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BEYOND RISK AVERSION: ECCENTRICITY 
IN WEIGHTED EXPECTED UTILITY 

James D. Hess and Duncan M. Holthausen, Jr. 
North Carolina State University 

ABSTRACT: In recent survey articles Bell and Farquhar an<;l Machina have brought 
to the attention of decision scientists an alternative to the expected utility 
model called weighted expected utility. Developed by MacCrillliilon, Chew and 
Fishburn, this is the simplest alternative to expected utility that permits an 
interpretation and rationalization of Allais' famous para9-ox. This paper 

·identifies the two crucial parameters of weighted expecteq utility -- risk 
aversion and eccentricity -- by studying demand for insurance. The first of 
these is a measure that generalizes the Arrow-Pratt risk aversion measure of 
expected utility. The other, which we call a measure of eccentricity, has no 
counterpart in expected utility theory. Risk aversion is a concept with which 
decision analysts are quite comfortable, but eccentricity is simultaneously a 
new concept and one whose predictions are more subtle than those of risk 
aversion. In essence, eccentricity is a measure of how susceptible the 
decision maker is to Allais' paradox or how much he differs from expected 
utility maximizat.ion. Together risk aversion and eccentricity completely 
determine weighted expected utility and provide insight into the behavior of 
decision makers under uncertainty, behavior that can be quite different from 
that predicted by expected utility. Explanations are given of the impact of 
increases in risk aversion.and eccentricity on demand for insurance. ·Perhaps 
the most striking difference is that when the decision maker is eccentric, the 
standard analysis of decision trees by "averaging out and folding back" 
provides suboptimal decisions ancl the losses are magnified as the degree of 
eccentricity grows. 
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Beyond Risk Aversion: Eccentricity 
in Weighted Expected Utility 

1. Introduction 

The most widely used model of choice under uncertainty is expected utiiity 

(Bernoulli (1954), von Neumann and Morgenstern (1944)). Expected utility 

theory has great appeal because it provides a framework for explaining behavior 

such as insurance purchasing, hedging,.diversification and demand for informa-

tion. Underlying preferences are summarized by the von Neumann-Morgenstern 

utility function which can be assessed by relatively simple interrogation 

procedures (Winkler (1972)). In addition, the resulting mathematical form of 

the decision maker's objective is linear in probabilities, which makes it 

especially amenable to study both analytically and computationally. 

Over the past few decades, however, a growing list of anomalous experimen-

tal and case study results have led many to reject expected uti,lity as the 

general theory of choice under uncertainty and to search for alternative 

theories. The list of alternative models of preferences is growing rapidly as 

decision theorists try to incorporate stylized facts about the deviations of 

behavior from the classical expected utility model (for example, Becker and 

Sarin (1987) list fifteen alternatives models), 

One particular alternative that Bell and Farquhar (1986) and Machina 

(1987) have recently brought to the attention of decision scientists is called 

weighted expected utility. Weighted expected utility preserves much of the 

analytic structure of the expected utility paradigm while allowing preferences 

consistent with a wider range of observed behavior. Moreover, it will be 

argued that wei_ghted expected utility is the simplest alternative to expected 

utility that permits an interpretation and rationalization of Allais' famous 

paradox. 



However, weighted expected utility is not simple. For example, there are 
. . . . . 

t;wo parameters that determine the behavior of weighted expected utility 

decision makers. One of these ·is a measure.of risk aversion that generalizes 
. . 

bh@ tl.§tt aversion-measure of expected utility. The other, which~e call a 

me.asure of eccentricity, has no counterpart in expected utility theory. 

. Risk aversion is a concept with which decision scientists are quite 
. ., ·. . . . : . . . . 

~bmfortable now that there are standard methods for evaluating its magnitude· 
. . . . : . . . . 

·· artd theories that predict its impact on obserVable behavior. Eccentricity, on 

( 

.the other hand, is simuitaneously a new concept and one whose predictions are 

more subtle than those of risk aversion. In essence, eccerttricity is a measure 

of how.susceptible,the decision maker is to Allais' paradox or how much he 

:differs from expected utility maximization. Only in certain situations will 
. ·: ' ~.; 

th~predi.cted choice of an ecceritric decision maker differ from one who is not 

eccentric, but experimental evidence indicates that.these situations are not 
. . .. . . ·. ~- . .· . . 

particularly· extraordinary. 

Together risk aversion and ecc.entricity provide insight into the behavior 

of decision makers under_ uncertainty, and that behavior can be quite different 
. . 

·.from the behavior predicted by expected utility. Perhaps the most strikirtg 

difference was first pointed out by Lavalle andWapman (1986) who noted that 
.. 

. when the decision maker is not an expected utility maximizer the standard 

· analysis of decision trees by "averaging out and folding back" provides 
-. . . 

. sµbopttmal decisions. Using the eccentricity measure, it is possible to 

· predict conditions under which averaging out and folding ba:ck leads to serious 

problems.· 

·In this paper we give. geometric expositions to both expect.ed utility and 

weighted expected utility. The motivation for this focus on the geometry of .. 
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. preferences is that it provides a convincing case fort weighted expected utility ','. 

as the simplest generalization of expected utility. ;it also provides 
~ ·. 

sug·gestions for the axiomatie development of other alternatives. to expected 

titH.iffy. Geometric interpretations of important concepts . such . as risk. 

ai1tersioti, risk premium,.· probability premium and mean preserving spread are 
' . . . 

· •·. Jevef~ped. We identify the crucial characteristics of weighted expected 

. utility; .risk aversion and eccentricity, develop parameters that measure them, 

·and suggest methods for assessing the two.parameters in decision analysis: 

. Fini:llly, we .explore, in a geometric framework, the impact ~.of these 

characteristics on behavior in uncertain environments. 

