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ABSTRACT 

The widely used mean-variance approach to decisions under uncertainty 

requires estimates df the parameters of the j?int distribution of returns. 

When optimal behavior is determined using estimates, rather than the true 

values, the decision is a random variable. 

We examine the usefulness of mean-variance analysis by deriving the bias 

and variance-covariance matrix for the decision.vector. The latter shows that 

decisions based on estimated parameters can have a large variance around the 

true optimum. The results show that optimal decisions can differ substan­

tially from those based on mean-variance analysis. 



THE MEAN AND VARIANCE OF THE MEAN~VARIANCE DECISION RULE 

1. INTRODUCTION 

Since Markowitz examined the portfolio diversification problem using mean­

varlii.rite analysis, this method has been used extensively to model choices frol1l 

investment alternatives with uncertain returns. In addition, the technique 

has been applied to a wide variety of econoi:nic decisions--examples include 

hedging (Berck (1981)); adoption of new technologies (Just and Zilberrnan 

(1983)); corporate financial decisions (Rubinstein (1973}); the demand for 

money (Tobin (1958)); and the allocation of fixed assets to uncertain produc­

tion processes, particularly agricultural land allocation (Freund (1956)). 

The mean-variance approach is consistent with the widely accepted von· 

Neumarin:_Morgenstern expected utility paradigmwhen either utility is quadratic 

of utility is negative exponential and the returns from the relevant alterna­

tives are jointly normally distributed. 1 Since quadratic utility implies 

increasing absolute risk aversion, it is the latter which usually serves as 

the justification for mean-variance analysis. However, the method requires a 

vector of means and an associated variance-covariance matrix for the joint 

distribution of returns.from the'uncertainprospects being considered; these 

are almost always unknown to the decision-maker (Markowitz (1952), p. 91). 

Thus, the unknown parameters must be estimated using sample or other informa­

tion, making the optimal decision vector random. Commonly, sample estimates· 

replace population parameters and allocations are based on the resulting esti­

mate of optimal behavior •. For obvious reasons, this approach has become known. 

as the parameter certainty equivalent (PCE) (e.g., Bawa, Brown, and Klein 
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0979}) or "plug-in" approach {Pope and Ziemer (1984)). This estimation pro­

cedure leads to an additional source of uncertainty, estimation risk, that 

itself is the subject.of a considerable body of litera,ture. 

· ln the context of the portfolio choice problem, this literature includes 

examinations of a broad range of problems and is well SlUTlmarized in Bawa, 

Brown, and.Klein {1979). Discussions of estimation risk in the financial 

economics literature have focused on :Monte Carlo simulations of its importance 

. for individual investors (Frankfurter, Phillips, and Seagle (1971), Brown 

0979)); for financial market equilibrium (~wa and Brown (1979), Alexander 

and Resnick (1985)); arid on the derivation of optimal (Bayesian) estimators in 

the presence of estimation risk (Klein and Bawa (1979a, b)). Despite this 

attention to the problem, no one has established the sampling properties of 

, the widely ... used .mean-variance estimators of optimal behavior. 

Tn this paper. we examine the implications of estimation risk for the use­

fulness of .mean ... variance analysis by exploring the sampling properties of the 

mean-variance decision vector. In doirig so, we consider a number of factors.· 

imp6rtarit to determining optimal behavior and drawing inferences. from mean­

variariee analysis. We show first that the decision vector is a biased but 
.. . .· . 

consistent.,~estimator of the choices which maximize expected utility, given 

knowledge of the· l)nknown parameters. An unbiased decision vector is easily 

obtained from this result. We then derive a variance"."covariance matrix for 

both ·decision vectors, finding that there may be an unacceptably large amount . 
. ' . . . 

of variation ln es~imates of the optimal decision. We explore.the.factors 

.thatdetennine;, the reliability of such .estimates of expected utility maximiz­

ing behaviot· nnd then derive the ex ante expected utility fr~n'l using such. 

estimators. From the derivations, it is clear that the bias and variance in 

11 " <>Pt.haal \\11;,°'\' ision depend on the risk a~titudes of the decision-maker, the 
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.J1umbe·r of prospects, the amount of historical information available, the 

underlying distribution, and the total amount of fixed resources to be allo-
. . . 

cated. Finally, we exi'imine how one might use these results to move from a 

point estimate of optimal behavior toward interval estimation. 

'the paper proceeds as follows. The next section outlines the portfolio 

choice problem and a particular case which leads to the widely used linear (in 

mean and variance) objective function. We use the expected utility moment­

generating fl.Dlction approach suggested by Freund (1956) and Hammond (1974) and 

reformulate the problem to recognize explicitly the estimation of unknown 

parameters.which is involved. In the third section, we derive the mean, bias, 

and variance of the parameter certainty equivalent estimator of the optimal 

decision vector and suggest an unbiased estimator. We also discuss the fac­

tors that determine the magnitude of bias and variance in this section. Sec­

tion four contains expressions for the expected utility of the decision-maker 

in using each of these estimators. In section five, we demonstrate the impor­

tance of recognizing estimation risk for some simple portfolio allocation 

problems which have appeared in the finance and agricultural economics litera­

ture. The last section contains a summary and conclusions about the . implica­

tions of estimation risk for both positive and normative analyses using 

mean.;variance analysis. 

2. THE MOIJEL AND ESTIMATION PROBLEM 

In single-period portfolio choice problems, the decision-maker must allo­

catea fixed resource, ~uch as land or wealth, among risky investment alterna­

tives to maximize the expected utility from end-of~period wealth. The problem 

~anbe formulated as 
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where EU(•) denotes the expected value of the decision-maker's utility func-

. tion;· W0 is initial .wealth; y is a vector of choices from the set of alter-

-ncitives, c0 ; l! denotes the random vector of returns; and i is a vector of 

ones. The elements iny are the shares of W0 allocated to each alternative 

-in the vector R. 

Equivalently~ the problem can be expressed as 

-max EU(R.'n) 
J(,£C --

subject to 

.t' i = w 
-- 0 

and 

. n ~ i + R. - . -

Unde:r a set of quite restrictive but frequently imposed assumptions, the above 
. ·: ' .· 

problems reduce to the maximization of an objective function which is linear 

in the mean and variance of portfolio returns. Possibilities include quadra:­

tic utility or the combination of normal returns and a utility function of the 

neg~tive exponential form •. Below, we develop the solution for the latter case 

·by applying mean-·variance analysis to the land· allocation problem that origi­

nated with Freund (1956) and has been expanded upon in recent papers by 

Collende:r and Zilberman (1985) and Collender and Chalfant ll986l. 2 
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2.1. The Land Allocation Decision 

The decision-maker's problem is to allocate L acres of land to k crops, 

· where returns per acre x are distributed as Nk(j!, l:). · We assume that the decision­

Ma.ker maximizes the expected value of an exponential utility ftmction 

U(n) = -exp(-rn) 

· whe,re r is the Arrow-Pratt measure of risk aversion and n denotes profits: .· 

k 
n = E JI.. x1., . 1 1 ],= 

.and .11,i is the acreage planted to crop i. We assume that per.:. acre returns 

·are.net of production costs, and we treat the technologies as predetermined 

ibid' consider only the. acreage decision.· 

The first-order conditions for maximizing expected utility involve the 

derivatives of the monient-generating function, M, of the random vector ! with 

respect to each ti = 
to be 

-r R. •• 
1 

They are shown by Collender and Zilberman (1985) 

M1 M .. 
== 1, . .i = 2, •••• , k. 

