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BEYOND RISK AVERSION: ECCENTRICITY
1IN WEIGHTED EXPECTED UTILITY

~ James D. Hess and Duncan M. Holthausen, Jr.
North Carolina State University

- ABSTRACT: In recent survey articles Bell and Farquhar and Machina have brought
“to the attention of decision scientists an alternative to the expected utility
‘model called weighted expected utility. Developed by MacCrimmon, Chew-and
~Fishburn, this is the simplest alternative to expected utility that permits an
. interpretation and rationalization of Allais’ famous paradox. - This paper ’
~identifies the two crucial parameters of weighted expected ut111ty -- risk
aversion and eccentricity -- by studying demand for insurance. The first of
these is a measure that generalizes the Arrow-Pratt risk aversion measure of
expected utility. The other, which we call a measure of eccentricity, has no
. counterpart in expected utility theory. Risk aversion is a concept with which
decision analysts are quite comfortable, but eccentricity is simultaneously a
new concept and one whose predictions are more subtle than those of risk
aversion. In essence, eccentricity is a measure of how susceptible the ,
" decision maker is to Allais’ paradox or how much he differs from expected.
utility maximization. Together risk aversion and eccentricity completely
~determine weighted expected utility and provide insight into the behavior of
~ .decision makers under uncertainty, behavior that can be quite different from

- that predicted by expected utility. Explanations are given of the impact of

increases in risk aversion and eccentricity on demand for insurance: - Perhaps

. the most striking difference is that when the dec131on maker is eccentric, the

 standard analysis of decision trees by "averaging out and folding back"
vprov1des suboptimal decisions and the losses are magnlfled as the degree of

' eccentr1c1ty grows.
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Beyond Risk Aversion: Eccentricity
in Weighted Expected Utility

1. Introduction

The most widely used model of choice under uncertainty is expected utility

(Bernoulli (1954), von Neumann and Morgenstern (1944)) | Expected utility

‘;Jtheory‘has great appealybecause it provides a.framework for explaining‘behaviorﬂrﬂFJ'

:fsuchfaslinsurance'purchasing, hedging,ldiversification'and demand for lnforma;
1 tion;d ﬁnderlying preferences are summariZed by the von Neumann-Morgenstern

"gutility'function'which can be assessed by relatiVely Simple'interrogation
.procedures (Winkler (1972)). 1In addition; the resulting mathematical form‘of
‘the.decisiOn maker’s objeetive‘is linear in probabilities; which'makes it

_ especially amenable to study bothlanalytically and,computationally.

"OVer'the past few decades, however, a groWing list of anomalous experimene

'uvtal and case study results ‘have led many to reJect expected utrl1ty as the
general theory of choice under uncertalnty and to search for alternative

.theories, The list of alternative models of preferences is growing rapidly as

decision theorists try to incorporate'stylized facts about the deviations of

behav1or from the classical expected ut111ty model (for example Becker and

'1Sarin (1987) list f1fteen alternatlves models)

One particular alternatlve that Bell and Farquhar (1986) and Machlna>

"(1987) have recently brought to the attentlon of decision sc1entlsts is called

vwelghted'expected ut111ty. Welghted expected utlllty preserves much of the

analytlc structure of the expected ut111ty paradlgm Whlle allow1ng preferences
con51stent w1th a w1der range of observed behav1or Moreover it will be

argued that weighted expected utillty is ‘the 31mp1est alternatlve to expected

‘ utillty that permits an’ 1nterpretatlon and ratlonalization of ‘Allais’ famous

paradox.




’Hdwevgr, weighted expectedrﬁtility i§unot simplé. For example, there are

’HtWO:parametera that determiné the behavior of weighted expeqted utility

‘décision makérs. One of these is a measﬁre.of risk avérsion that generalizes
the fiékvaversion—measure of expected utility. The other, which we call a
meaSuré of eccentricity, has no counterpart in expected utility theory.

Risk aﬁersion‘is a concept with ﬁhich decision scientists are quite
cpmfoftable_now that there aré standafd meﬁhod§ for evaluating its magnitudé"
‘and theories that predict its impéct on observable Behaviof. Eccentricity, on
tﬁe»other hand, is simultaneously a new concept and one whose predictions are.
:mOre éubﬁle than those of risk aVersion. In essence, eccentricity ié a measure
of How,susceptible?the decision maker is to Allais’ paradox_or_how much he
’diffefs'ffom expected utility maximization. Only iﬁ certain situations will
the pfedictéd choice»of an eccentric decision maker differ frqm one who is not
_éqcent;ic, but experimental,evidence indicates‘that these situations are not

particularly'extraordinary;

Together risk aversion and eccentricity provide insight into the behavior.

of decisién makers under uncertainty, and that behavior can be quife differenf
from ﬁhe behavior predicted by expected utiiity. Perhaps the most striking |
‘difference was first pointed out by LaValle aﬁd Wapman (1986) who noted that
" when the decision maker is not an expected utility maximiéer therstandard |
'ranAlysiS»of decision trees‘by "a&eraging out and folding back" providés
sﬁbopéimal decisions. Uéing the eccentricity measure, it is possible to
‘ :prédict_conditions under which averaging out and folding back leads to serious
éréﬁléms. | |

"In this paper we give geometric expositions to both expectgd utility and

' Weighted expected utility. The mOtivation for this focus on the geometry of -

-~



| preferences is that it provides a convinéing case for weighted expected utility

as the simplest generalization of expected utility. It also provides
s&ggestions qu the,axidmatic development of other alternatives to expected

ﬁfiiity5 Gebmetrié ihterpretations of important concepts such as risk’

avérsion, risk premium, probability premium and meén preserving spfead are
i-develdped. ‘We,identify.the crucialvchafacteristics of weighted expected

~utility, risk aversion and eccentricity, develop parameters that measure then,

and suggest methods for assessing the two parameters in decision analysis.

'~ Finally, we explore, inva>geometfic framework, the impact ‘of these

_ characteristics on behavior in uncertain environments.