2. The Independence Axiom and Weighted Expected Utility 

XP:~· expected utility axioml;l!of von Neumann-Morgenstern can be summarized 

b)T three major assumptions: preferences are transitive, preferences are 

continuous, and preference rankings. are independent o.f ·convex mixtures of 

identical probability distributions. Let .a lottery be denoted <X,P>, where X 

is a vector of outcomes and P is the corresl?onding vector of probabilities of 

.these outcomes. The first two axioms imply that ther~ is a continuous utility. 

function over lotteries, V(<X,P>), but does not impose structure on this 

function. The last assumption, the Independ,ence Axiom, states that (·for 

identical outcomes X) if Pis preferred to Q, then -\P+(l--\)R is preferred to. 

lQ+(l--\)R for any complication R, -\E(0,1]; This has the very important 

implication that the utility function is _linear in probabilities and forms an 

expected utility. The decision maker acts as though he ranks alternative 

lotteries by comparing the ntimerical values of their expected utilities, 

3 
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V(<X,P>) - EU - ~ Pi U(xi). The Independence Axiom ls very attr.active because 
I 

of this structure it imposes on the form of the decision maker's objective 

·function. 
_.·-..,_y.., 

Ori the other hand, there is a lorig history of behavior of decision makets 

that conflicts with the Independence Axiom, the most famous called the Allais 
- i ~ 

Paradox (Allais and Hagen (1979), but see also Kahneman, Slovic and Tversky 

(1982), Slovic and Lichtenstein (1983), and Schoemaker (1982)). The paradox 

involves preference rankings over pairs of lotteries such as the following: 

{ $4,000 with probability .75 
Lr:. { $3,000 for certain L2; 

$0 with probability .25 

{ $4,000 with probability .15 { $3,000 with probability .20 
L3: L4: 

$0 with probability .85 $0 with probability .80 

·E'Xperimenters repeatedly have found that a large proportion of individuals 

tested (sometimes more than half) prefer Li to L2 and L3 to 4. In the first 

cas·e (L1 versus L2), · the· individual acts risk averse, desiring the certainty of 

$3,000 to a gamble with the same expected value. In the second (L3 versus 4), 

.the person typically prefers greater risk, thinking perhaps that since it is 

unlikely he will get either positive outcome, he might as well go for the 

bigger one. 

This pattern of preferences violates the Independence Axiom. To see why, 

write the four lotteries using our earlier notation: 

Li - <(0,3000,4000), (O,li.0)>, L2 <(0,3000,4000)~ (.25,0,.75)> 

L3 = <(0,3000,4000), (.85,0, .15)>, <(0,3000,4000)' (.8, .2,0)>. 



' 
0 -. 

Now define another·lottery Ls= <(0,3000,4000), (1,0;,0)>. Then by the Indepen-

dence Axiom, since L1 is preferred to L2, it must be that lottery <X, .2Pl+.8P5> 

is preferred to lottery <X,. 2P2+. 8PS>, where pi is the probability distribution 

for lottery L1 . But <X, . 2Pl+. 8Ps> - L4 and <X, . 2P2+. 8P5> ... LJ, so the Indeperl-

dence AXiom implies that L4 is preferable to L3, contrary to typical preferen-

ces. 

Chew and MacCrimmon (1979), Chew (1983) and Fishburn (1983) have shown 

that the Allais Paradox may be explained by splitting the Independence Axiom 

and replacing it with two related axioms, the Mixture-Dominance AXiom and the 

Symmetry Axiom (this is Fishburn's terminology although Chew and MacCrimmon 

have similar axioms). The utility function that follows from these alternative 

axioms has a form 

V(<X,P>) -
~ U(xi)Pi 

·~ W(xi)Pi 

This has been alternatively called alpha-nu utility, ratio form utility, 

weighted linear utility, arid weighted expected utility. We choose to use this 

last name since it accurately reflects the fact that the utility can be written 

as a lottery dependent expected utility (Becker and Sarin (1987)) where the 

lottery dependent utility function is adjusted by a weighting function of the 

probabilities: 

Pi· 

5 



3. The Geometry of Expected Utility 

To study the utility for lotteries of the form <X,P>, we fix X and 

consider utility as a function of only P. For simplicity suppose there are 

·three possible outcomes, X-(x1,x2,x3) where x1 < x2 < x3. This allows the 

representation of preferences in the triangle diagram in Figure 1 where the 

probabilities of outcomes 1 and 3 are plotted. Implicitly the probability of 

outcome 2 ·is determined by the fact that probabilities add to one. When 

(p1,p3) is on the hypotenuse in Figure 1, P2 must be zero; but for points on. 

the interior of the triangle, P2 is positive. At the origin both Pl and p3 are 

zero, so P2 takes on the value 1. 

In Figure 1 there.are several positively sloped parallel dashed lines 

drawnin the simplex .. These graph the combinations of probabilities that hold 

constant the expected value of the.lottery: p1x1+(l-p1-p3)x2+p3x3 == x. That 

is, they are graphs of 

P3 + (1) 

As the mean of the lottery increases, these iso-mean lines shift toward the 

upper left corner of the simplex, since x3 is the largest outcome and x1 is the 

smallest. Moving along an iso-mean line from small values of (p1 1 p3) to larger 

values (Le., moving in a northeasterly direction) implies an increase in the 

riskiness of the lottery (a mean preserving spread in the terminology of 

Rothschild and Stiglitz (1970)). 

An indifference curve in the probability triangle is made up of combina

tions of (p1,p3) such that expected utility is constant, p1U(x1)+(l-p1-

6 



Solying,' for p3 in terms of Pl :'and using Ut ·to denote 
. ! 

U' - U2 U2 U1 
· .. ,,4_(· ... 

P3 + Pl· (2) 
Uj: - U2 U3 - U2 

.· . 
. ·;'. 

. -: .; . 

• '.i11e slopes of these indifference curves are constant and independent of U and 

thus are parallel straight lines.' The magnitude of the slope is. directly . 
. . 

re·lated to the degree of risk ~version as measured by the Arrow-Prat~ measure 

of absolute risk aversion, r -_ .:u"/U' (Arrow (1970), ·•:Pratt (1964)). 

this; manipulate the slope 0£:.-the indifference curve and write it as 

U3 U2 ¥2 U1 

x3 -· x2 :X:2- - x1 x2 -· x1 x2 -
+ 1 [r+11 

U3 - U2 .. x3 - x2 x3 -

x3 - x2 

To see 

x1 
(3) 

x2 

which .is positively related to the discrete version o.f the Arrow-Pratt measure, 

. denoted r. The more risk avers_e an expected utility maximizer, the steeper are 
. . . \ :. 

the indifference curves in tbe probability_ triangle. 
' . . . . . 