MM 

These conditions are then equivalent to 

-1 . ·. 
· M A VM = O, 

VM being the k-vector of derivatives of M and A being a (k - 1) x k matrix of 

the form 



I 

-6-

[
i ; -I ] 

A = . "-- ; k-1 

where i is used throughout the paper to denote a vector of ones. For a multi­

variate normal moment-generating function with t = -r .ii., this condition 

givesus , 

or 

M-l A • Ml~ - r l: R.] = 0 

1 
Al:R.=rA.B.. 

Note that A 1: is not a square matrix so it cannot be inverted to solve for 

·t. It is only (k - 1) x k, and we need one more restriction on!' so we add 

that the farm size is L: 

' ,4 ! = L. 

Then, the ·system of k restrictions on i for maximization of expected utility can 

be solved; once estimates of µ and l: are available: 
... : -

where i; estimates i: and·.~ estimates ~· 

2.2. The Estimation Problem 

If the true population parameters were known, then.! would be the optimal 

decision (hereafter 1*) in the sense of maximizing expected utility. Estima­

tion risk exists when parameter estimates must be used in place of population 

parameters. 
/\ 

call it )(, .. 

The result is that the solution &. is only an estimate of &,*, 
/\ 

The decision will be suboptimal if 1 differs from l* in the sense 
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/\. I\ 
that EU(nli) < EU(nlf*). Furthermore, 1 is random (as it is a function of past 

realizations of returns) 
/\. A 

through~ and l:. Its sampling behavior is critical for 

evaluating its use as a substitute for .ll*. In this section we formalize the 
/\. 

random nature of .ll. 

We asswne that data are available on the k different returns per acre ob­

served over n periods and are collected in a k x n matrix X. Column t of X is 

a draw, at time t, from Nk(µ, E), and we asstnne timewise independence in these 

draws. Our estimates ~ and £ are obtained from 

and 

,. 1 . 
u = - x 1 .c. n -n 

... 

.E = 

I 

If we let Z = X - J! in be deviations from population means so that the columns 

of Z, z.i are independent draws from Nk(O, E), we can then write 

,. 1 
J:!. = n ZJ.n + J:!.· 

Also, our estimator for the variance matrix, E, can be expressed as 

,. -1 ... ' ... ' ' -1 
L = (n - 1) (X - 11 i ) (X - u i ) = (n - 1) X P X' .c. .;;;.n .c. ~ n 

-1 . -1 = (n - 1) Z P Z' = (n - 1) VV 1 . n 

where Pn = I - in(i~ in)-l i~ = I - *in i~ is a symmetric, idempotent matrix 

with rank n - 1 and V is a k x (n - 1) matrix formed by using the eigenvalue-

eigenvector factorizaton of P • 
n 

/\ 
Then, the expression £or .ll becomes 
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..... 
j(, = 

1 . 1 . 
- A(1, + - Z1 ) r · .c. n -n 

L 

The inverse above is shown in the appendix (A.l) to equal the partitioned 

· .. expression 

A'[AVV'A' r l (n - 1) [1k-l ! -(n - 1)-l AVV'e1} + [ 2 i ~lJ 
: wh~re the Q_ matrix is k x (k - I) and e1 denotes the first elementary vector · 

• of length k. 

. " The solution vector, 1, can therefore be written as 

... J [A, (AW'A' >-1 Cn - 1) + R :-A' (AVV'A' >-1 Aw·~1 + ~11\rf "(!!. + ~ z!n)l 
~ l . I . .· . . . Jf kL L . ~ 

J(, = 

or, upon multiplication, 

· - ~ ~ A'(AW1A1 )""1 • Ii - 1 ·A(11 + l Zi ) +Le - LA'(AW'A'·).· -l AW'e r .c. n ~ -1 · . · · -I· 

It simJ>lifies later results if the first column of V', V'~l' is sep­

arated, int,p two parts, one orthogonal to AV. We write T =AV and note that 

AW'A' = TT': 

The first part is a linear combination of the colU1IU1s of T', the second a 

normally distributed random vector, u; which has a zero expectation. This 
.. . .· - . 

vector _!! is independent of the elements of T and, to make this true, we set 

(A. \'A I ) .:..1 A " • f!. = .. ""' w 1 
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. ··. where L;, 1 denotes thefirst column of t. This result is shown in the 

~ppendix (A.2) •. •·· 

· We t.an express Q ,in terms of ~ and .!! l:>Y making use 0£ this equal~ty: 

f(V 1e ·) • TV ' = T[.T'a + uJ· . l . ·1· . - ..... 

= TT'a + Tu. · 

This gives us· 

._i = A'(TI')"" 1 n -. l A(u + .! Zi) +Le' - LA 1 (rr 1 r·1 {TT' a+ Tu} r . J;;. n -=n. -1 . . . - -

.· . . .. · 

3. SAMPLING PROPERTIES OF lliE. MEAN .. VARIANCE DECISION VEGI'OR .· 
. : . . . . . . 

. ·... . . .. . . . A 
We are now ready to derive the mean and variance of.&,, t~ mean-variance •· 

decision· vector for the PCE case. Before proceeding, however, we note some 

.·· key independence results which simplify the derivations which follow. First, 
. . . . . . 

. T .; AV and u are independent by construction •. It. is also the case that Zi 
· .. ·' .. - .· .... ~ 

.· ·. and v are independent' .as shown in the ~ppendix (A. 3J. Finally, since 

u = V'(e - A'(~')"' l AI. } is. a linear combination of elements in V, it · is ... -1 . •l 

alsoiridependent of Zin· 
·. .· ' " ' . . ' 

3~1 •. ·The Mean and Bias· in R. and an Unbiased Alternative · 
. . 
. .. 
c .. · •, . • ·, " .. ·. . . 

The expected value of.,! consists of thtee terms: . 

. ,. .· . 