2. The Independence Axiom and Weighted Expected Utility

The ekpected utility axioms of von Néumahn-MorgenStern can be summarized
ﬁy three major assumptions: preferences are transiti&e, preferences‘are
;qntinuous, and_préfgrence rankings are independent qf»coﬁvex:mixtures'of
identical probébility distributions. Let a lottery be denoted <X,P>, &here Xv  '
is a vector of outcomes and P is the corresponding vector of probabilities of |
;ﬁese outcomes. The first two axioms imply thét there is a continuous utility

function over lotteries, V(<X,P>), but does not impose structure on this

function. The last assumption, the Independence Axiom, states that (for

ideﬁtigal outcomes X) if P is preferred to Q, then AP+(1-X)R is preferred to

' 'XQ+(1-A)R for‘any complication R, Xe(0,1]. This has the very important

implica;ion that'the utility function is linear in prébabilities and forms an
expécted utility. The decision maker acts as though he ranks alternative

lbtteries by comparing the numerical values of their expected utilities,



V(<X,P>) = EU = 3 pj U(xi). The Independence Axiom is very attractive because
 >ef"thie structure it imposes on the form of the decision maker'’s ocbjective-
- furiction.

on the other hand, there is a leng,history of behavior of decision maketrs

that conflicts with the independence Axiom, the most famous called the Allaisen_

- 7 Paradex (Allais and Hagen (1979), but see also Kahneman, Slovic and Tversky
1n(1982);lslovic and Lichtenstein (1983), and Schoemaker (1982)). The peradox

: involves preference rankings over pairs of lotteries such as the following:

N R : , $4,000 with probability .75
~Ly:  {.$3,000 for certain Lo: :

$0 with probability .25

R $4,000 with probability .15 o $3,000 with probability .20
-~ La? - - : L, ‘ .
: $0 with probability .80

$0 ~with probability .85

‘ﬁExperimentefs repeatedly have found that a large proportion of individuals
tested,(sometimes-more than half) prefer Lj to Ly and L3 to L4. In the first

‘eeSe (L1 versus Lgp), the individual acts risk averse, desiring the certainty of

}$3,ooo~to a gamble with the samebexpected value. In the second (L3 versus L4),'

efhelpersenetypically prefers greater risk, thinking perhaps that since it is
'nnlikely he will'getveither positive outcome, he might as well go for the

v>bigger one.

| | Tnis pattern of preferences‘violates the Independence Axiom. To eee why,

write the four lotteries using our earlier notation:

17 = <(0,3000,4000), (0,1,0)>, L2 = <(0,3000,4000), (.25,0,.75)>
‘L3 = <(0,3000,4000), (.85,0,.15)>, L, = <(0,3000,4000), (.8,.2,0)>.
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Now define another lottery Ls = <(0,3000,4000), (1,0,0)>. Then by the Indepen-

dencefoiom, since Ly is preferred to Ly, it must be that lottery <X,.2P1+.8P5>’ o
- ié preferred to lottery <X,.2P2+.8P5>, where Pl is>the probability distribution -
for lottery Li. But <X,.2Pl+.8P7> = L, and <X,.2P2+.8P> = L3, so the Indepen-

o “dence Axiom implies that L, is preferable to Lj, contrary to typical preferen-

ces.,

Chew and MacCrimmon (1979), Chew (1983) and Flshburn (1983) have shown

- ‘that the Allais Paradox may. be explained by spllttlng the Independence Ax1om

and replacing it with two related axioms, the Mixture-Dominance Axiom and the
Symmetry Axiom (this is Fishburn’s terminology although Chew and MacCrimmon

have similar axioms). The utility function that follows from these alternativé

“axioms has a form
. C .

2 U(x{)pi
V(X,P>) = —m—m—,
2 W(xi)pi

" This has been alternatively called alpha-nﬁ utility, ratio form utility,

. Weighﬁed linear utility, and weighted expected utility. We choose to use this
- last name since it acéurately reflects the fact that the utility can be written »
© as é lottery dependent expected utility (Becker and Sarin (1987)) where the |
lrloftery dependent utility function is adjusted by a'wéighting function of the |

1:pfdbabilities:

_ U(xy)
COW(K,P>) =5 ——————— py.
| * 3 W(xy)p;



3. The Geométryléf_Expected Utility

To study the utility for lotteries of thé form <X,P$, we fix X and
consider utility as a function of oﬁly f. for simplicity supposé ﬁhere are 
‘tﬁree“pdssible outcomes, X—(xl,xz,X3} ﬁhere X] < X2 < x3. This allows the
representation of preferences in the triangle diagram in Figure 1 where the
- pfobabiiities of outcomes 1 and 3 are plotted. Implicitly the probability of :
6ut¢ome’2 is detefmined by the fact that probabilities add to one. When
(p1,P3) is on the hypotenuse in Figure 1, pp must be zero;vbut for points on
tﬁe~interior of the triangle, éz is positive. At the origin both p; and p3 are

’zero,‘so py takes on the value 1.

In Figufe 1 there are several positively,sloped‘parailel dashed lines
drawn in the simplex. . These graph the combinations of probabilities that hold
‘cénstant'tﬁe expected value of the lottery: p1x1+(1-ﬁ1-p3)i2+p3X3vé x. That

is, they are graphs of |
X - X9 X9 - X1

P3 = + p1. (1)
X3 - X X3 - X2

As the mean of the lottery increases, these iso-mean lines shift toward the
upper left corner of fhe simplex, since x3 is the largest outcome and X1 is the
‘smaliest.v Moving along:an iso-mean line from smﬁll values of (pi,p3) to larger
values~(i.é., movihg in a noftheasterly direction) implies an‘inérease in the
riékinéss of the lottery (a mean greserving spread in the terminology of
Rothschild and Stiglitz (1970)). |

| An indifference curve in the probability triangle is made up of combina-

tions of (p1,p3) such that expected utility is constant, pjU(x1)+(1l-p1-
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p3)U(x2)+§3U(x3)'— . Solving‘for p3'in terms of p1 and using Ui’to denote
‘ !

ﬁ(xi), the indifference curvee;for expected utility are given by

U-TUy Up-T |
pP3 = + P1- , (2)
Uz -.Up . Usz - Uy ‘ '

The SIOpee of these indifference curvee are constantland independent of U and
rhus are parallel straight lines. The magnitude of the slope is direcriy
related‘to the degree of risk eversion as measured by the Arrow-Pratc measure
cf absolute risk aversion, r ; -U"/U' (Arrow (1970), Pratt (1964)). To see

this, manipulate the slope offthe indifference curve and write it as

Uz - U2 U2 -0
X3 - X X3 - X Xy - X1 _ % - X
- + 1 —_— = [T#l] —, (3)
| U3 - Uz X3 - X2 X3 - X2
L X3 - X2 ‘ .

| which is positiVely related to the discrete version of the Arrcw-Pratt measure,
denored r. The more risk averse an expected utility naximizer, the steeper are
the indifference curves in the probabiiity triangle.
Figure‘2‘plots both'ied-mean lines (daehed-iines) and indifference curves
(soiid iines) for an exnectedeutility maximizer. If U(x) is risk averse, the
" indifference curves are steeper than the iso-mean lines as depicted in Figure
2. If U(x) is risk 1oving,‘the indifference curves are flatter than the

~iso- mean lines.