Figure 2 plots both i~q-niean lines (dashed lines) and indifference curves 
1 . • • • 

(solid lines) for an expected. .. utility maximizer. • If U(x) is. risk averse, the 
,";; ·' 

· · indifference curves. are ste~per than the iso-meari lines as depicted ln Figure· 
; , '\;;. ; 

2. If U(x) is. risk loving, "'..the indifference curves are flatter than the 

. iso•mean lines. 
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·The concepts of risk premium and certainty equivalent are central to 
. . I 

choice under uncertainty. For a given lottery and decision maker, the risk· 

premium 11'. is the amount the decision maker would pay to receive the expected 

\tifiti~ of the lottery in lieu of the lottery. The certainty equivalent 1ra (also 

the asking price for the lottery) is the amount that makes the decision maker 

indifferent between having that amount for certain or the lottery. It follows 

that 1ra = µ - 11', whereµ is the expected value of the lottery. Consider the 

lottery·at point A in Figure 2. The certainty equivalent for this lottery is 

x2 because the indifference curve at A runs through the origin. The risk 

premium .for lottery A is the difference between the mean of the lottery and 

x2. Unfortunately, the magnitude of the risk premium cannot be easily measured 

in the triangle diagram. In fact, for most lotteries the risk premium cannot 

. be shown at all because the certainty equivalent is not o.ne of the three 

outcomes at the corners of the triangle diagram. Because of this geometric . 

difficulty, we turn instead to a related measure called the probability premium· 

of the lottery. 

Consider lottery B in Figure 2. A risk neutral decision maker would be 

indifferent between lotteries B and C because they fall on the same iso-Ulean 

.. line. The risk averse decision maker whose indifference curves are.plotted in 

Figure 2 would be indifferent between lotteries B and D because they fall on 

the same indifference curve. We define.the probability premium to be the 

difference between the probabilities of x3 in lotteries D and C. Using p for 

probability premium, p - p~ - pg. This is. a· generalization of Pratt's proba-

bility premium and is, like Pratt's, an increasing function of risk aversion.! 

Unlike the risk premium, the probability premium can always be found for any 
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lottery in the tri~ngle diagram, and thus we will make use of it rather than ·· 

· the risk premiwn in what follows. 

The con~ept ~£.increasing riSkcan be.shown in the triangle diagram. For· 
. . . . 

ifi t!it~eC'.:ted utility maximizer, if the Arrow-Pratt.local measure of risk 

. aversi<>n is positive for .!ill levels of wealth, .then an increase in risk lowers 

expected utility (Rothschild and Stiglitz (1970)).2 Corisider again the 

·decision maker faced with lottery Bin Figure 2. A movement along the iso-mean 

line to lottery C would represent an inc.rease in risk (it is a mean preserving 

sp.read in the sense of Rothschild and Stiglitz) and would put the decision 

maker on a lower indifference curve. It follows that risk averse decision 

makers: .dislike mean preserving spreads. The lotteries along line segment BC 

become increasingly less attractive. Conversely; a move from lottery B to 

lottery.E would correspond to a mean preserving decrease in risk which would 

P\It the decision maker on a higher indifference cur\Te .. 

4. The Geometry of Weighted Expected Utility 

I 

i The fact that the :indifference curves of an.expected utility maximizer 

T p~rallel might be interpreted as saying that they intersect each other at 

infinity'. The insight of Chew, MacCrimmon and Fishburn was to maintain the 

linearity of the.indifference curves but to allow them to intersect at a poin~ 
other' than infinity. I 

I. 

The Mixture-Dominance Axiom states that when two points in the probability 

triangle are indifferent, then all the points on:the line segment between them. 

are indifferent; this implies that indifference curves in the simplex figure 

are straight lines but not necessarily with the same slope .. The Symmetry Axirm 
I 
I 

9· 
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. implies that the indifference curves fan out from a 4nique hub point. ·See 

point (a ,{J) in Figure 3. Notice that the indifference lines get progressively' · 

· .steepet:" as one moves from the lower right: cot'.ner of the probability .triangle 

htiward the upper left corner. From the.discussion of the previous sectiori thi§ 

inignt be interpreted as increases in the realized risk aversion of the deciSion 

maker.· 

The geometry of these indifference curves - -: spokes ·fanning out from a hub 
.I. 

point -- is not the only alternative to the parallel straight lines of expected 

utility. One possible.alternative would be non~linea:t and non~intersecting 

·indifference curves over the entire Euclidian n-space. Ano.ther would have 
. . 
linear indifference curves emanating from a distinct line .segment instead of a . 

. single hub point. These indifference curves would not intersect at a single 

• pdint:, but. the linearity of the indifference curves and the their progressive 
. -.~ . 

. .. steepening in the upper left corner would be preserved. A kalEiidoscope of 
. ·. ·, . . 

alternatives suggest th~mselves, but the fanning out from a sin.gle hub point 

·clearly is the least complicated alternat:i,ve to the expected utility model.. 

If preferences are transitive (indifference curves do not cross for 

legitimate probability distributions), then the hub point must be located 

.outside the probability simplex, but the Symmetry Axiom does not require the 
.,· 

hub point be at infinity. Preferences consistent with the Allais Paradox 
. . . 

req\lire the hub point to be located in the third quadrant as shown in Figure 

3 .. • .. Chew and Waller's ( 1986) experimental evidence also implies that the hub 

. point for most individuals is located in the· third quadrant. · .. For these reasons 

·~e. limit our discussion to. third quadrant hub points. However, · o:ur results are 

general,. and can be extended to hub point~ lying in the first quadrant. Hub 

• points .. located in the second and fourth quadrants are ruled out because 
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preferences implied by those locations are not monotonic. {See Fishburn (1982) 

for a generalization that permits intransitivities.) 

Taken together, the Mixture-Dominance Axiom and the Symmetry Axiom imply. 

thit the decision maker will choose among lotteries so as to maximize a utility 

function of the form 

(4) 

This weighted expected utility is nonlinear in the probabilities and thus is 

not.an expected utility. The numerator function U is called a valuation 

function and the denominator function W is called a weighting function. If the 

weighting function is a constant, then the numerator ,is independent of the 

probabilities, and weighted expected utility reduces to expected utility. 