E(t) = A' .E(TI' r 1 An ; 1 1!. - LA1a + Lz.1• 
' . . 
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. /\ . . 
· · The terms in our expression for !'.._which involve ~and Z!n each have zero 

expectations because those terms do; independence of T from each of them lets 

us .take expectations of. (TI')-l over T and the expectations of u and Z.!n 

se1>arately •. Note that (IT')·'\, Wishart (ALA', n - 1), which impli_es that 

E(IT'fl=. (AIA')-1· . (ALA')-1 
· . (n - lJ - (k - 1). - .1 = n - k ".' 1 

(Anderson (1984), p. 270) and, upon substitution of this result, 

E(~) = (n- k- lf1 A'(AU 1 )'." 1 An; 1 .l! - LA'a + Le1 

= n ".' 1 . • ! A' (" t'" ' )-1 A u .. LA'"' + Le .· n-k-1 r """"· .c. .... r 

The optimal decisionwhen .l!and l; are known can be shown_ to be. 

JI.Ir = i A I (Ar.A I r 1 . .du + Le - LA' a, 
- r ·~ -1 -

s<> an expr~ssion for the bias can be obtained by subtraction: 

• Bi~s Ci) • E(~) - ~ • [(n ~ ji ~ 1)- l] A'(AI;\')-l A • h· 
. . . . . A . 

The factor (n - l)/(n - k -1) in E(.11,)·is responsible for the bias in!. 

This term is due to the uncertainty about t; with only.!! uncertain, ~ 
A . 

would-be LDtbiased. As .is evident, JI. is asymptotically unbiased, keeping the 

number of alternatives k fixed. Also note that the bias vector, hereafter~, 

must satisfy 

b'i = 0 .· 
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A . . 
since the elements in Jl and x.* both sum to L--.the total amount of land to - - . . . 

be allocated. Thus, some elements in ~ will be biased upward and others 

biased downward •. ·However, the effect of this bias on the portfolio mean and 

·V-ariance is unambiguous • 

' the portfolio mean is ~'µ, for. a given~; the expect~tion over 1, for fixed 

u is .• c) 

.. 
E(Jl'~) = (R.* + b) I .l:! = JI.* '.l:! + .Q '.l:!• 

.Note ·that 

where c is a positive scalar. This expression is norinegative, then, since 

A'(~•r1 A is positive semidefinite. Thus, the portfolio chosen. using 

the PC.6 method will, on average, have a higher mean than the optimal Choice 

An unbiased estimator, !, can be obtained by rescaling ·~ by the offend­

· ing constant: 

By repeating the steps in the Appendix, the inverse above can be shown to dif­

fer fl"Om the previous case only in that (n - k - 1) replaces (n - 1), so that 

the unbiased decision vector is 
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; 3. 2. Sampling Variance of the Decision Vectors 

ln this section, we derive the sampling variance for the unbiased decision 

vector, 't, obtained above. It is easy to adjust the result to find a simi-
,, . ·.· . ·.· .·' .... · " lat expression for !· Our goal is most easily accomplished by finding an 

, 

expression for the characteristic function of the difference between I and 

its expectation. 

-The de~iation of i from E(R.), shown previously to be the same as the 

optimal choice, R.*, can be written as 

+ n - k - l A1 E(TT'rl A Zi - LA' (IT')-1 Tu. 
nr -n 

Again, the matrixT and the vectors!.= Z.!.n and~ are normally1distributed 

with zero expectations. 

We turn now to deriving the characteristic fwiction fort - EC~). In 

doing so, ~e will use some results for ZJn and.!:! established in the appendix 

(A.4). ·. 
-, . ...,. 

-The characteristic function of the random vector 1 - E(i) is given by 

- -
~(!) = E{exp[it(i - E(!))]} 

= Ef xp[i!'f- ~ -l A'[(IT• )-l -E(IT• )-JA?J 
• expr!_'( n -n~ - 1 A' (TT')-1 A!_ )J . 
• exp E. iL'.! 'A . (TT' r1 T~n· 

Observe that, by properties of normal random vectors, 
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l . Elexp(i !'~)] = exp(- -z n !' E ~) 

a.rtd 

........ 

where L is the scalar defined in the appendix (A.4). Then, taking expecta· 

tions over ! and _!:!, we obtain 

~( t) = Ewf xp i !.' ( n - ~ - l A' W Aµ) 

• exp f 1 (n - k - 1)2 t' A' W A E A' l 2 - . nr 

• exp(-1 L z l t' A' W A! )} 

where W = (TT 1 )-l and W = W - E(W). 

One convenient substitution in the above expression involves the term 

WA£ A' W. This can be replaced using the identity 

WA i. A' W =WA i. A' W + n _ R _ 1 W + (n - k - 1)-l E(W) 
or 

WA i. A' W + n _ f _ l W + (n - k - 1)-2 (A E A')-l. 

- -When this is substi~uted into the characteristic function for R. - E(R.), 

the result is 

~(.!) = Ewf"Pf .!' (n - ~ - l) A' w A~expf 1 (n -n: -ll2 
.!'A' w At A' w A.!] 

·• exp.t· 1 (n .. k - 1)2t' A'G .·. 2. wVAt~exp -~. (n - k - ll2 t' A' (At A'rl At~.· I 2 - n - k - 1 - 2 2 - · ( )2 -nr . . nr n - k - 1 
. . 

. . . . 

• exp ( - ~ L 2 ~ t' A' W A! )} ; 
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the middle three e:>cponentials are the result of the substitution. The first 

two terms will remain, but a few substitutions make the last three e:>cponen-. 

tials more convenient. We rearrange until one term involving t' A' W At and 

one involving!.' A'(A L A')-l A!_ are obtained. 

We canwrite 

~(.!) = f,,{exp( it' n - ~ - l A' Vi Ai!.) exp[- i (n -n: -l)z .!'A' ~A EA.' WA.!] 

• exp [- 1 Z(n - k - 1) t' A' w At] exp [- 1 .1 t' A'(A L A'r 1 At] 7 . - - . 7-Z- -nr · nr · 

• exp (- i L2 f !.' A. w At) • exp [ d L z i: !. • A. E(W) A!.] } . 

by simplifying the third and fourth exponentials and multiplying by the last 

one which changes nothing. Combining tenn 5 and the positive part of term 6, 

we obtain 

and the n~gative part in term 6 is 

Hence, the former combines with term 3 above and the latter with term 4; the 

result is 

n-k-lA' 
r 

W A.J:!.) exp [- l (n - k - 1) z t' A' W A 1.: A' W At] .. 2 2 - -nr . · 
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• exp(- i l L2 + l(n ~rk - 1)] !.'A' WA!_) 

• exp [- i (n ~ ( 1 + n~zj .!' A'(AE A')-l A!]}· 
This expression can now be differentiated twice with respect to t. to find 

,.,,..,. ....., """61 ,,..,.,,; ,,...,,,, 

the variance-covariance matrix for!_, E{(!. - E(X,)] [.&_ - E(i)] '}. Since the ex-

- -pected value of [.11, - E(R.)] is zero, the first derivative serves only to obtain 

the second derivative: 

!t·. · .. = E J:xp( •) [i n - . k -ot w le .· · · r 

2 
l A' W Aµ - ( n - k 2 - l ) A' W A ! A' W At 

nr. 

