vector b'Z.

Elztb b'Z]i 57 EBG 2y bﬁ) (ﬁ b Ly
et m .

E{ZZ b b
[m k. “k 1m kJ]

=LzLb Mz J.

ok m im kJ

" Here, i and J denote sample perlods while m and k denote partlcular 1nvestment
,Qpportunltles or land uses. Unless i = s the z terms arevlndependent by

‘timewise independence, hence, we obtain
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f] ibm by * ‘z-mk.
and
 Elz'bbz]=btzb I

Thus, | o |

~E(w') = A" U E[2'(ep - A'a) (g A'9)' 2] UA
= U (él'-kAfg)' Z(ey-A'a) UA

v ' | ' ._'1‘ ‘ v -1
= A' U'le; ey - ey ZA(AA') T AL, - I A'(AIA') 7 AZey
vz, Arasay ! azarcasa) Azl ua

- A;FU'[le‘; z:l A!(AzA')'lvAz,ll U A
=ﬁuF2hAWMNTIMd]-NU'UA

v . -lv ' ’
[2); - 2oy ATCRRATT D AZ, - A7 AL

o Siﬁée,ﬁ'”ﬂ = In-1§ we obtain the diagonal matrix EE*'inil""here-a_:a;v::gf,Lz;, .

A.5. Simplification of V(%).
Note that the matrix
A[HH""lz] Al
. &

is positive definite and so can be expressed as c C' where C is full rank and

;blower‘tfiangulaf.  Now let S = Cfl T.  A}serie$ of manipulations using these =
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matrices is necessary to simplify the expectation which remains in the expres-

sion for the variance matrix for x:

. - B 1 -
hw A'WA(H{H'.'PBZ)A WA‘

=B [ATWCCWA]

1 .'

g™ - srm cota ™ - BT T A

=AY ETP{c clrrycter?t- el o c'-]‘1E C C'J-}] A
{ ' . . L

-1 -E(ss) ¢t

- RUCEDIEE- CED N RCEDY

: i A' C'- 1

Now, the matrix S = clr- C'l A V has dimension (k - 1) x (k - 1); further-
~ more, S S' follows the Wishart distribution because (T T') does so. It has an

_expectation given by
3. QY -1 ' et N 4 -1 ' "v"l = o
E(SS')=C "E(TT')C =(n-1)C AZA c' —(nfl)}:s._-
To evaluate the expectation

BRGSO -Es s s s - Bs so7ly,

we use a result due to Shaman (1980):
B " -1 2;1@ Z;l +(n-K"1 (vec 2;1) (vec z;l)' ,V

provided that n > k + 1.

- Suppose we are interested in the i, jth element in our expectation.

E{ [('ss')','1 - E(SS')-I} [(ss,')'l - E(SS')'IMi,J-
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EEEER o PR -1 . -’1] }
-EE{ {(SS') E(SS') ]i.ll:(SSf)' "E(SS') TR
The expectatlons in that sum can be found by maklng use of Shaman s result. o
»Note ‘that the vec of (SS') “1isa (k - 1)2 x1 vector, mak1ng the variance

)'1 can be found»1h

Vmatrlx (k - 1)2 x (k - )2. The elements il and LJ of (SS'
| that vector as elements i+ (2 -1) (k -1) and & + (j - 1) (k -1), respectlvely. ’
To f1nd the expected value of their product then, we find element i + (& - 1)

: (k - 1), v+ (j-1) (k - 1) in Shaman s expre531on. That element involves the L

scalar-[(n<- k+1) (n- k) (n-k-1T 1, the approprlate element of Zsl X
gl, and the correspondlng element from (n - k) -1 (vec' ZS ) (vec ZS}) Re-

call that the Kronecker product of a (k - 1) X (k - 1) matrix with itself pro-
Aduces a (k - 1)% x (k - 1)% matrix in which the 1‘lth block here will be :
ZS ij EI; If we f1nd rowi+ (&-1) (k- 1), we are in row i of the
xth row of blocks; moving over to column l.f (j - 1) (k - 1) means we are in -
'COiumn L of the jth column of blocks. Thus,vsince'wetare in‘biock-rowvz,_

block-column j, we obtain (LS ) That'element is multiplied by Zél to

‘hat %, jth- block but we are 1nterested only in the i,4th element, so

'3”'«'(%)-;,- (.

' from the Kronecker product.

_( By s1m11ar operatlons, extractlng that element from vec ESI times its
transpose produces (L )1 from the vec and (ZS )lj from its transpose.

Hence, our expectatlon is

[(h-k+1) -k (n-k-D] [(z 4505 + (- 07haghy ) ),LJ]
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and it simplifies to

()()

(n-k-l)(n-k)

which, when summed over &, yields the i,jth element of

-1 -1
‘ S S .
(n-k-1) (n-k)?

i 0 2

'This characterizes every element of

£ {1(ss1)™2 - Biss) ™) [(ss)™! - Bss

so that we can rewrite the first term in our expression for V(%) as follows:

‘(n'];'l>A'C"1- S _°S ZC'IA
( - k) |

n-k-1) (n
by substituting Shaman's result. Now, replace Z;l by the inverse of C'1 A £ A' ¢'”1;
e\ | R 110 Ly C11-1
(“ L. L — A C'l[ClAZA'C' 1] [clAzA'c'lJ cta
(n-k-1)(n-k) _
= - - 2 - . - -
(" k 1) L s ()t e e (amn)la
, = (n-k-1) (n-k) .
n-k-1Y 1 -1 1 -1,
= A'(AZA') 7 o A(up' + = Z) A'(AZA') T A.
( d ).m-kfllm-kﬂ | n
2 . | | .
n-k-1 ! -1 -1
= = A'(AZA') " App'A'(AZA') T A
<: T j) (n-k-1) (n- Kk)* - Bk .
+<n X 1> 1 > araa) L (!
(n-k-1) (n-k) B
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o 2 S : . ,
L= - ~ Al AZA') A 'A'(AZA') T A
( T ) (n-k-l) (n-k)2 « e

J_(n—k-l) 1 A,_(Am,)-lA._,
: : T n (n - k - l) (n - k) >  RS

~If we combine ouraterms; Weffind.that o

A'(AzA') IABH' A(A T AT

2A'(A zanla

. B SR ‘n n(n -k - 1) (n - k)
T\Aa-k-1° nr2
‘:"" (- k-1) . L2 1' . ..11 -

LT
-

or

TE. '§: .

yla
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FOOTNOTES

- ZlFama (1965) and others have demenstrated that this c0ndition iseoverly
':_frestfictive. Returns must be drawn from a probablllty d1str1but1on belonglngl_'
to a "locatlon-scale" famlly | |
2The use of the negat1ve exponent1a1 ut111ty funct1on 51mp11f1es the :
der;vatlons.wh1ch follow, and~they hold, strlctly speaking, only for that
’ ﬁtility function. However, the qualitative results we establish concerning
the;problem of estimation risk are likely to carry over to other sets of fiek
attitudes. Analytlc results for those utility functlons w111 be compllcated
by the fact that the ArrowbPratt measure of absolute r1sk aver51on, T, w111
© itself become random since it dependS»on,expected end-of-period wealth. The
_.widely used negative exponential utiiity function iS copvenient since r is
_ constant for all levels of expected wealth |
3Recall that expected utility and the certalnty equ1valent are related '

mpnoton1cally-—max1m121ng one is, therefore, equ1va1ent to maximizing the

other.
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