·rhe valuation and weighting functions are not uniquely defined for a given 

preference for. lotteries. (Recall that the vpn Neumann-Morgenstern utility 

function may be modified by a positive affine transformation.) Fishburn (1983) 

has shown that if valuation function U and weighting function W represent a 

person's preferences, then so do any linear transformations of these, U* =.au+ 

bW, W* = cU + dW, as long as ad-be > 0. One must be careful in making state

:ments about the valuation or weighting functions given this ability to trans

form them without making changes in the essential preferences . 

5. Risk Aversion and Eccentricity 

Suppose an individual with initial wealth x is faced with a stochastic 

additional source of weal th, e , which has expected value µ and small variance 

11 



a. How much would the individual pay to eliminate this addition'.al uncertain;. 

ty?. In. weighted expected utility, the risk premium .?f that makes the decision · 

maker indifferent between paying the premium or bearing the entire risk is 

defiti~d impUci tly by: 

U(x+µ-?r) 

W(x+µ-?r) 

E[U(x+e)] 

E[W(x+e)] 
(5) 

Following standard practice, take Taylor series approximations of the U and W 

functions on the left-hand side of first order in µ-?r and on the right-hand 

side of second order in e. Solving for ?r gives 

R + µE 
1r = ~~~~~~-

2 / (a 2+µ2) + E' 
(6) 

where 

R= [ 
UW" 

U 'W 
(7) U"W l ' 

W'U 
and 

E = [ u•11• - U"ll'] 
U'W - W'U 

(8) 

The parameter R will be called the local measure of risk aversion for 

weighted expected utility. For a constant weighting function, W(x) ... constant, 

R reduces to the Arrow-Pratt measure of absolute risk aversion, -U"/U'. It is 

easy to check that R is also independent of any equivalent representations of 

the U and W functions U* = aU + bW, W* = cU + dW, ad>bc. As in Pratt's (1964) 

derivation of the risk premium,· the local measure of risk aversion for weighted 

expected utility, R, ·is analytically useful. A person with a large measure of 

12 
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risk aversion R would pay more to avoid small risks .than a person with a small 

R, as can be seen from Equation (6). 

We call the parameter E the local measure of eccentricity. Like R, it is 

independent of allowable transformations of U and W. A deciSion maker with 

large eccentricity, E, may or may not value insurance more than a decision 

maker with small eccentricity. 

To explore the behavior associated with risk aversion and eccentricity in 

weighted expected utility, it is useful to express the coordinates of the hub 

point in terms of R and E. In Figure 3 the indifference curves radiate from 

the hub point labelled (a,fJ). They are graphs of the relationship 

v = 

for a fixed V. 

I 

P1U1 + (l-p1-p3)U2 + p3U3 

P1W1 + (l-p1-p3)W2 + p3W3 

To identify the hub point, s~t V in Equation (9) equal to two arbitrary 

(9) 

values (V-0 and V-1, for example) and solve the resulting two equations for the 

two unknown values of Pl and p3. The hub point, (p1,p3) = (a'.,fJ), ~an be 

expressed in terms of the local measures of risk aversion and eccentricity: 

(a,fJ) "" 
_-(_R_+_l_) l · . 
E (x3-x2) 

(10) 

. Here .the values of R and E are the discrete versions of Equations (7) and (8): 

13 



R 

arid 

E 

U2 [W3~W. 2 - W2-W1] 

x3-x2 x2-x1 

·[u3-U2 
• W2 --

. x3-x2 

- U2-U1] 

x2-x1 

U3-Uz W3-W2 
-- Wz - --.- U2 
_x3-x2 x3-x2 

U3-U2 [113-112 112-111] W3'-W2 [U3-U2 ---- - ---· 
x3-xz x3-x2 x2-x1 x3-x2 x3-x2 

U3-U2 W3-Wz 
--Wz - .-- U2 
x3-x2 x3-xz 

(11) 

U2-U1] 
x2-x1 

(12) 

Notice that {3 increases with E and decreases with R, while a increases with E 

but is independent of R. 

The hub point could be represented in polar coordinates (p,8) that give 

the radius, p, and angle, e, of the hub point as shown in Figure 3. 

1 (R+l) 2 

p = l/E (13) 

1 (R+l) 2 

B (14) 

It is easy to see that as local risk aversion, R, increases, the hub point 

rotates counterclockwise and its radius, p, increases. The slopes of all the 

indifference curves in the unit triangle increase, indicating greater risk 

aversion. As eccentricity, E, falls toward zero, the hub point moves out along 

a ray from the origin to minus infinity and the indifference curves become 

parallel; zero eccentricity implies the utility function is an expected 

14 
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utility. As eccentricity increases, the hub point mbves toward the origin and 

indifference curves in the lower right corner of the unit triangle become 

flatter, indicating less risk aversion, while those in the upper left corner 

become steeper, indicating greater risk aversion. In fact, for fixed monetary 

bUtcbmes, a completely rational weighted expected utility maximizer may act 

risk averse or risk seeking depending only on the probabilities. This slightly 

schizophrenic behavior is consistent with the Allais Paradox and is our 

motivation for calling E a measure of eccentricity. 

The dependence of the hub point on the magnitude of the measures of local 

risk aversion and eccentricity suggests a simple method of simultaneously 

.assessing risk aversion.and eccentricity. Suppose that a decision maker was 

asked to identify the probability of best and worst outcomes that would leave 

·him indifferent between that lottery and some reference lottery (like lottery A 

or Bin Figure 3). That is, if the reference lottery was point A in Figure 1 

assess the location of A' on the hypotenuse of the probability triangle. 

Repeat the assessment for lottery B. By then tracing the two lines connecting 

A to A' and B to B', the hub point (a,p) can be located and then equation (10) 

can be solved for the discrete versions of the local measures of risk aversion 

and eccentricity~ 

6. Probability Premium 

How does the probability premium vary in response to changes in R andE? 

Suppose that the decision maker faces the probability .distribution given by 

point A in Figure 4. By drawing the indifference curve that goes through this 

probability vector and the hub point and also drawing the iso-mean line through 

15 



point A, we can identify the probability premitim p~ - p~ on the p3 axis. It is 

not difficult to see that the counterclockwise rotation of the hub point that 

follows from an increase in risk aversion implies that the probability premium 

is ificfeased. The same conclusion is reached if we start at point A' instead 

of point A. Thus the general result is that a more risk averse individual will 

demand a higher p:robability premium for any risk. 