- 2 Z(n - k - 1) - . E L 1 [ J [ -2 ] ]} - ~ L + nr2 A' W At - n - k - 1 + nr1 A' (A E A' ) -1 A!_ • 

where exp(•) denotes the set of four exponentials inside the expectation 

above. Differentiating once again, with respect to.!', we obtain first the 

expression· above times the transpose of the exponent's derivative and then a 

term due to the dependence of the brac.keted expression above on.!: 

02 ~ = E {exp(•) [ •] [ •] }- E ~xp( •) [ ( n - k - 1 )2 A' W A E A' W A at at• w w 2 - - nr 

+ [ £ L 2 + 2 ( n ) - l) ] A• W A + (n ~ e. l + nl) A' (A E A' fl A]}· 

The exponentials vanish at !. = Q_, leaving 

- a2. 9> 
V(f) = · - at at 1 = -11v [12 

t=O 

2 
(n .. k - 1) A' W AJ!J:!' 

r2 A' iir A] 
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( 
-, 2 ) 

+ n ~ t -1 + n~2 . A' (A E A Ir 1 A. 

The £irst term reduces to 

(n - k - 1)2 Ew[~' w A.i:!.l:!.' A' w A], 

r 

and the last term is a constant with respect to w. From the middle two terms, 

only the first remains since the second has a zero expectation over w. Thus, 

V(i:) = ( n - y l) 2 fw t • iii A(J! .I!' + ~ E ) A' W A] +~ n ~ ( 1) + ;) J • 
[A' (A l: A' fl A ] • 

The first term is difficult to simplify, requiring still more substitutions. 
. . . 

It. is ·shown in the appendix (A.5) that the variance matrix reduces to 

.... 
V(~) = ( n - k - l) A' (A E A' r 1 A,ll ii' A I (A E A I r 1 A 

r 2(n - k)2 - . 

+ (. (n - k - 1) + . f L2 + -. 1) A'(A E A')-1 A. 
nr2Cn - kl (n - k - lJ nr2 

' 

A similar series of steps can be used to show that the PCE decision vec- . 
/\ . 

tor, t, has a larger sampling variance. The only difference is that (n .,. 1) 

-replaces (n - k - 1) when the latter appears ·in V(R.); hence 

v C.~) = ( n • 1 ) A' (A r. A' r 1 A .l:!. .l:!.' A I (A E A' r l A 
r2Cn - kJ2 
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+ ( (n - 1) + ...---I: .... 1_2 ____ + ~) A' (A LA' )-l A. 2 · 2 (n - k - 1) .~ nr (n - k) nr 

This shows that the unbiased decisioh vector ~has a smaller variance 
. A ~ 

matrix, in the sense that V(.e;) - V(_&) is positive semidefinite •. 

3.3. Factors Affecting the Bias and Variance of the PCE Estimator 

From inspection of the terms for the bias and variance of the PCE esti­

mator, it is clear that several factors affect their magnitudes. For the 

bias, these factors include the underlying population parameters as well as · 

the sample size, number of alternative enterprises (investments), and the ab­

solute measure of risk aversion. The variance is affected by the same factors 

plus the initial wealth or fixed resource constrainte Table 1 presents rates 

of change for the bias and variance with respect to each of these factors, 

with the exception of the number. of alternative enterprises. The effect of k 

is more difficult to determine since it affects the dimensions of the matrices 

L and A and the vector µ. 

It is clear on inspection that both the bias and variance converge to zero 

as either the sample size or the measure of absolute risk aversion gets 

large. It is also clear that as L increases the variance increases. An in-

crease in µi will increase both the variance and the bias of the estimated 

allocation of L to alternative i but will have an ambiguous effect on the bias 

of other alternatives. An increase in the variance of a particular alterna­

tive will increase both the bias and variance of the PCEestimator, but an 

increase in a covariance will have ambiguous effects. These last results are 

important for analyzing the effects of technological or other changes on the 

impact of estimation risk, all else held constant. 
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4. EX ANTE EXPECTED lITILITY FROM PCE ESTIMATORS 

. · .·. To stmnarize the results so far, we have considered. the effect of estima­

don .risk on the statistical properties of the conuno~ly used PCE approach to 

e~tittiatirig optimal mean-variance decisions. With returns following a multi-

. variate nonnal Nk(J!, E) and µ and E unknown, the decision vector 1 obtained 

using sample estimates is biased as an estimator of the unknown optimum R.* ~. 

It also has greater variation than the unbiased vector we derived, I, making 

the latter an improved rule for mean-variance decisions in terms of estimating 
. - . A -

Jt.*. Of necessity, both EU(1rlR.) and EU(nlR.) are less than EU(1tli*) so estimation 
~- '. - . - - .. 

risk must reduce average (ex ante) welfare •. 

It is possible to show that i'dominates .~ in tenris of ex ante expected 
·- . . . . . 

· utility;>; To see this, consider the certainty equivalent associated with each 

e'~t1riuitor of 1.3 For the case of multivariate normal returns and a negative 

exponerttial utility function, the certainty equivalent is 

.: Csfl.) • E[.11. '.l! - i rR. 'E!] 
~ .. . . 

with 1cnowl~ge of J! and £. This reduces to 
:. . - . ' 

Consider now the certainty equivalent associated with the unbiased· 

-decision vector, !· 

· 1 I 
= J!.*'.l!.,. ! r • ELtrR.'£,&] 
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1 -= .11.*'..1:! - ! r • trEE(R.R.t) 

= !"'.I:! - j r • trE[ V(.i,) + R.*=*'] 

=CE* - tr tr[EV(t)]_< CE*• 

-The inequa~i ty holds because tr[EV(JI.) l > O, which can be proven using this fact: 

for A positive semidefinite (PSD) and P nonsingular, P'AP is PSD. Write E as PP' 

and· note that tr(PP'V(~) l = tr[P'V(i°)P]. Th.e latter term .is the sl.DD of nonzero 
. . 

eigenvalues which are .all positive since the matrix is PSD. 
. . . .· . 