ff'The‘conceptS-of risk pfemiﬁm>and certainty equivaleﬁt'are central to
" 'éh6icé'under uncertainty. For a gi§eﬁ lottery and-décision maker, the risk-
' '§remium ﬁ_is the>#ﬁount the decision maker would pay to receive the expecte&
v%élué‘of'the lottery in lieu of fherlottery. The certainty equivalent g (alsd

 ithe ésking price for the lottery) is the amount that makes the decision maker

-

"bindifferent between having that amount for certain or the lottery. It follows
’*jthat né‘='p - ®, where p is the eXpectéd'value of the lottery. ‘Consider the
iqftery'at point A in Figure 2. The certainty equivalent for this iottery‘is
b'x2 beéause the indifference curve at A runs through the origin. Tﬁe fisk
| éfemium-for lottery A is the differénce between the mean of the lottery and
'xz;"Upfortunétély, the magnitude of the risk premium cannot be easily measured»
iﬁ‘theutriangle diagram. In fact, for most lotteries the risk premium cannot
 bg>showﬁ‘at all because the certainty equivalent is not onevof‘the three
. outcomes at the corners of the trianglé diagram.‘ Because of this geometric
i&ifficulty, we turn instead to a related measure called the probabiiity premium
of the lottery. M
Consider lotﬁéry B in Figure 2. A risk neutral decision maker would be
bl.viﬁdifférent between lotteries B and C because they fall on the same iso-mean
': iihe. The=ri§k averse deéision maker whose indifference curves are»plotted in
'Figuré.Z would be indifferent bétwéen iotferies B and D because they fall on
v.the,same‘indifference curve. We definé‘the probability premium to  be the
 difféféhce between the probabilities of #3'in lotteries D and C. Using p for .

probability premium, p = pg - pg.‘ This is a generalization of Pratt’s proba-
RS : .

-biiity premiﬁm and is, like Pratt’s, an increasing function of risk aversion.

Unlike the risk premium, the probability premium can always be found'for any



‘.lottery'in the triangle diagram, and thus we will make use of it'rathe: than -
'jthe risk premium in what follows | »’
The concept of increa51ng risk can be shown in the triangle diagram Forg'v‘
‘ en expected utility maximizer if the Arrow-Pratt local measure of risk k
‘.aversion is positive for all levels of wealth, then an increase in risk lowers
:: expected utility (Rothschild and Stiglitz (1970)).2 Consider again the
.:decision{maker faced with lottery B in Figure 2. A movement along the iso-mean
J line to lottery C would represent an increase in‘risk (itbis a mean presefving‘
‘spreadvin the sense.of‘RothSChild and Stiglitz) and would put the decision R
'.ﬁakérfaﬁ a lower indifference curve; lt follows thet risk evefse decision -
'nekers'dislike_mean preServing-spteads_ Thellotteries along line segment BC‘
hecomeAincreesingly.lese atttactive. Conversely; a move from lottery B to |
lotteing woﬁld'correspond to a mean'preserving decrease‘inkrisk which would

put_the‘decieion maker on a higher indifference curve.
4. The Geometrylof‘Weighted Expected Utility

|
- The fact that the indifference curVes of an'expected utility maximizer aLe

bparallel might be 1nterpreted as saying that they intersect each other at
iinfinity The insight‘of_Chew, MacCrimmon and Fishhurn‘was to maintain the |
‘lineetity of the indifference curves but to allow them to intersect at a poian
.othet‘than infinity. o o ' | ;
'.'v,The Mixture-Dominance Axiom states that when‘two points in the ptobability
'tfiangle are indifferent, then all the points on:the line segment hetween them
ﬁare indiffetent; this implies that indifference curves in the simplex figure
are straight'lines but not‘necessarily with'theisame s1ope. ,ThevSymmetty Axi?m
. T

[




:implies that the indifference curves fan ent from a unique hub point. See
point (,8) in Figure 3. Notice that the indiffefence lines get progressively‘b
; steeper as one moves from the lower: right corner of the probability trianglev
toward the upper left corner. From the'discussion‘of the previous section this
‘might be interpreted as increases in thedrealized risk aversion of the decision
maker. |
The geometry of these indifference eurves -- spokes fanning out from a huﬁ

‘:vpeint -- is not the only alternative te'the.parallel straight lines of expeeted
unility. One nossible alternative would be non-linear and non;intersecting
indifference curves over‘the entire Euclidian n-space. Another would have
lineaf indifference curves emanating frem a distinct line segment instead of a
single hub point.‘ These indifference curves would not intersect at a single
vpeint; but the linearity of the indifference curves and the their progreesive‘d
steepening in the upper left corner would be preserved. A«kaléidoscope of
alternetives suggeet themselves, but the fanning out from a single hub point
vc1ear1y is the least eomplicated alternatine to the expected ueility model.

‘ If preferences are transitive (indifference curves do not cross for
legitimate.prObability distributions), then the hub point must be located
vouesidevthe probability simplex, but the Symmetry Axiom does not require the
hub point be at infinity. Preferences consistent with the Ailais Paradox
require the hub point to be located in the third quadrant as shown in Figure
: 3, Chew and Waller's (1986) experimental evidence also implies that the hub
point for most individuals is located in the third quadrant. - For these reasenS'
we limit our discussion to third quadrant hnb points. However, our results are
general and can be extended to huE pointe_lying in the first quadrant. Hub |

. points. located in the second and fourth quadrants are ruled out because



b

preferences implied by those locations are not monotonlc -(See Fishbnrn (1982)
i'lfor a generalization that permits intransitivities ) | H
~ Taken together, the Mixture Dominance Axiom and the Symmetry Axiom imply
that the decision maker will choose among lotteries so as to maximize a utility
ifnnction of the form -
| % UCx)ps | -
V(ZX,P>) = ———. D , (4)
- ZWGEDPL ' '
bfhis weighted expected utilitx is nonlinear in the probabilities end'thus'is
»not’an expectedvutility;v The ndmerator function U isvcelled a Yaluation
_lifunction and the denominator function W is called a weighting fnnction Iflthe
weighting function is a constant then the numerator is independent of the
probabilities and weighted expected utility reduceslto expected utility

The valuatlon and weighting functlons are not uniquely defined for a given“

' preference for'lotteries.; (Recall that the von Neumann-Morgenstern utility

- function may be modified by a positiVe affine transformation.) Fishburn (1983) o

has shown that if valuation function U and Weightingifunction W represent a’
:personfs preferences, then so do any linear transformations of these, U¥ =t5U +
bw;'Wx = cU + aw, as long asvad-hc > 0. One must be?careful/in making State-:
v]mentsvebout the Valuationbor weighting functions given this ability to trans;

form,them without making changes inithe essential preferences.
»5Q'Risk'Aversionvand Eccentricity

v Sdppose an individual with initial wealth x is faced with a stochastic

“:additional‘source of,wealth; e, which has expected value p and small variance

11



o. ‘How much would the individualApay to eliminate this additional uncertéin-.