On the ·other hand, an increase in eccentricity may or may not increase the 

probability premium. The hub point moves toward the origin along a ray as 

eccentricity increases, so the probability premium of a lottery like A will 

decrease with E, whereas the probability premium of lottery A' will increase as 

E increases. The line from the hub point through the origin divides the 

probability triangle into two regions - one in which the probability premium 

increases with eccentricity and the other in which it decreases. 

These observations establish our first proposition. 

Proposition 1: The probability premium is increasing in R, E held 

constant, and may increase or decrease with changes in E, R held constant. 

7. The Impact of Increasing Risk 

Risk averse eccentrics do not always dislike incr~ases in risk. At first 

blush this may seem to contradict Equ~tion (6), which shows the risk premium 1t' 

as a monotonic increasing function of variance a2 even when the measure of 

eccentricity is positive. It would be incorrect to generalize from this 

result, however, because it was derived under the assumption that the magnitude 

of the risk was small enough that a Taylor series approximation was reasonable. 

The Allais Paradox shows that not all mean preserving spreads reduce· 
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weighted expected utility. The particular risk (or probability distribution) 

faced by the decisi.on maker influences' his reaction to an increase in risk, 

even when the measure of local risk aversion is globally positive. This 

f~itiire of behavior is captured by the degree of eccentricity. 

There are regions in the probability triangle of a weighted expected 

utility maximizer in which increases in risk hurt the decision maker, help, or 

leave the decision maker indifferent. To identify these regions, we again 

superimpose iso-mean lines and the indifference curves of a weighted expected 

utili~y maximizer (Figure 5). 

There is exactly one iso-mean line that, if extended, passes through the 

· hub point. This is identified as line PQ in Figure 5. All the probability 

distributions along PQ have the same mean but different risks, yet the weighted 

expected utility maximizer with positive local risk aversion and hub point 

(o: ,/3) treats them all as equally desirable. For probability distributions in 

the shaded region above this iso-mean line, the decision maker acts risk 

averse, disliking all mean preserving spreads. In the region below PQ, the 

person acts. like a risk seeker, since mean preserving increases in risk 

increase weighted expected utility. 

From this we conclude that with weighted expected utility it is insuffic

ient to check only a change in probability distribution to see if it represents 

a mean preserving increase in risk (satisfies integral conditions like (ln) and 

(2rt)). In addition, one must also check to see if the mean of the distribution 

is sufficiently large that risk aversion dominates eccentricity. Specifically, 

the crucial ~ean, µ*, of the lotteries that lie along line.PQ in Figure 5 can 

be expressed in terms of the discrete measures of risk aversion and eccentric

ity: 
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µ* = x2 - R/E. (15) 

Any increase in risk that begins with a mean less than µ* will increase the 

w~iglited expected utility of a locally risk averse but ecceritric decision 

maker. The larger .the local measure of risk aversion relative to the local 

measure of eccentricity, the smaller the set of probab;i.lity distributions for 

which increases in risk are utility increasing. This result 1 establishes the 

second proposition. 

Proposition 2: In the case of three outcomes, x1 < x2 < x3, a mean 

preserving spread decreases (leaves constant) (increases) we~ghted expected 

utility if and only if the mean of the probability distribution, µ, is greater 

than (equal to) (less than) x2 - R/E. 

This proposition is the first illustration of a prediction of behavior 

that depends on the magnitude of eccentricity. Even though ~n individual is 

basically risk averse, if the choices all involve high probabilities of low 

payoffs and the eccentricity is large relative to risk aversion, the observed 

behavior will appear to be risk seeking. The greater the eccbntricity, the 

larger is the set of probability distributions for which this can occur. When 

low payoffs have high probabilities, the Allais paradox seems to imply that 

eccentric decision makers discount probability differences and concentrate 

instead on the magnitude of rewards. 

I 
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8. Constant Risk Aversion and Ec9entricity 

An interesting class of functions is that which has constant measures of 

ioca.1 risk aversion and eccentricity. The simplest forms for the U and W 

functions that will generate positive and constant R and E are U(x) -e-.>.x and 

'W(x) = e1'X, .>. > 'Y > 0. Of course, allowable transformations of these U and W 

functions can also be used. These are the unique functions with constant local 

measure of risk aversion, R = >.. - ')', and constant local eccentricity, E = >..7. 

Suppose ln the constant R and E case that two decision makers are equally 

eccentric, but one has a larger measure of local risk aversion. It follows 

that the decision maker with larger R will have the larger risk premium for any 

risk e. This is a stronger result than that presented in Section 5 because we 

do not restrict the size of the risk to "small." It is less general than that 

r,esult, however, because it applies only to the constant R and E class of 

functions. 

Proposition 3: Let Ui(x) = -exp(->..ix) and Wi(x) = exp(7ix), Ai> 1'i > 0 

for i = 1,2. Then Ri = Ai - 'Yi• and Ei = Ai1'i for all x. If R1 > R2 and E1 = 

E2, then ~1 > ~2· 

Proof: First solve Equation (5) explicitly for the risk premium, 

~ - (log(E[e-AE]) - log(E[e1'E]))/(>..+7). (16) 

If 1' is adjusted to hold E constant, then R increases with increases in >... 

Suppose that >.1 > >.2; we want to show that ~1 - ~2 is positive. To do this, 

define rp - exp(->..2e) and ..P =exp(ne). Invert these to get e = -l/>..2 log(rp) and 

e = l/n log(l/i). We can write E[exp(-.>.1e)] = E[rp>.l/>.2]. Applying Jensen's 

inequality, noting that the assumptions on >.'s.imply the function rp.>.l/>..2 is 
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analogue for the gamma term is log(E[exp(·ne)]) < .\2/,\1 lOgE[?jl]. Using these-

to express the difference in risk premiums, 

( (,\1/,\2) 2...;l) (,\2/,\1) (·Y2log(E[exp(-.\2e)]) + .\2log(E[exp(·Y2e)])) 

(.X 1 +·n) (>. 2+-y 2 ) 
(17) 

The first term in the numerator is positive by assumption that Al > A2, and the 

right-hand side will be positive if the term in curly brackets is positive. To 

show this, note that exp(-,\2e) and exp(-y2e) are convex functions, so applying 

Jensen's inequality gives 

-yzlog(E[exp(-,\2e)])+,\zlog(E[exp(-yze)]) > -yzlog(exp(-,\zE[e]))+,\zlogexp(nE[e])) 

= --y2,\zE[e] + -r2.\2E[e] ~ 0. (18) 

9. Increasing Global Risk Aversion 

Suppose two decision makers are equally eccentric at eac~ level of wealth, 

but one has a larger measure of local risk aversion at every level of wealth. 