Now consider using the biased estimator, ~: 

. A .. . A 
Recall that E(.11.) =JI.* + b, where b denotes Bias (R.). Thus, 

CE[~ == Jllc'µ + [Bias(i)] 'µ - it trE[V(_i) + E(i) E(i)'] - . . .·.,·· 

M• 0 : .:.·.·· 

· ,; : • Jllc' µ ~ ~· µ - i r trEVCiJ - j r trmci> E(t)' 

i = JI.*'µ + b'µ - ! r trEVCil - { r tr.E[R.* + b] [.t* + b]' 

' 

= JI.*'µ + b'µ - ~ r tr.EV(i) - i r[R.* + b]' .E[R.* + b] 

= CE* + b'µ - } r trEV(t) - i rb'Eb - i r • 2b'IR.*. 

It is easy to see that. 
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/\ 
using earlier results. Thus, CE(x.) becomes 

CE(~) = CE* - i r tdEV(~)] - -! rE'EE· 

.. ·. ·· .... ·.. .· . . . . . . /\ 
The certainty equivalent associated with R.. is less than that associated with 

x.*· since the last two terms are negative. - , 
It is also the case that 

... -
tr[l;V(.11,)] > tr[EV(R..)] 

I\ -since V(R.) - V(,&) was shown earlier to be positive semidefinite. Hence 

-
CE(~) .c: CE(~) • 

Thus, the commonly used PCE estimator ~ is biased, inefficient, and leads to 

a lower expected utility than does the tmbiased estimator. 

5. EXAMPLES FRCl-1 FINANCE AND AGRICULTURAL LAND ALLOCATION 

To illustrate the importance of these findings, we perfonned some calcula­

tions using our results and parameters from published papers in agricultural 

economics and finance. We proceed as follows. Assume that the reported sam-
. . 

ple estimates of the mean vector and covariance matrix are in fact the popula-

tion parameters of the joint normal distribution of returns to various 

enterprises (investments). Using results from section three of this paper, we 

calculate the mean, variance, and certainty equivalent of the PCE estimator as 

well as the mean (also equal to the true optimlDil i*), variance, and cer­

tainty equivalent of the unbiased estimator.· We repeat this process for sev­

eral levels of risk aversion and varying sample sizes for each example. 

Results are presented .in Tables 2 and 3. 
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TABLE 2 

Effects of Risk Aversion and Sample Size on Reliability of PCE Estimates 
· of Land Allocation and on Certainty Equivalents 

ExEecteCI values ot PCE allocations and certaint,r eguivalents 
Acres in · 

.. ~emt?le size Carrots C'!eler,r C'!ucumoers J?eEEers C'!E 
r = 0.002924 

6 68.14 28.33 88.29 15.24 -474.63 
(20.25) (7.37) (20.43) . (8.80) 

30 68.61 28.27 88.24 14.89 27854.15 
(6. 72) (2.45) (6.78) (2. 91) 

100 68.65 28.26 88.23 14.86 30372. 70 
(3.54) (1.29) (3.58) (1.54) 

Optimal decision 68.66 28.26 88.23 14.85 31343.34 

r = 0.00029 

•6 56.18 30.00 89.67 24.16 50680.40 
(32.89) (11.34) (31.17) (15.87) 

30 60.90 29.34 89.13 20.64 59642.12 
(8.64) (3.10) (8.56) (3.89) 

100 61.32 29.28 89.08 20.32 60078.62 
(4.50) (1.62) (4.47) (2.02) ··-

Optimal decision 61.49. -29.26 89.06 .. - 20.20. 60238.95 

... r = 0.0000355 .. 
6• -39.00 43.24 100.67 95.10 16203.81 

: .~ (213. 77) (71.2) (194.3) (108. 75) . 

30 0.44 37.87 96.21 66.36 67296.04 
(45.17) (15. 77) ( 43.43) . ( 21. 33) 

100 3.04 37.39 95.81 63.76 68866.00 . 
(23.08) (8.09) (22.29) (10.82) 

Optimal decision 4.38 37.20 95.65 62.76 69407.08 

Note: Figures in parentheses are standard deviations of PCE estimators of land 
allocation. 
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TABLE 3 

Effects of Risk Aversion and Sample Size on Reliability of PCE 
Estimates of Stock Portfolio Allocation and on Certainty Equivalent 

Expected values of PCE allocations and certainty equivalents .· 
Dollars in · . · 

Sample size 

6 

30 

100 

Optimal decision 

6 

30 

100 

Optimal decision 

6 

30 

100 

Optimal decision 

Chrysler 

·2242.00 
(14723) 
(11942) 

2346.00 
(4676) 
(4526) 

2358.00 
(2467) 
(2444) 

2363.00 

-3206.00 
(143576) 
(114877) 
-2168.00 
(45107) 
(43553) 

-2045.00 
(23770) 
(23530) 

-1995.00 

-57689.00 
(1435387) 
(1148311) 
-47311.00 
(450899) 
(435351) 

-46076.00 
(237612) 
(235212) 

-45581.00 

· New York 
Shipping Bulova CE 

r = 0.0001 

480.00 7277.00 
(11113) (15167) .. -3013.00 
(9005) (12294) -1573.00 

1249.00 6405.00 
(3477) (4768) 742 .00 . 
(3365) (4615) 768.00 

1341.00 6301.00 
(1831) (2512) 1039.00 
(1814) (2489) 1041.00 
1377 .00 6259.00 1153.00 

r = 0.00001 
-39882.00 53088.00 
(108573) (148092) -35735.00 
(86870) (118490) -21333.00 

-32194.00 44362.00 
(33595) (46043) 151.00 . 
(32438) (44456) 414.00 . 

-31279.00 43323.00 
(17675) (24236) 2923.00 
(17496) (23992) 2944.00 

-30913.00 42908.00 3984.00 

r = 0.000001 
-443507.00 511196.00 

(1085474) (1480557) -368202.00 
(868380) (1184447) -224182.00 

-366626.00 423937.00 
(335834) (460262) -9505.00 
(324254) (444391) -6876.00 

-357473.00 413549.00 
(176683) (242272) 18188.00 
(174898) (239825) 18404.00 

-353812.00 409394.00 28795.00 

Note: Figures in parentheses are standard deviations of estimates of optimal·· 
allocations. For each level of risk aversion and sample size, the 
first figures in parentheses are the standard deviations of the PCE 
estimators and the second line of figures in parentheses are the 
standard deviations of the unbiased estimators. 
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The first example uses data from Hazell's (1971) article introducing Mini· 

mization of Total Absolute Deviations (M:>TAD). The example he uses is the 

allocation of 200 acres of land among four vegetable crops (carrots, celery, 

cucumbers, and peppers) with sample moments 

" . ~ = l253 443 284 516]' 

and 

[ 11264 -20548 1424 -15627] 
" • -20548 125145 -27305 29297 
L = · 1424 -27305 10585 -10984 .• 

~ -15627 29297 -10984 93652 

We consider three levels of r (.002924, .00029, .0000355) and three sample 

sizes (6, 30, and 100). The range of risk attitudes can be characterized as 

extreme to moderate for the gamble under consideration. This range was chosen 

for a purely practical consideration--at lower levels of risk aversion, the 

solution is not an interior one, but the derivations in this paper only apply 

to interior solutions. Noninterior solutions involv~ either tnmcations or 

negative a:~locations to some crops; the latter are, of .course, impossible •. 
= Results ar~ reported in Table 2. In the context ofthis example, ;it is 

interesting to note that· the sample size used in the original article was six. 