’.:jfﬁy?v’Invweighted expected utility, the risk premium n that makes the'decisioniﬁ_> i

‘ maker{iﬁdifferentAbetween paying the premium or bearingvthe entirevrisk is

&éfiﬁéd‘implicitly_by:

.U(k+u-w) E[U(x+e)]

- e

C W(xepem)  E[W(x+e)]

f;Fpllowihg standard'practice, take Taylor series approximations of the U and W
funétidns_on the left-hand side 6f first order in u—m and on the right-hand
’ V §ide of second order in e;.Sblving for n gives
R + uE S e
= — —, | | | - (6)
2/(a%+p2) + E ' _ o

 where

. uW" - U"W - o , ” Tf; o
R = —_— |, - : 7 -
U'W - W'U o o :

and

» Ulwnv - uw? . - o
E = —_— . - - (8)
U'W - WU - :
The parameter R will be called the local measure of risk aversion for
‘ lweightéd expécted utility. For a constant weighting function, W(x) = constant,
'R'féduées to the'Arrow-Pratt measurevof'absolute risk aversion, -U"/Uf. It is
easy to check that R is also indepehdent of any equivalent represeﬁtations of .
the U and W functions Ut = aU + bW, W* = cU + dw, ad>be. As in Pratt's (1964) -

vfdérivation of the risk premium,'the local measure of risk aversion for weighted

ekbected utility, R;'is'anaiyticélly qéeful; A person with a iarge measure of;;fifx.n

12



risk aver#ion R would pay more to avoid small risks than a person with a sméil'
) | v
' R, as can be seen from Equation (6). ‘

We‘éail the parameter E the local measure of eccentricity. Like R, it isb
iﬁdébeﬁdéntuof allowable transformations of U and W. A decision maker with
large eéCentricity, E, may or may not value insurénce more than‘a decision
maker with small eccentricity.

To explore the behavior associated with risk aﬁersion and eccentricity in -
weighted expected utility, it is useful to express the coordinates of the hub

point in terms of R and E. In Figure 3 the indifference curves radiate from

the hub point labelled (a,ﬁ). They are graphs of the relationship

p1U; + (1-p1-p3)U2 + p3U3
vV = , | (9
- P1W1 + (1-p1-p3)W2 + p3W3 |

for a fixed V.

To identify the hub point, set V in Equation (9) equal to two arbitréry'
‘values (V=0 and V%l, for example) and solve the resulting two equations for the
two unknown values of p1 and p3. The hub point, (p1,p3) = (a,8), can be

expressed in terms of the local measures of risk aversion and eccentricity:

1 SR+ 1)

(a,B) = (10)

E (xp-x1) E (x3-x3) |

.Hefe.the values of R and E are the discrete versions of Equations (7) and (8):

13



o Wz-wp Wo-wi] - {U3-Up Up-U
"Ug | - -l - Wo - —
Ix3-x2 xp-%x1 X3-X2  X2-X]
R = : - - - v

Ub3-U2 | kW3 -Wo
Wz -
. X3-X) X3-X9

U2>'

 and

U3-Uy [w;,-wz wz-wj W3-y [U3-U2- U2-U1]

. %3-xp  |x3-xp  Xp-¥1]  X3-Xp  |X3-X2 X2-X] e
E = — — — — (12)
- U3-Up  W3-Wy R
— Wy - )
X3.-X2_ X3‘X2

o thiceAthatrﬂ’increaSés with E and decreases With’R{ while o increases with E
but is independent of R.
The hub point could be représented in polar coordinates (p,0) that give

‘the radius, p, and angle, #, of the hub point as shown in Figure 3.

' 1 (R+1) 2 v S 1 o ’,;g.
p=1/E - + — v o3y
o (x2-x1)  (x3-x2) =~ . ' -

v -1 © (R+1)? - E
6 = cos™1 , 2t ' 2 | ()
B | A O R C TP L

It is easy to see that as local risk aversion, R, increases, the hub point

: rotates épunterclockwise and its radius,'p; increases. The élopes of all the
ihdiffereﬁcé curves in the unit triangié:inCréASe; indicating greétervfisk
avefsion;b As‘eécentridity:vE, falls towardvzefq,[thé hub point moves out alongj
ba?rgy’from_the origiﬁ to ﬁinus infinity‘and the indifference curvés bécqme
iéaraiiei; zero‘eccentricity implies the utility function is an expecﬁed

14
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ﬁtility.  As eccéntricity increases, the hub point moves toward the origin andlb
| iﬂdifférence‘curves in the lower right corner of theiunit trianglq become
flafter; indicating less risk aversion, while those in the upper left corner
Béébmé éteeper, indicating greater risk aversion. . In féct, for fixed monetary
IOuECOmes, a completely rational weighted expected utility maximizer may act
risk averse or risk seeking depending only on the probabilities; This slightly
schizoﬁhrenic behavior'is coﬁsistent with the Allais Paradox and is our
vmotivéﬁion for calling E a measure of eccentricity.

“Thé dependence of the hub point on thekmagnitude of the measures of locél
risk aversion and eccentricity suggests a simple method of simultaneously
.assessing risk avérsionland ecéentricity. Suppose that a decision maker was
asked to identify the probability of best and worst outcomes that would leave
" him indifferent between that lottery and some reference lottery (like lottery A
‘or B in Figure 3). _That‘is, if the reférence lottery was point A in Figure 1
assess the location of A"on the hypotenuse of the probability tfiangle;
Repeat‘the assessment for 1ottery B. By then trécing the two lines connecting
A to A’ and B to B', the hub point (a,B) can be located and then equation (10)
can be solved for the discrete veréions of the local measures of risk aversion

and eccentricity.

6. Probability Premium
How does the probability premium vary in response to changes in R and E?
Suppose that the decision maker faces the probability distribution given by
point A in Figure 4. By drawing the indifference curve that goes through this

probability vector and the hub point and also drawing the iso-mean line through
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| point A, we can identlfy the probabllity premlum p§ -‘pg on the p3 axis. it is
not difficult to see that the counterclockw1se rotatlon of the hub point that
'nfollows from an increase in risk aversion-implies that the probability premium
_ié”increased. The same conclusion is reached if we startjat point A"instead
of point A. Thus the general resnlt is that a more risk averse individual will
demand a higher probability premium for any risk.
| On the other hand, an increasebin ecoentricity may or may not increase the
' probahiiity premium. The hub point moves toward the origin along a ray as
eccentricity increases, so the probability premium of a lottery like A will
deerease with E, whereas the probability.premium of lottery A’ will increase as
eE increases. The line from the hub point through the origin divides the
>probability triangle into two regions - one in which the probability premium
increaees with eccentricity and the other in which it decreeses.
:xv These‘observations establish our first proposition.
Proposition 1: The probability premium is increaeing inR, E held

" constant, and may increase or decrease with changes in E, R held constant.