If eccentricity is zero, Pratt (1964) has shown that the globally more risk 

averse decision maker will be willing to pay more for insurance. Does the same 

result hold for weighted expected utility? 

In Section 8, we showed that an increase in constant local risk aversion,. 

constant eccentricity unchanged, increases the risk premium. This is not a 

general result, however, because· it depends on particular U and W functions. 

The general result must consider the case where R(x) and E(x) vary with wealth, 

and E1(x) = E2(x) and R1(x) > R2(x) for all x. This is a more difficult 
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propositi~n to verify because the equations that define R and E are nonlinear 

second-order differential equations in the unknown valuation and weighting 

functions U and W. In fact, by simple change of variables they can be trans

formed into Ricatti differential equations3 with general forcing functions that 

are linear combinations of R(x) and E(x). Since such equations have no closed 

form solutions, one cannot integrate them the same way one can the linear 

differential equation for the Arrow-Pratt measure of risk aversion. A proof of 

the following proposition is constructed in the appendix using discrete 

approximations for the U and W functions. A more general proof is left to 

those whose mathematical tools are more elegant then ours. 

Proposition 4: Consider two weighted expected utility functions, V1 and 

V2, with E1(x) = E2(x) and R1(x) > R2(x) for all x. Then n1 > n2. 

10. Decisions with Information 

Suppose now that consequences depend on the action, a, of the decision 

maker and the state, s, according to a reward function x=x(a,s). The action is 

selected after learning the value of an information variable, y, and the 

decision rule is denoted a(y). The joint probability density of the two random 

variables sandy will be denoted p(s,y). If the decision maker is eccentric, 

we can write the objective function 

V[a) 
ff U(x(a(y),s)) p(s,y)dsdy 

ff W(x(a(y),s)) p(s,y)dsdy 
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It will be useful to write the valuation/weighting and reward functions as: 

U(x(a,s)) - U(a,s) and W(x(a,s)) - W(a,s). 

What is the optimal decision rule for an individual with weighted expected 

utility (19) when the information may be incorporated in the choice of action? 

Suppose that a(y) is the optimal decision rule and consider adding a multiple e 

of an arbitrary decision function Z(y) to it. This gives weighted expected 

utility 

V(a + eZ]. (20) 

Since a(y) is optimal, av/ae = 0 at e=O, or else the weighted expected utility 

could be increased by a small adjustment of the decision rule. That is, 

av 
0 

8e e=O 

ff Ua(a(y),s) Z(y) p(s,y)dsdy 

ff W(a(y),s) p(s,y)dsdy 
(21) 

ff U(a(y),s) p(s,y)dsdy 

<ff W(a(y),s) p(s,y)dsdy)2 
<ff Wa(a(y),s) Z(y)p(s,y)dsdy) 

for all functions, Z, where Ua and Wa denote partial derivatives with respect 

to the action. Rearrangement gives 

JJ {Ua(a(y),s)/E[U] - Wa(a(y),s)/E(W]} Z(y)p(s,y)dsdy = 0, 

for all functions, Z. Applying the fundamental theorem of the calculus of 

variations and dividing by the prior probability density of the information 

p(y), we can write the optimality condition as 

J {Ua(a(y),s)/E[U] - Wa(a(y),s)/E[W]} p(sly)ds = 0, 
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for all possible values of the information variable, y. The mos~ compact 

expression of this is 

E[UalYJ 

E[U] 

E[WalYl 

E[W] · 
for all y. (24) 

Actions are optimal only when their marginal impact on the rate of growth of 

nwnerator of the weighted expected utility equals the rate of growth of the · 

denominator. If the decision maker is an expected utility maximizer, then the 

right hand side of (24) vanishes and the criteria becomes the standard 

E[UalYJ=O: conditional expected marginal utility must be zero. 

The denominators of (24) are not conditional expectations. That is, the 

rate of growth is calculated upon a base that is the average over all possible 

signals, E[E[UlyJ] .. E[U]. This does not matter if eccentricity is zero since 

the right hand side of (24) is then zero, but it is crucial when the decision· 

maker is eccentric, as will be shown below. 

The traditional Bayesian analysis of decision problems with information 

begins by supposing the decision maker has observed the random variable y, 

modified his probability distribution using Bayes rule, and evaluated the 

resulting prospect by 
r 

V[ajy] 
J U(a,s) p(sly) ds 

J W(a,s) p(sjy) ds 
(25) 

What is the optimal action, given the above posterior evaluation of the 

weighted expected utility? The simplest form of the first-order conditions is 
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E[UalYJ 

E[UlyJ 

E(WalYJ 

E[WlyJ 
for all y. (26) 

Contrasting these conditions (26) with the optimality conditions (24) 

derived above, we now see that the expectation in the denominator is 

conditional upon the information. There is no reason for the optimal decision 

with information y to maximize the posterior weighted expected utility and vice 

~- Only in the case of expected utility (eccentricity equals zero) will 

the two criteria, (24) and (26), generate identical decision rules. 

The traditional process of analyzing a decision problem in stages and then 

averaging out and folding back corresponds to the condition (26). Positive 

eccentricity is a sign that such "backward induction" will lead to suboptimal 

decisions. Lavalle and Wapman (1986) first noticed that averaging out and 

folding back decision trees leads to incorrect choices when the Independence 

Axiom is violated (see also Hazen (1987)). In general decision makers should 

not·use the standard extensive form analysis of decision trees, as the 

following example illustrates. 