The se¢ond example is based on the experiment performed by Frankfurter 

et al. (1971). They examined the effect of estimation risk on efficient port- · · 

foliosof $10,000 using three assets (securities of Chrysler, New York Ship­

pifig, and Bulova) with returns and variance of returns per dollar invested 

given by 

" [ . ~ = .• 1664 

and 

.0664 

-.0115 
• 1664 

-.0037 

.2135J' 

.1115] 
- .0037 · .• 

.2223 . 
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· Unlike the case of land allocation, negative allocations are reasonable and . · 

·.constitute short sales, which we asstm1e are costlessly made. For this ex-

... ·ample, ·we use the same sample sizes but allow the measure .of absolute risk.· 

aversion to take the values (.0001, .00001, and .000001). Results are· 

t)t~~~rtfed in Table 3. 

The reader should note that r, the measure of absolute risk aversion, ciill;. 

not be chosen arbitrarily by the researcher. Ideally, the individual decision­

maker would be able to provide information about his. risk preferences. More · 

likely, the researcher will have other indications about the appropriate risk . 

attitudes for the decision-maker (or group of decision-makers). For example, 

. Blume (1980) argues that the appropriate measure of relative risk aversion in 

O. S. financial markets appears to be about 2. This would. imply r ~ 3*10-s 
··:···· ·.·: .. ,·· . ' - -4 ' . 
for the land allocation.example or r = 2*10 for the stock portfohoex-

ample.. If this characterization is indeed appropriate, our examples illus­

trate the degree.to which reconunendations based on the PCE estimators of 

optimal portfolio allocations should be hedged given limited historical data. 

· CQnsider, for instance, the land allocation example and a decision-maker with· 

r ·=!= 0.0000355. Even with 30 observations, for the crop with the highest mean 

return• the ratio of the expected amount of land to.be allocated to its 

standard deviation is 3.11. For the stock portfolio example, with r = o.oooi, 

the same ratio is only 1..34. Thus, a large interval of possible decisions 

cannot be excluded from consideration on the basis of thePCE estimator. 

7. Sffi.Mc\RY AND CONCLUSIONS 

·. :In this paper we have developed expressions for the sampling properties of 

the widely used PCE estimator of optimal portfolio allocation under uncer­

tainty•· Since it .ignores an important source of uncertainty, .that due to 
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unknoWn parame.ters in the distribution of returns from risky investment oppor­

·. tunities, the sampling properties of the PCE estimator--especially with small 

sample sizes~-can be quite poor. We have demonstrated that the PCE estimator 

is, indeed, biased and inefficient and have suggested an Lin.biased alternative 

with a lower variance. 

Another important result in this paper is the-distinction between.the ex­

pected utility from allocating ones's portfolio according to the true optimum 

decisio11 vector and the expected utility of using an estimator of that 

vector--the latter being necessarily less than the former. · However, we showed 

that the difference is less for the unbiased alternative than for the PCE 

decision· vector.· 

··Although the results in this paper strictly apply to the commonly assumed,· 

but spetial case of normally distributed investment returns and negative ex­

ponential utility, .several points are of general concern. First, uncertainty 

about the nature of the distribution of returns, including micertaintyabout 

the true·'population parameters of that distribution; is an -important ·source of 
···-·. :• 

W'icert-a1nty above and beyond any-risk recognized in-·the·data. .The presence of 

. this uncertainty makes the optimal decision vector· random and, therefore, sug~ 

gests that·ky prescriptions made should include some acknowlec;lgment of this 

uncertainty such as confidence intervals or standard deviations of the esti­

mates. To do otherwise implies greater certainty as to the proper course of 

action than is actually possible. 

A second point of general interest is the implication of this research for 

generating information on the statistical behavior of returns from risky acti-

"' vities. Our expression for V(l) suggests that researchers can determine the·· 

value of collecting more information to lower the uncertainty of estimates.of 

optimal behavior. It would be worthwhile to use these .results to develop 
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better estimates of optimal behavior. At a minimLDn, they show that, in many 

cases, it will be important to report results as interval estimates, rather 

than treating as certain what are in fact only estimates of optimal behavior. 
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APPENDIX 

A. l. Verification of the inverse of . r.
(n -

Ik ful.ist equal 

(n - lf 1 AW' . t ·AW'e · 1 . [ ] [ [ 

I I · 

. ik' ·. . (n - 1) A'(AW'A'f 1 \ci: n _ /1 + (0; e1 )] 

[ -1 J ~ . l (n - 1) AW' · 1 

_ . . (n - 1) A'(AW'A')-l Ik-l + q . -A1 (AW 1A1 )-1AW 1 e1 + 
lk1 I 

which is of the form 

AC 
k•l k'"'.l 

BC 
1 k-1 

AD 
k-1 1 

BD 
1 1 

Fo·r the product to equal Ik' we must find that AC = Ik-l' BD = 1,. 

BC = ff' (rif dimension 1 x· (k --1)], and AD = Q. fof dimension (k -'l) x l] .: 

AC~ (n -1)-l (n - 1) AW'A'(AW'A')-l Ik-l= lk-l 

BD = i' [-_A' (AW' A' )_ - l A VV' e + e J k . . 1 1 

= ik' e1 - i ' A' (AW' A' )- l AW' e k 1 

= 1. 

I 

The tenn in BD involving ik A' vanishes since the rows, of A ( cohmms of A') 

each sum to 1. This also holds for BC maki11g that product .QI. ' 

-~ ~: ·:.• : ': ;:·. 

: : ! 
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Finally, 

= -(n - lf 1 AW'A' (AVV'A' f 1 AW'e + (n - If l AW'e = O. 1 . l 

A.2. Derivation of a and u. 

' E[AVV1.J = ElAVV 1e1 ] = E{AV[(AV)'~ + u]} 

= E{AVV'A'~ + AVu] 

=A E(VV') A'~+ O. 

Q.E.D. 

' . 
Since E(W') = E(Z Pn Z') = (n - I)£, E(AW1.) = E(AW1 e1) = A[(n - I) I:] e1 = 

(n - I) AL. 1, where L.1 is the first column of L. Therefore, !!must solve 

(n - l) AL. 1 = A[(n - 1) L] A'!! 

or 

This defines the linear combination of the colunms of (AV)' that separates 

V1e1 into two parts, one independent of AV. 