7. The Impact of Increasing Risk
Risk averse eccentrics do not always dislike incréases in risk. At first
blush this may seem to contradict Equation (6), which shows the risk premium -

2 even when the measure of

as a monotonic increasing function of variance o
veccentricity is positive. 'It would be incorrect to generaliZe from this
result however because it was derlved under the assumptlon that - the magnltude;

' oof the rlsk was small enough that a Taylor series approx1mat10n was reasonable o

~The‘A11ais Paradox shows that not}all mean preserving spreads reduce -
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‘ Weighted expected utility. The particular risk (or érobability distribution)
‘faced by the decision méker influences his reaction to an increase in risk,
even‘whén the measure of local risk aversion is globally positive. This
feature ofibehﬁvior is captured by the degree of eccentricity.
| Tﬁefe are regions in the probability triangle of a weighted expected

ﬁtility maximizer in which increases in risk hurt the decision maker, help, or
leave the decision maker indifferent. To identify these regions, we again
sﬁperimpose iso-mean lines and the indifference curves of a wéighted expected
utiiity maximizer (Figure 5). |
| Thére is exactly one iso-mean line that, if extended, passes through the
~hub point. This is identified as line PQ in Figure 5. ‘All the probability
vdistributions aIQng PQ have the same mean but different risks, yet the weighted
‘éxpected‘utility maximizer with positive local risk a&ersion and hub point
(a,B) treats them all as edually désirable. For probability distributions in -
the shaded region above this iso-mean line, the decision maker acts risk
‘avéfse, disliking all mean preserving spreads. In the region below PQ, the
‘person acts like a risk séeker, since meah preserving increases in risk
increase weighted expected utility.

From this we conclude that with weighted expected utility it is insuffic-
‘iént to check only a change in probability distribution to see if it represents
a ﬁeaﬁ éreserving‘iﬁcrease in risk (satisfies integral éonditions like (1n) and_
:(2n))f' In géditioﬁ, one must also check to see if the mean of the distribution
'i; sufficiently large that risk aversion dominates eccentricity. Specifically,
the cfuéial.éean, u¥*, of the lotteries that lie along line PQ in Figure 5 can
be ekpressed‘in‘terms of the discrete measufes of risk aversion and eccentric-

ityi

17:



Aﬁy increase in risk that begins with a mean less than p* will increase the
weightéd expected utility of a locally risk averse but'ecceﬁtricvdecision..

maker. The larger the local measure of risk aversion relative to the local

- measure of eccentricity, the smaller the set of probability distributions for .

 ﬁhich increases in risk are utility increasing. This result%éstablishes the

. 1
' second proposition.

B Proposition 2: 1In the case of three outcomes, x] < X9 <‘x3; a mean
preser?ing spread decreaées (leaves constant) (increases) We%ghted expected .
.utility if and only if the mean of thé‘probability distribution, p, is greater
than (equal to) (less than) x9 - R/E. |
HvTﬁis proposition isvthé first iliﬁétration of a prediction of Behavior
Fhét:depends on thefmagni;ude ofieccentricity. Even though‘%n individual is
basiéally risk éverse, if tﬁe choices all involve high‘brobaﬂilifies‘of low -
ﬁéyofféland ﬁhe eccentricity'is'large;relafive to risk aversion; the‘observed: f
ﬁéhavior will appear to be risk seeking.v The greater ﬁhe eCcEntricity, the
- 1argé# ié thebset of probability distributions.for which this:¢an occur. When
.lswbpayoffs have high probabilities, the Alléis paradox séems‘to imply that ‘
-écéentfic deéision makers discount’probébility‘differences'and concentrate |

instead on the magnitude of rewards.
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8. Constant Risk Aversion and Eccentricity
: i

~

An interesting class of functions is that which has constant measures of
idcéi_fisk aversion and eccentricity. The simplest forms for the U and W
functions that will generate positive and constant R.and E are U(x) = -e X and
Wt*) ;ve7x, A>9>0. .Cf course, allowable transformations of these U and W

jfgnctions can also be used. These are the unique functions with constant local
ﬁeasure of risk aversion, R % X - v, and constant local eccentricity, E = Ay.k

Supposevin the constant R and E case tha; two decision makers are equally
eccentric, but one has a larger measure. of local risk aversion. It followé

’ that the decision maker with larger R will have the larger risk premium for any
risk e¢. This is a stronger result than that presented in Section 5 because we
'aobnot'éestrict the size of the risk to "small." It is less general than that
_neSultﬂ however, because it applies only to the constant R and E class of
‘fuﬁctioﬁs. | |

Proposition 3: Let Uj(x) = -exp(-Aix) and Wi (x) = exp(yix), A{ > vi >0
forni = 1,2. Then ki = 2Aj - 7i, and Ej = Xyy; for all x. If Ry > Ry and E] =
Ey, then m] > mg. -

Proof: First solve Equation (5) explicitly for the risk premium,
n = (log(E[e *€]) - log(E[e?€]))/(A+Y). ~(16)

‘ If'i'is adjusted to hold E constant, then R increases ﬁith increases in A
Suppoée;that A1F> A2; we want to show that w1 - np is positive. To do‘this,'.“
défihe @ = exp(-Age) and P =exp(ﬁ2é). Invert these to get ¢ = -1/X9 log(e) and.
'e'#‘l/ﬁz log(¥). We can write E[exp(-Aje)] = E[¢A1/A2]_ Applying Jensen’s

e inequality,'noting that the assumptions on A’'s imply the function ¢A1/A2 ié
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Jcbﬁvex in v, we get 1og(E[¢A1/A2]) > 1og(E(¢)A1/A2) % A1/X9 10gE[¢]. The
'analoghe‘for the gamma term is log(E[exp(y1€)]) < X/A1 logE[¥]. Using thesé\,
‘to‘express the difference in risk premiums,

—

- ((A1/A2)2-1) (Ag/A1) (v9log(E[exp(-Age)]) + Aolog(E[exp(voe)]))
RN , .an
P - \ (A1+71) (A+72) ‘

‘The first term in the numerator is positive by assumption that A7 > Xp, and the
right-hand side will be positive if the term in curly brackets is positive. To
Shdw'this, note that exp(-Xge) and exp(yge) are convex functions, so applying

Jensen’s inequality gives

: vévlog(E[exp(-Aze)j)+A21°g(E[eXP(7ze)]) > 7210g(eXP(-‘X2E[e]))+z\210gexp(7zE[e]).)