Example: Suppose the state takes on one of two values, 0 and 1, and the 

information variable y also takes on values 0 or l, where y-0 predicts s-0 and 

y-1 predicts s-1. The joint probability distribution for the discrete random 

variables s and y are given in Table 1 along with the conditional posterior 

probabilities. The information is not a perfect predictor of state. 
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TABLE 1 

Joint Probabilities Conditional Probabilities 

y=O y=l Marginals y=O observed, y=l observed 

s ... 0 0.42 0.18 0.6 P(s-Ojy) 0.84 0.36 

s ... 1 0.08 0.32 0.4 P(s-ljy) 0.16 0.64 

Marginals 0.5 0.5 

For simplicity it will be assumed that the monetary consequence is jointly 

determined by action and state according to the rewar~ function 

x = 1 - 2a + 4as. In this example the decision maker is limited to one of 

~hree action values, -1, 0 or +1. The decision problem is described in 

extensive form in the decision tree of Figure 6. 

The decision problem cannot be analyzed without specifying the degree of 

risk aversion and the measure of eccentricity. Suppose that risk aversion and 

eccentricity measures are constants. We will consider only one value for risk 

aversion, but will explore how the problem varies as the decision maker's 

eccentricity increases. In Table 2 three scenarios are analyzed. The first 

corresponds to an expected utility maximizer since the measure of eccentricity 

is zero. The other two involve identical measures of risk aversion but 

progressively larger positive eccentricity. In all situations the optimal 

decision rule is found by evaluating all possible rules and selecting the one 

that maximizes weighted expected utility. The Bayesian decision rule is found 

by the traditional technique of working backward through the decision tree in 

Figure 6. 
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R E 

0.1 o.oo 
0.1 0.42 
cr.1 4.20 

* ay=a(y) 

Decision 
Bayesian 
ao a1 

-1 +l 
-1 +l 
-1 +l 

TABLE 2 

Rules* 
Optimal 
ao a1 

-1 +l 
-1 0 
-1 0 

WEU of WEU of Percent 
Bayesian Optim<Ftl Loss 

-.83555 -.83555 0.0% 
-.13296 - .13182 0.9 
- . 00712 -.00413 72.4 

As can be seen in Table 2, when eccentricity is zero there is no loss at 

all from using the traditional Bayesian approach to analyzing the decision 

problem. Moreover, when eccentricity is small the loss from the traditional 

procedure is less than one percent of the maximum possible weighted expected 

utility value. Very eccentric decision makers, on the other hand, would see a 

loss of almost 75% if they were to follow the decision analysis procedures 

.described in most textbooks (see Raiffa (1968)). 

11. Conclusions 

We have shown how weighted expected utility can be used to analyze 

decisions under uncertainty. In particular, we have developed the two impor'." 

tant parameters ,that characterize the behavior of weighted expected utility 

maximizers. These parameters are the local measure of risk aversion and the· 

local measure of eccentricity. Geometric interpretations of these parameters 

were explored, and predictions of behavior developed. The primary conclusions 

are these. First, even if a decision maker is eccentric, greater risk aversion 
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implies that the decision maker places more value on insurance. Second, even 

if the measure of local risk aversion is positive for all levels of wealth, it 

is possible for an eccentric decision maker to prefer some increases in risk. 

Third., the more significant risk aversion is.relative to eccentricity, the 

smaller is the set of circumstances which produces this "paradoxical" behav-

ior. Fourth, as a decision maker becomes more eccentric, he acts more risk 

averse toward lotteries that offer large payoffs with high probabilities and 

i 
less risk averse toward lotteries offering small payoffs with high probabili-

i 

ties. Fifth, .the trladitional backward induction strategy of "averaging out and 

folding back" for cHoosing decision rules is suboptimal for eccentric decision 
I 

makers and the magn~tude of the error is positively related .to the degree of 

eccentricity. 

Much is left undone. Clearly all applications of decision theory previ-
. I 

I 

ously modelled withiexpected utility are now open to reinvestigation with 
I 

weighted 

in.areas 

' . 
i 

expected utility. 
. I 

such as po~tfolio 

It will be interesting to see if standard results 

theory and the theory of the firm carry over under 

weighted expected utility. W'e expect not. In addition, consider the following 
i 

issues. The weight~ng function that explains the Allais Paradox puts greater 

· relative emphasis OI). large outcomes. Is there a statistic of the probability 
I 

distribution that cdrresponds to the eccentric's emphasis on large outcomes 
I 

similar to the way that variance corresponds to the risk averter's dislike of 

risk? Finally, a c~osely related issue is whether there is a simple 

relationship between two probability distributions that establishes dominance 

for eccE!ntrics the way stochastic dominance does for risk averters. These and 
. . I 

! 

many other issues remain to be explored. 
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Appendix - Proof of Proposition 4 

In this appendix we will show that when the. lottery has discrete outcomes · 

· and eccentricity is unchanged, an increase in local risk aversion will increase 

th~ i'l~k. premium. As mentioned in the text, .a completely general proof is 

difficult to construct since the equations defining the valuation function, 

U(x)' and. weighting function, W(x)' in terms of the mea~ures of local risk 

··• aversi.on, R(x), and eccentricity, E(x), . are nonlinear, second-order differen

. tia:l equations. In this appendix attention will be limited to a special case· 

that is nonetheless general enough that it can be inductively extended. 

In particular, suppose that the lottery takes on one of five values 

<x1,x2,x3,JC.4,X5}, where for simplicity the difference between successive values 

is one unit, Xi+l-xi == 1. The allowable transformations of the U and W 

functions will be used to set the values at x1 and x5 to U(x1)=0, 

U(x5)":"l•W(x1)-W(x5). The values of the two functions at the interinediate 

outcomes will be determined by the local measures of ris'J.c aversion and eccen

tricity. For ex<1!mple, at. ~-x2 

and 

(i) 

(W3-W2) [(Uj-U2) - (U2-U1)] 
E2 -= ----------------------------. (ii) 

W2 (U3-U2) - U2 (W3-W2) 

Gompaied with equations (11) and (12), these equations do not include differ

ences in outcome values such as x3-x2, since we have set them to unity for. 

simplicity .. It is also important to notice that although R2 and E2 .depend on 

l11 and W1whicl:i will be normalized to 0 and 1 respectively, and R4· and E4 

depend.on U5 and W5 which will also be normalized, R3 and E3 are completely 
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free of this normalization. This is the reason for using five outcomes in the 

lottery. Five is the smallest set that has the property that at least one pair 

of Rand E values do not depend directly on normalized values of U and W. 

the valuation and weighting functions will be treated as piece-wise linear 

for values of the outcome that fall between the discrete values 

The objective of the first step in the proof is to express the valuation 

and weighting functions explicitly in terms of the measures of risk aversion 
I 

and eccentricity. Tr~ating (i) and (ii) as equations defining U2 andW2, 

straightforward algebra allows us to solve them to get 

U2 ... (iii) 
l+R2 + l+E2 

W2 (iv) 
l+R2 + l+E2 

where the normalized[ values of U1 and W1 have been used. 