The desired result, E(AVu) = .Q, is obtained: 

I 

u = V - V'A'a - l• 

I 

= V' ( e1 - A !!) 

and 

E(AV~) = E[AVV'(e1 - A'~)] 
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= E(AW 1 e1) - E(AW'A'~) 

= (n - 1) Al. - A E(W.') A 1 (ArA' )-l AI. 
• l •l 

= (n - 1) Ar. - (n - 1) (ArA') (ArA•r 1 AL •l •l 

= (n - 1) Ar.. 1 - (n - 1) AL. 1 = 0. 

A.3. Independence of Vand Z!.n: 

We.have 

. Z P Z' = Z U DU' zt = VV' 
n 

since Pn is of rank n - 1 and has eigenvalues 0 or 1. D can be taken to be 

the matrix 

. (. 1n-l 

0' 

Hence,·· 

.. ~ ·-·~ cn-1) 
···::::;V::.~ Z U A = Z U -- - '. 0 t 
- : l . 

..; .. -
'" i 

so that 

n-1 v .. = '[. z. u .. 
lJ · p=l · ip PJ 

A typical element of ZJn, the kth one, is 



-31- . 

We now show independence of typical elements of V and Zl_n: 

n-1 n 
ELV .. • (Zi )kj = E[ r. r. z. U . Zk 0 J 

lJ -n . · p=l .ll;=l ip PJ IY 

n-1 
= E U ' ELZ. Zk ] 

p=l PJ ip P 

n-1 
= E U . l:.k 

p=l PJ i 

(since E[Zip Zki] = 0 unless p = t) 

n-1 
= I;.k >.: u .• 

1 p=l PJ 

Now, since i 1 P = 0', we are guaranteed that t1-. 11 U .. = 0: 
-_!! n - p= PJ 

. [I , , . n-1 
0 '= i P = i U D U' = i U ·. 
- --n n --n --n 0' 

1 (
1 n-.l = i. u 

--n 0' 

n-1 
=>I L . U · = 0 

p=l PJ 

!) 
for all j = 1, 2, ••• , n - 1. 

E[E £ zit UJl;p APJ .• £ Zkn] = E[E E L zit UR. A .· • Zkn] 
j(,p n tpn PPJ 

= E[l: r. Z. 0 U0 • (0 unless p = j) • Z.n]. 
R. n liY A.J . K 

Now, unless Ji, = n, then E(Zi.ll. Zkn) = O, by timewise independence. Hence, 

we obtain 
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' = .E1. k • .E Un . = E "k • i · u .• ..,J i · -n -J 
Jl. 

· 'the inner produet of·~ and any characteristic vector of Pn, such as 

.. uj; must be O, which gives the desired result. Every element in V and in 

z~ is notmally distributed; we havenow shown that every element in v has a 

zero correlation with every element in Zi , implying independence • . · .. · n 

A.4. Expectations Involving Zin and !!• 
. . . ' 

A first step in simplifying is to evaluate Ez(ZininZ'). Consider a 

.t}'pical element, the i,ith one; its expectation is 

E[i. Z . n i . E i 1
. Z 1 -~ = E[E Z. n l: Z · ]· 

R. i.., -n.11. m ~nm mJ R. i.., m Jm 
·'"···- . 

. ~ .· .. 

. . . 

wi,ich is the expectation of the !th row sum in Z times the jth row SLDD in z. 
The ·first term is the sum of observations through time ·on the random variable . 

.. :z-i'-~· 

.. z., which js the ith return x. minus· its mean µ .• 
... l· . -.~.,.. ..... -. -4 . . 1 l 

The second term is ' ' ·- · .: - . 

the sum ofJ observatio~s through time on z j. . .... ·-···---··.. -~= .· - :~ .. ·: 

For any i, j combination, there are n terms in t~e product of these sums· · 

wi~h expectations equal to the i,jth element of .E, the rest vanish by time-

. wise independence. Hence, the term above has expectation n E· . , and . lJ 

' . . . 
ELZi i z•J = n.£. 

--~n 

Of course,· E(Z_!n) ~ O. When E(Z..!Ji) appears alone, it vanishes. 

We also need E(uu' ). Recall that 

u = V'[e - A'a] - -1 -

. ... ~ · ....... . 



-33"'.' 

and that Vcan be written as 

V = Z U A 

[ I ] n-1 
where V is k x (n - -1) and A. = . · 

. . -0' 

Then 

. -
. . 

. E(uu') = E[V'(e1 - A'a) (e1 - A'a)' VJ 

= E [ 11. 1 U' Z' ( e 1 - A' a) ( e 1 - A' a) ' Z U A] 

= A1 U' E(Z'{e1 - A'a) (e1 - A'a)' Z] U A. 

Consider any expectation of the form 

E(Z'b b'Z]. 

The expectation of a typical element i,j is the expectation of the J.th 

element in the colUIJlll vector Z' b times the ith element in the row vector b' Z. 

' =EE b bk E(Z. zk.). 
mk m im J 

Here, i and j denote sample periods while m and k denote particular investment 

. opportwiities or land uses. Unless i = j, the Z terms are independent by 

timewise independence, hence, we·obtain 
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and 

Thus, 

E(uu') =A' U' E(Z'(e - A'a} (e - A'a)' Z] U A 1 - --1 --

= J\' U'[ e' E e - e' E A' (Ar.A') .. 1 AE - E' A' (ArA') ... 1 AEe 
-1 -1 -1 •l •I -1 

+ E ' A· {ALA· r 1 ALA, CAEA, r 1 AL J u A •l •l 

= J\, u• CE · - E' A· cm· r 1 AL J u A 11 •1 . . •l 

Since _ti,' A = In-1' we obtain the diagonal matrix I>'! In-P where 

·--- ......... .. ~ 
~ : ... i - ~' A I (AI.A I )-1 AL . 

_=_ .11 "'•l . . . •l • 

A.S. Simplification of V(t). 

Note that the matrix 

A [.l!.1!.' + * E J A' 

is positive definite and so can be expressed as C C', where C is full rank and 

lower triangular. Now let S = c-l T. A series of manipulations using these · 
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matrices is necessary to simplify the expectation which remains in the expres­

sion for the variance matrix for ,K: 

Ew k W A ( J!. J!.' + ~ E ) A' W A ] 

= E [A' i C C' ~A] w 

= E t.A'[(T T')-1 - E(TT')-l] C C'[(T T1 f 1 - E(T T')-l] A} 
T 

=A' Er ff c C-1(T T') C,-l C' ( 1 - E[C C-l(T T') C,-l C• r 1f C cJIJ A 

=A' c··1 E t[(S S')-l - E(S S')-1] [(S s·J-l - E(S S1 )-1]} c-1 A. 
s 

Now, the matrix S = c-l T = c-l AV has dimension (k - 1) x (k - l); further-

more, SS' follows the Wishart distribution because (TT') does so. It has an 

expectation given by 

E(S S') = c-1 E(TT') c·-1 = (n - 1) c-1 AL A' c·-1 = (n - 1) I. . s 

To ~valuate the expectation 

we use a result due to Shaman (1980): 

-1~ -1 ( -1 -1 -1 -l Es \6 Es + n - k) (vec .Es) (vec Es)' 
Covl vec(S S') ] = · (n _ k + l) (n _ k) (n _ k "." 1) 

provided that n > k + 1. 