= -y9X92E[€e] + v9X2E[e] = 0. (18)
9. Increasiﬁg Global Risk Aversion

Suppbse twb decision makers are equally eccentfic at each level of wealth,r

’bgf one has a larger measure:of local risk aversion at every‘ievel of wealth.
if éccentricity is zeré, Pratt (1964) has shown that the globally more risk
averse decision maker will be willing to pay more for insurance. Does the same
'feéulf hold for weighted expected utility? |

* In Section 8, we showed that an incréése in constant local risk aversidn,
: conétaﬁt'ecceﬁtricity unchanged, increases the risk premium. This is not a
,génerai result; however, because it depends on particular U and W functions.
The general result must consider the case where R(x) and E(x) vary with wealth,
.apd El(k) = E2(x)‘énd R1(x) > Ro(x) for all x. This is a more difficult
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proposition to verify because the equations that define R and E are nonlinear
second-order differential equations in the unknown Véluation and weighting
functioné U and W. Invfact, by simple change of variables they can be trans-

3 with general forcing functiomns that

fbrmed into Ricatti differential equgtions
are linéar combinations of R(x) and E(x). Since such equations have no closed
‘form soiutions, one cannot integrate them the same way one can the linear
differehtial equation for the Arrow-Pratt measure of risk aversion. A proof of
the following proposition is constructed in the appendix using discrete
approximations for the U and W functions. A more.general proof is left to
those whose mathematical tools are more elegant then ours.

Proposition 4:, Consider two weighted expected utility functions, V] and

‘Vz, with Ej(x) = E9(x) and Rj(x) > Rp(x) for all x. Then n] > mj.
10. Decisions with Information

Suppose now that consequences depend on the action,aa, of the decision
maker and the state, s, according to a reward function x=x(a,s); The action is
selected after learning the value of an information variable, v, aﬁd the
decision rule‘is denoted a(y). The joint probability density of the two random
Vériables s and y will be denoted p(s,y). If the decision maker is eccentric;

‘we can write the objective function

[ ux(a(y),s)) p(s,y)dsdy

Jf Wex(aly),s)) p(s,y)dsdy

- V[a] = (19)
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It will bé useful to write the valuation/weighting and reward functions as:
U(x(a,s)) = U(a,s) and W(x(a,s)) = W(a,s).

" What is the optimal decision rule for an individual with weighted expected -
utility (19) wﬁen the information may be incorporated in the'choic; of action?
‘Suppose that a(y)‘is the optimal decision rule and consider‘adding a multiple ¢
of an arbitrary decision function Z(y) to it. This giveé weighted expected
utility

Via + €Z]. (20)

Since a(y) is optimal, 6V/8é -0 at €=0, or else the weighted expected utility
could be increased by a small adjustment of the decision rule. That is,
av | Jf Uala(y),s) Z(y) p(s,y)dsdy
— = 0 = - (21)
d¢|e=0 JI Wa(y),s) p(s,y)dsdy
[ Ua(y),s) p(s,y)dsdy

S W(aly),s) p(s,y)dsdy)?

(JJ wala(y),s) Z(y)p(s,y)dsdy)

for all functions, Z, where U, and W, denote partial derivatives with respect

to the action. Rearrangement gives
S (Ua(a(y),8)/E[U] - Wa(a(y),s)/E[W])} Z(y)p(s,y)dsdy = O, (22)

for all functions, Z. Applying the fundamental theorem of the calculus of
variations and dividing by the prior probability density of the information

p(y), we can write the optimality condition as

J (Ua(a(y),s)/E[U] - Wa(a(y),s)/E[W]) p(s|y)ds = 0, (23)

22



fcr ali possible values of the information variable, 'y. The most compact

-f'~eipress10n of this is

N E[UaIYJ  E[Wa|y] : L
- - — -, for all y. v (24)
E[U] ~  E[W] ,

'Actioﬁs are cptimal.only Wﬁen their marginal impact on the rate of growth Qf
huﬁeratoﬁ of the weighted expected utility equals. the rateiof growth of the
denominator. If the decision maker is an expected utility‘maximizer, then the
1tight hand side of‘(24) vanishes and the criteria becomes the standard
‘_”E[Ué|y]=0: ccnditional expected marginal utility muet be zero.
The denominators of (24) are not conditional expectatioﬁs. That is, the
‘vfate of growthvis calculated upon a base that is the average over all possible
~signals, E[E[UIYJ] = EtU]. This does not matter if eccentricity is zero since
the right hand side'of (24) is then zerc, but it is_crucial ﬁheﬁ the decision
- maker is eccenttic; as will be shown below.
. The traditional Bayesian analysis of decision probiemsvwith information
;'beginsiby sﬁpposing the &ecision maker has observed the random variable v,
mocified his probability distribution using Bayes rule, and evaluated the

fesultihg‘prdspect by

J U(a,s) p(sly) ds

[ W(a,s) p(sly) ds

Vialy] = (25)

'V‘.What'is\the optimal action, given the above posterior evaluation of the |

weighted expected utility?»'The simplest form ofvthe-first-order conditions is
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E(Uglyl  EWalyl

- ———, for all y. - (26)

EUly]  E[Wly]

Contrasting these condltions (26) w1th the optimallty conditions (24)
::'derlved above, we now see that the expectatlon in the denomlnator is

' ’condltlonal upon the 1nformation. There is no reason for thefoptimal.decisionh
'1ﬁith information y to maximize the pbstefior weighted expected utility and vice
versa. Only'in the case of expected utility keccentricity eouals Zero) wili
bthe two criteria, (24) and (26), generate identical decision rules.

' The traditional process of analyzing a decision ptoblem in stagestand then
averaging out and folding back corresponds to the condition (26). Positive
'eccentricity is a sign that such "backWard induction" will lead to:subootimal
decisions. LaVallevand Wapﬁan (1986) first noticed that -averaging out and
folding backvdecision trees leads to incor:ect choices when the Independence
1Axiom is violated (see also Hazen (1987)). 1In general decision makers should :
not'use the standard extensive form analysisvof decision trees, as the.‘

: foliowing example illustrates.

Exampie: Suppose the‘state_takes on one of two values;VO and i, and the -

information vafiable y also takes on values 0 or 1, whereby-O.preoicts s-O'and
y=1 predicts s=1. iThe joint probahility di-stribu’tion for the .discrete random

‘vvarlables s and y are given in Table 1 along with the conditional posterior

ﬂ,;probabllitles The information is not a perfect predictor of state
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TABLE 1

Joint Probabilities - Conditibﬁal frobabilities

y=O.A, y=1 | Mafginals i : y=0 obserQed,vysl obSe;ved"
s =0 | 0.42 q.18" f 0.6 P(s=0|y) 0.84 ~0.36
s=1]0.08 032 04 Ps-lly) | 0.16 o o.64