Notice that discrete measures of risk aversion and eccentricity always 

appear added to 1; f
1
or notational simplicity from this point forward, write 
I 

l+Ri as ri (not to be confused with the Arrow-Pratt measure of risk aversion) 

and l+Ei as ei . By similar derivations we can express U3,U4,W3 and W4. 

(v) 

(vi) 

(vii) 



1 + W3rz 
W2 - (viii) 

r2 + ez 

W2 + W4r3 
W3 (ix) 

r3 + e3 

W3 + lr4 
W4 = (x) 

r4 + e4 

After algebraic manipulation one can express U2,U3,U4 and W2,W3,W4 entirely in 

terms of risk aversion and eccentricity measures. 

Uz = rzr3r4/9, (xi) 

U3 (r2+ez)r3r4/8, (xii) 

U4 - ((r2+ez)(r3+e3)-r2)r4/S, (xiii) 

Wz = [((r3+e3)(r4+e4)-r3) + rzr3r4]/8, (xiv) 

W3 = [(r4+e4) + (rz+e2)r3r4]/8, (xv) 

W4 = [l + ((rz+ez)(r3+e3)-rz)r4]/8, (xvi) 

where 

(xvii) 

These are the equations that explicitly determine the valuation and weighting 

function in terms of the measures of risk aversion and eccentricity. 

Next, consider the equation defining the risk premium, 71', 

U(x+µ-7r) 

W(x+µ-7r) 

E[U(x+€)] 

E[W(x+e)] 
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Suppose that initially the solution of this equation puts x+µ-?r in the interval 

[x2,x3]. If it fell in any other interval the details of the proof would 

change, but not the results. Since the functions U(x) and W(x) are piece-wise 

Hnei'lr for values o!E x that fall between successive xi's, the equation defining 

the risk premium in this situation is 

• U2+(U3-U2) (x+µ-11"-x2) 

W2+(W3-W2)(x+µ-11"-x2) 

Solving for the risk premium gives 

where 

11" = x+µ-x2 + 

- x+µ-x2 + l/(Z-1), 

z 
W3 (~ UiPi) - U3 (~ WiPi) 

W2 (~ UiPi) - U2 (~ WiPi) 

(xix) 

(xx) 

(xxi) 

We have now written the risk premium in terms of the expression Z. This is 
i 

not an approximation that depends on an assumption that the risk is small as 

was true in Equation (6). Moreover, the value of Z depends on the valuation 

and weighting functions which we have already expressed in terms of the 

measures of risk aversion and eccentricity. What remains to qe shown is that 

if discrete risk aversion measures r2,r3 or r4 increase, holding e2,e3 and e4 

constant, Z will deqrease causing the risk premium, 11", to increase. 

i 

Substituting from (xi)-(xvi) into (xxi) and simplifying gives Z as a 

function of risk aversion and eccentricity 
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-p1(r2+e2)r3r4 - P2r3r4 + p4r4 + ~s(r4+e4) 
z = -----'---~-------------------~ (xxii) 

"'p1r2r3r4 - p3r3r4 + p4r4(r3+e3) + PS ((q+e3)(r4+e4) -e3) 

At i:hiS point, the proof becomes an exercise in calculus; one must show that 

vOe ew7r:qve6 'lf:Q-Borr ir rvQµµ8Z/8ri < 0, i=2;3,4. These derivatives are given 

below .. 

az · -p1r3r4[(p3+p2)r3r4+p4r4(r3+e3-l)+p5{(r4+e4)(r3+e3-l)-r3)l+p1r3r4e2] 
-------------------------------. (xxiii) 

[-p1r2r3r4 - p3r3r4 + p4r4(r3+e3) + p5((r3+e3)(r4+e4)-e3)] 2 8r2 

az r2(r4+e4) -r3(r2+e2))} + (p4r4+p5(r4+e4)) (p2r4e3+(p3+p4)r4+p5(r4+e4-l))] 
--------------------------~----.(xxiv) 

[-p1r2r3r4 ~ p3r3r4 + p4r4(r3+e3) + p5((r3+e3)(r4+e4)-e3)] 2 

az -p5r3[p2((r3+e3)e4-r3)+p4+p5+p3e4+p1((r2+e2)e3e4-r2e4+(r2+e2)r3(e4-l))] 
---------------...;._.---------------. (xxv) 

(-p1r2r3r4 - p3r3r4 + p4r4(r3+e3) + p5((r3+e3) (r4+e4)-e3)] 2 

It is easy to show that since ri = 1 + R1 > 1 and ei = 1 + Ei > 1, all three of 

these derivatives are negative. That is, any increase in risk aversion Rf will 

cause Z to diminish and hence the risk premium to increase. 
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Footnotes 

1. To see this, recall that the slopes of the indifference curves increase with 
an increase in risk aversion. In particular, the slope of the 
indifference curve thr~tigh lottery B will increase. This in turn increases p~, 
which iricreases the probability premium, p . 

2. "increase is risk" is defined as a mean preserving spread in the probability 
ci:i.§tribution over possible outcomes. For continuous distributions over the 
interval [a,b], a cumulative probability distribution G(x) is a mean preserving 
spread of a cumulative probability distribution F(x) if 

Jli (G(x)-F(x)) dx ~ 0, for all te[a,b], 

Jli (G(x)-F(x)) dx = 0, for t = b. 

(ln) 

(2n) 

The inequality (ln) has the consequence that more weight is put on extreme 
outcomes with distribution G than with distribution F, whereas equality (2n) 
implies that the means of the two distributions are ident.ical. 

3. A Ricatti equation is of the form x'(t) + x(t)2 = f(t). 
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