Suppose we are interested in the i,jth element in our expectation. 
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The expectation5 in that stun can be fO\md by making use of Shaman's result. 

Note· that thevec of (SS' f 1 is a (k - 1)2 x 1 vector, making the variance 

. ftiii.trix (k - 1)2 x (k - 1)2• The elements iR. and Jl.j of (SS' f 1 can be fotmd l.h 

that vector as elements i + (R. - 1) (k - 1) and R. + (j - 1) (k - l), respectively. 

To find the expected value of their product then, we find element i + (R. - .1) 

(k - lJ, J(. + (j - l) (k - 1) in Shaman's expression. That element involves the 

scala~--[(n: - k + 1) (n - kJ (n - k - l)r1, the appropriate element of .E$1 ~ ·. 

r.-;, aixi the corresponding element from ( n - kf 1 ( vec fl l ( vec r.·$1)' • Re-

call that the Kronecker product of a (k ~ 1) x (k · - 1) matrix with itself pro-

· duc~s a (k - 1)2 x (k - 1)2 matrix in which the i ,jth ·block }).ere wHl be 

o:gi)ij • t$1• If we find row i + (JI. - 1) (k - 1), we are in row i of the 

·!_th row of blocks; moving over to coltnnn JI. + (j - 1) (k - 1) means we are in .• 

column_ .11. o~ the _ith column of blocks. .· Thus, since we: are in block-row R., 

block-:o~~ j, we obtain{~g1) 1j. That element is multiplied by i:51 to 

.. make :UP -:that b 1th block, but we are interested only in· the· i ,-R.th- -element~ :scf 
. ·.• ~·:"-:--.·-.-.. ·::.:;:.:..:;..=:·~ . . . . - - -· . 

..... -.. _·-.:.:::.:.-::-·~-= .-::c·=:.::2 

we. obtain,~ . ·, .~ . : .. 

, (r.-: . \-1 (r. )-1 .. 
. SJ tj · S . iJI. . 

from the Kronecker product • 

. .. . -... ·· ... :·····By similar operations; extracting that element from vec r.51 times its 

t:ransp()se produces (l:s 1 lit fro~ the vec and (1:~ 1) tj from its tr~spose. 
Hence, our expectation is 

·•,I 

. _ .... 
·--· 
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and it simplifies to 

. 11·. 

C .. ( ~ .. -1 ·• -1 . . . E . . .J; 
.. s9ti s ···u 
. ·. '. . . 2 

· (n - k - 1) ( n - k) 

which, when sununed over JI., yields the· i ,ith element of 

(n - k - 1) (n ·~ k)2 

' . . . . 

'This characterizes every element of 

. ·' . -
so :that we can rewrite the first term in our expression for V(i) as follows: 

0 0z · · f 1 c1 . 
. · n • k - 1 A' C' -1 • . . S .. S c-1 A 

r · · · 2 
· (n - k - 1) (n - k) 

by substituting Shamanis result. Now, replace I~l by the inverse of C-l A I A.' c•-1: 

= n-k-1 1 (
'·. 2 

· r ~ (n - k - 1) 

. •. 
( . ~2 = n-k-1 1 

. . •· r (n - k - 1) 
. ·. A' (Ar.A I ) - l c c I (ArA' ( 1 A 

(n - k)2 . · .. · 

. 2 . 

= .. (n -~ -l~ . ·_ 1 .. 2 A'(AD\' )-1 •A(~' +*I} A'(Af.A')-1 A •. 
· ) . (n - k - 1) (n - k) · 

. . 

• .(n -~ -1)2 (n - k -~) 2 A'(Al:A')-lAJ!i!.'A'(Al:A')-1 A 
(n - k) · . . · · ·· 

.. +(. n - .~ - 1)2 . . ... 1 . 2 A'(Al:A' )-1 (A~ lA') (AlA' )-1 A. 
· . (n - k ~ 1) (n - k) . . . 
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(i . . )2 ::\P -. ~ - 1 l .· z A' (AI.A' J- l A~'A' (Ar.A' ) - l A 
(n - k - 1) (n - k) 

·. . 2 . ·. 
· .. ·c·. n - k - 1 )· . .· . ·. . . 1 . .· A'(. ALA' )-1 A ..• + · r · · · ·· · · 2 · 

· n (n - k - 1) (n - k) · 
·{_. 

If we combine our terms, we.find that 

.• .. 2 
(-) (n - k - 1) v JI. = ~ .. ~z----

r 
. . . 1 . . 2 A I (A I: A')- l AJ:! .l!' A' (A I: A')- l A 

(n - k - 1) (n - k) . . · . 

.·, 2 
. + C.n - ~ - 1) 1 A' (A E A' )-1 A 

· ·· r n(n - k - 1) (n - kJ2 · . 

( 
;. 2 ) + .· L L .· + -.1. . . A I (A L A' )-1 A 

n-k-1 'J · nr 

or 

veil= (n - k - l) A'(A I: A')-l AJ:!. .l:!' A'(A I: A•r1 A 
·. ·. . r 2 (n - k)2 

+ fCn - k - 1) + f L2 ·.l ) A' (A I: A' )-1 A. 
\rtr2Cn - k)2 (n - k - 1) nr2 . · . , -

. -· :~·· 
. ····--··· - ---. 

- ~ l 
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FOOTNOTES 

lfama ( 1Y65) and others have demonstrated that this condition is overly 

restrictive. Returns must be drawn from a probability distribution belonging 

to a i•location-scale" family. 

2The use of the negative exponential utility function simplifies the 

derivations which follow, and they hold, strictly speaking, only for that 

utility function. · However, the qualitative results we establish concerning 

the problem of estimation risk are likely to carry over to other sets of risk 

attitudes. Analytic results for thos~ utility functions will be complicated 

by the fact that the Arrow-Pratt measure of absolute risk aversion, r, will 

itself become random since it depends on expected end-of-period wealth. The 

widely used negative exponential utility function is convenient since r is 

constant for all levels of expected wealth. 

3Recall that expected utility and the certainty equivalent are related 

monotonically--maximizing one is, therefore, equivalent to maximizing the 

other. 
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