'Marginals 0.5 0.5

For simplicity it will be assumed‘that the monetary consequence is jointly
-détgfmihed by action and state aécording to the rewér@ function
xxim,1 -v2a + ﬁas. Invthis example thé decision maker is limited to one of
thrgé action vélues,j-l, 6 or +1. The decision probiem‘iS'desdribed in
,‘_extensive form in the deéision tree of Figure 6.
bThe decision'probleﬁ cannot be analyzed withoﬁt spgcifying the degree of_‘
risk ayersioh and thé meésurevof eccentricity. SuPpose that.risk aversion and
eécentricity measures are cohsténts. VWe'Will consider only one Qalue for risk
':‘aVQrsion, but will explore how the problem &ariesvas the decision maker’s
' eccehtricity iﬁcréases. In Table 2 thrée scenarios are analyzed. The‘first
' cotfgépdnds to an expectéd utility maximizer since the mééSure:of eccentricityvyl
. is'zef§}V‘The othér tWo:involﬁe identical measures of risk aversion but
' pfog;e$siv¢1y‘1arger éositivebecéehtricitf.' In all éituatiéﬁs the optiﬁal ‘
decisioﬁ<rule'is found by’évaluating>all pbssible ruies and selecting the oné
’thét mékimizes wéighted.expected utility. . The Bayesian decision rule i§ found
by,fhe_traditionai tecﬁnique»of working backward through the decisioﬁ tree in

.[figﬁfe‘6.
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TABLE 2

Decision Rules¥*

: Bayesian - Optimal WEU of WEU of - Percent
R E agp aj ag aj Bayesian Optimal =~ Loss
0.1 0.00 S | 1+ -.83555  -.83555 0.0%
0.1 0.42 -1 +1 -1 -0 -.13296  -.13182 0.9
0.1 4.20 -1 +1 -1 o -.00712 -.00413 72.4
* ay=a(y)

As can be seen in Table 2, when eccentricity is zero there is no loss at
all ffom using the traditional.Bayesian approach to analyzing the decision
probiem. ‘Moreover,‘wheﬁ'eccentricity is small the loss from thevtraditional
procedure is less than one percent of the maximum posSible weighted eipected'

’ utility value. Very eccentric decision makers, on the other hand, would see ;3
1oés pf:glmost 75% if they were to follow the.decision anai&sis procedures

‘descfibed in most textbooks (see Raiffa (1968)).

~11. Conclusions

‘ We have shown how weighted expected uﬁility can be used‘to analyze
décisions under uncertain;y. In particular, we have developed the two impor-
taht ﬁarameters,thét characterize the behavior of‘weighﬁed expécted utility
maximizers. These parameters are the local measure of risk aversion and the-
local measﬁré of edcentricity. Geometric intefpretations of these parameters
;Qere explored, énd predictions of behavior developed. The primary conclusions
are these. 'Fir;t, even if a decision maker is eccentric‘, great_ér risk aversion
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“._implies that the decision maker placesrmorevvalue on insurance. Second even .
if the measure of local risk aversion is positive foriall levels of wealth it‘
is possible for an eccentric decision maker to prefer some increases in risk.
Third,.the more significant'risk»aversion‘is'relative to eccentricity, the‘

'smaller is the set of circumstances_which produces_this "paradoxical" behav->

~ior. " Fourth, as-a decision maker becomes more eccentric, he acts more rish
ayerse toward lotte%ies that‘offervlarge oayoffsvwith high probabilitiesvand
less risk averse toéard lotteries offering small payoffs with high probabili-

'ties.' Fifth, . the tnaditional backward induction strategy of "averaging out and
folding'back" for cﬂoosing decision rules is suboptimal for eccentric decision

: makers and the magnitude of the error is positively related to the degree of
leccentricity. ? |

‘ithh is left undone. Clearly all applications of decision theory previ-

v;‘ously modelled w1th;expected utility are now open to relnvestlgatlon ‘with |

weighted expected ut111ty It w111 be interesting to see if standard results
in areas such as po tfolio theory and the theory of the f1rm carry over under

-‘weighted expected utility We expect not. In addition con31der the following :
Zissues- ~ The weighting function that explains the Allais Paradox puts greater
'relatlve emphasis on 1arge outcomes. Is there a statistic of the probability,
-distributlon that clrresponds to the eccentric’s emphasis on large outcomes vv
s1m11ar to the way . that variance corresponds to the risk averter's dislike of
risk? Finally, a closely related issue is whether there is a slmple
relationshio between two probability diStributions thatbestablishes dominance

-for:eccentricslthe‘may stochastic dominance»does for risk averters. These andhi
. R | S : o

‘many other isSues»remain_to'be'explored.
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Appéndix - Proof of Proposition 4
In this appendix we will show that when the 1ot£ery has discreﬁe outhmes'

and ecceﬁtricity is unchanged, én increase in local risk aversion will incfeasé
tﬁé fiéﬁ pfemium. As mentioned in the~text, a completely general proof is
difficult t§ construct since the equations definingvthe valuation function;
va(x), and weighting function, W(x), in terms of the measures of local risk
aversion, R(x), and eccentricity, E(x), are nonlinear, second-order differen-
ltiai equations. In this appendix attentibn will be lim;ted to a special CQse
‘that is nonetheless general enough that it can be inducfively extended.

| In particular, suppose that thé lottery takes on one of five values
H{xl,xz,X3,X4,x5}, where for simplicity the difference between successive vélues
iq_one unit, xXj41-%j = 1. The allowable transformations of the U and W
fﬁnctions will be used to set the values aﬁ X1 and x5vto U(x1)=0;
U(x5)#1=W(x1)=W(x5). vThe values of the two functions at the intermediate
'oﬁtcoﬁes will be determined by the local measures of risk aversion and eccen-

- tricity. For example, at x=x9

Up [(W3-Wp) - (Wp-W1)] - Wy [(U3-Up) - (Up-Up)]

Ry = , ) (¢D)
Wo (U3-Ug) - Uz (W3-Wo)

and

(U3-Up) [(W3-Wp) - (W2-Wp)] - (W3-Wp) [(U3-Up) - (U2-U1)]
Ep = (i)
W2 (U3-Up) - Uz (W3-W2)

‘ Compéred with equations (11) and (12), these equations do not include differfﬁ
ences in outcome values such as X3-X2, since we héve set them to unity for
simpiicity. It i§ also important to notice that although Ry and E2‘depend on
| U1 aharwlfwhich will be normalized to 0 and 1rrespective1y, and R, and E4
depend on Usg and W5Awhich will also be normalized, R3 and E3 are completely
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free of this normalization.b This is the reason for using‘five outcomes in the
‘lottery. ‘Five is_the sma11est set that has the property that ét least one pair
':‘of R and E values do not depend directly on normalized values of U and W.
Tﬁe_valuation agd weighting functions will be treéted as piece-wise linear

'fpr values of the outcome that fall Between the discrete values
{X1,%X2,X3,%X4,%X5) .

" The objective oﬁ the first step in the proof is to express the valuation
band weighfing functi?ns explicitly in terms of the measures of risk aversion
Qnd eccentriciﬁy.'Tr;ating (1) and (ii) as eéuaﬁions defining Uj and~w2,

straightforwar& algebra allows us to solve them to get

0 + U3(1+Rg)

Ug = — ' - (1ii)
1+Rg + 1+Ep .
1 + W3(1+Ry) _
Wy = , (iv)
1+Ry + 1+E9 .

|

| !
where the normalized values of Uj and W; have been used.

Notice that discrete measures of risk aversion and eccentricity always

appear added to 1; for notational simplicity from this point forward, write

14+R; as rj (mot to bh confused with the Arrow-Pratt measure of risk aversion)

and 1+E{ as ey . By similar derivations we can express Uj3,U;,W3 and W,.
0 + Usrp : » »
U = ———, : - (V)
ro + e '
‘.>U2'+ Uy
U3 = ———, ' ‘ (vi)
r3 + e3 ‘ ‘
U3 + 1lry ' :
Uy =——m—, , , ‘ _ (vii)
ry + e4
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Wy = —————, v : (viii)
ro + e .
‘ Wy + W4r3 . : 4 ,
Wy = ————, | (ix)
r3 + e3y :
W3 + lf4
Wy = . (x)
ry + ey

After algebraic manipulation one can express Up,U3,U; and Wp,W3,W, entirely in

terms of risk aversion and eccentricity measures.

Uy = ror3r,/e, ‘ | (xi)
Uz = (ro+eg)r3ry,/6, ' (xii)
Uy = ((roten)(r3+es)-ro)ry/0, ’ (xiii)
Wy = [((r3+e3)(rs+es)-r3) + ror3r,l/e, (xiv)
W3 = [(rg+es) + (rpteg)raryl/e, | | | | (xv)
Wy = [1 + ((ro+ep)(r3+e3)-ry)rs]/e, (xvi)
where |
® = (ro+ep) (r3+es) (rs+es) - rz(r4+e4),-r3(ré+e2). © (xvii)

'These are the equations that explicitly determine the valuation and weighting.
function in terms of the measures of risk aversion and eccentricity.

‘ Next, consider the equation defining the risk premium, =,

U(x+p-n)  E[U(xte)]

= — . (xviii)
W(x+p-m) E[W(x+e)]
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Suppose thatvinitially‘the solution of this equation puts x+u-m in the interval

) [ké,X3]. If it fell in any other interval the details of the proof would

change, but not the results. Since the functions U(x) and W(x) are piece-wise

linéar for values of x that fall between successive xj's, the equation defining

1
the risk premium in this situation is

:U2+(U3-U2)(X+#'ﬂ-kz)' 2 Ujpi

Wo+(W3-Wp) (x+pu-m-x9) 2 Wip4

' Solvihg for the risk premium gives

Wo (2 Uipy) - Uy (2 Wipy)

T = Xtp—x9 + ’
(W3-W2) (2 Ujpy) - (U3-U2)(Z Wipi)

= x+p—x9 + 1/(2-1),
~.where |

- W3 (2 Ujpi) - U3 (2 Wipi)

z-

Wo (2 Uijpi) - Ug (2 Wipi)

(xix)

(xx)

(xxi)

We have now written the risk premium in terms of the expression Z. This is

© not an approximatioh that depends on an assumption that the risk is small as

"was true in Equation (6). Moreover, the value of Z depends on the valuation

‘and weighting functions which we have already expressed in tefms of the

" measures of risk aversion and eccentricity. What remains to be shown is that

 if discrete risk aversion measures rp,r3 or r; increase, holding ej,e3 and ey

constant, Z will decrease causing the risk premium, «, to increase.

Substituting from (xi)-(xvi) into (xxi) and simplifying éives Z as a

| 'functibn of risk aversion and eccentricity

31



-P1(r2+e2)t3r4 - p2r3r4v+ P4¥y + p5(r4+e4) :
‘ ' ‘ : (xxii)

Z= : — , .
-P1r2r3r4 - P3r3r4 + pars(r3tes) + ps((rytes) (riteq)-e3)

(At ﬁhié point, the proof becomes an exercise in calculus; one must show that

vﬂevewneybeS nadolt T TvappdZ/dri < 0,.i=2,3,4} These derivatives are giVen .

.bélow.i_

' ’6Z -p1r3r4[(p3+p2)r3r4+p4r4(r3+e3-1)+p5{(r4+e4)(r3+e3-1)-r3))+p1r3r4e2]' _
» : C(xxiii)

drp - [-p1rar3ry - p3r3r4 + pars(rates) + p5((r3t+e3) (ra+es)-e3)12

-[p1r4{p3(r2+ez)r3r4+p4r4((r2+e2)(r3+e3);r2)+p5((r2+§2)(r3+e3)(r4+e4) -

aZ ro(r4tes) -r3(rot+en))) + (pyratps(rgtes)) (porges3+(p3+pg)r4+ps(rates-1))] .
- : . C(xxiv) o

 6r3 [-p1ror3ry - p3riry + p4r4(r3+e3) + p5((r3+e3)(r4fe4)—e3)]2 "‘

VA ep5r3[p2((r3+é3)e4-r3)+p4+p5+p3e4+p1((r2+e2)e3e4-r2e4+(r2+e2)r3(e4-1))]
(xxv)

oty [-p1rarars - P3raT4 + pars(rites) +3P5((f3+e3)(r4+e4)-e3)]2

It is easy to show that since rj =1 + R; > 1 and e = 1 + E; > 1, all three of

these derivatives are negative. That is, any increase in risk aversion Rj will

cause Z to diminish and hence the risk premium to increase.
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FIGURE 1

Iso-mean Lines
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FIGURE 2

Iso-mean Lines (dashed) and Indifference Curves (solid)
for an Expected Utility Function
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FIGURE 3

Indifference Curves for a Weighted Expected
Utility Function
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FIGURE 4

The Probability Premium and Its Relationship
: to the Hub Point
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Increasing Risk and Weighted
Expected Utility
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FIGURE 6

Decision Tree
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Footnotes

-1, To see this, recall that the slopes of the indifference curves increase with
- - an increase in risk aversion. In particular, the slope of the
indifference curve through lottery B will increase. This in turn increases pg
which increases the probability premium, p.

2, "Increase is risk" is defined as a mean preserv1ng spread in the probabillty
distribution over possible outcomes. For continuous distributions over the
interval [a,b], a cumulative probability distribution G(x) is a mean preserving

spread of a cumulative probability distribution F(x) if

fa (G(x)-F(x)) dx > 0, for all te[a,b], o (1n)

JE (6(x)- F(x)) dx = 0, for t = b. ' (2n)

The inequality (ln) has the consequence that more weight is put on extreme

outcomes with distribution G than with distribution F, whereas equality (Zn)

_implles that the means of thée two distrlbutions are identical.

3. A Ricatti equation is of the form x'(t) + x(t)2 = f(t).
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