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Vector Autoregression (VAR) models have become a widespread tool for 

forecasting, an application in which their virtues have been well documented 

(Litterman (1984,1986)). As a tool for structural and policy analysis VAR 

models are more controversial. The VAR methodology was initially formulated 

in an attempt to impose minimal restrictions on economic data in the belief 

that many controversies would never be resolved as long as empirical 

econometric models were overidentified using what Sims (1980) referred to as 

ihctea:lbie restrictions. By imposing minimal restrictions on a model it was 

felt that the true structure of the economic system under investigationwquld 

emerge. 
\ 

While this aim was perhaps laudable it has had the unfortunate 

consequence of holding out the promise that something could be obtained for 

nothing. Critics of VAR models (Leamer (1985), Cooley and Leroy) point out 

that, in simultaneous equation models (SEMs) it is necessary to make some 

identifying assumptions to give economically interpretablemearting to model 

results. It is telling that such a simple observation should need t;q be ll)ade 

at all. The explanation for this seems 1j:o lie in the fact that VAR and qther 

time series methods, often, are treated as distinct from standard SEMs, even 

though they are better viewed as special cases of the latter.· 

In.this paper an attempt is made to present the VAR methodology in a way 

that reflects both the linkages with SEMs and the unique features of VARs 

that give them a special place in the tool box of applied econometricians. 

Central to the VAR methodology are the concepts of the Impulse Response 

Function (IRF) and the Forecast Error Variance Decomposition (FEVD). These 

· rely on the ability to specify a model in terms of primitive, orthogonal 

shocks, Essentially this means that the covariance matrix of a set of 

economically interpretable shocks is diagonal. Indeed, it is the central 

place pf these shocks and their interpretation that distinguishes the VAR 

approach from much of traditional econometric practice, irt which the 

stc;>chastic aspect of a mociel often is treated as a nuisance rather than as an 

intripsic part of the system being examined. 

Another feature commonly associated with VAR models is that the 

associated reduced forni model is completely .unrestricted. The term VAR 

itself .implies this, and it is common to hear VARs models referred to as 

unrestricted reduced form models. Actually, the critical· feature of the VAR 

methodology is that the model is identified solely by the restrictions placed 



., 

on the contemporaneous interactions among endogenous variables .. This-feature 

allows estimation to proceed in a very straightforward manner and enables 

model specification to be altered at low cost. 

The important point to be made about these two features is that they are 

both aspects of the familiar identification problem. Ultimately, the 

bt:!lfa-ValHlit)" of results concerning structural issue!!l that are derived from a 

VAR or any other SEM will depend on the believability of the identifying 

iilHiliffiptfons made. The most telling criticisms of the application of VAR 

methodology is that the identifying restrictions areunbelievable. Most 

practitioners have identified their models as recursive systems. While there 

may be situations in whieh a recursive structure is appropriate they are .the 

exception rather than the rule. Recently, however, several economists have 

used the features of the VAR methodology in models that are not recursive. 

Blanchard and Watson, Bernanke, and Sims (1986) all discuss models that have 

the e~sential features of a VAR model but without the assumption th~t the 

system is recursive in nature. 

ThiS paper discusses this generalized approach.to VAR models. It is 

meant to explain the nature of the relationship between VAR models arid 

;g~neraF dynamic SEMs as well as to serve as a technical reference for those 

J:ri~rrested in usi~g VAR models. Much of what appears here is implicit in 

other works but is discussed systematically and in more detail here. The 

paper also includes explicit expressions, which have not appeared elsewhere, 

for the Score and Information functions associated with VAR models subject to 

arbitrary linear parameter restrictions.. The first section discusses the 

general formulation of dynamic SEMs. The particular identifying restrictions 

.of the VAR approach are discussed in the second section. This is followed by 

a discussion of estimation procedures applicable to VAR models. The 

construction of the IRF and FEVD is then outlined. The paper concludes with 

a few comments on the use of VAR models in economics. 

DYNAMIC SIMULTANEOUS EQUATION MODELS 

A general specification of a dynamic linear SEM can be given by:l 

co 

l Yt-sA(s) 
s=O . 

co 

ZtC + .. l Vt-sB(s), 
s=O 
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. where Yt and vt are both (lxk), A(s) and B(s) are · (kxk), and zt is a (lxq) 

vector of non-stochastic (or strictly exogenous) variables. 2 Furthermore, .it 

is a.ssumed that 

E[vt] ... 0 - .·.{ .. · .OI. k and E[v~v ] - 6 I , t s · st k 

t-s · 

i.e. 1 the Vt are vectors of Serially uncorrelated and mutually orthogonal 

shocks. The term impulses will be applied to these shocks,. which represent 

tH~ ltid.~pendent·sources of variation in the system being modeled, The A(s) 

and B(s) describe the propagation mechanism linking the unobserved impulses 

to the observed phenomena y. 

It will be assumed that the system is stationary and therefore that both 

an autoregressive (AR) and a moving average (MA) representation exist and can 

be obtained from orie another by inversion. .The AR representation is given by· 

Yt = S Yt-sG(s) ~ ZtC* +tit, 
s=l 

where the ut are mean zero, serially independent random variables with 

Cov(ut)=O. The stationarity assumption ensures that the G(s) will be close 

to zero for large enough s. It is therefore convenient and useful to assume 

that, for s>p, G(s)=O; In the case that B(s)=O, s>9, and that A(s)=O, s>p, 

tpis¢ondition will hold exactly, otherwise it represents an approximation. 

In either case the intuition behind. the assumption is that the distant past 

has little or no independent effect on the present; Le., the effect of the 

distant past is expressed entirely through the more recent past.3 With this 

assumption the model can be writtenyt ,.= xt/J + ut; where 

and 
Xt = [Yt-l•Yt-2• ... ·Yt-p•Ztl' 

/3 

G(l) 
G(2) 

G(~) 
c 

(/3 is ({kl+q)xk)). 

The lack of serial correlation in both the vt and theutensure that 
. . . . . 

these two error components are linear combinations of one.another, related 

3 



according to utA "" vtB, where, for simplicity of notation, A-A(O) and B-B(O). 

This , ,in turn, imp lies that O=A-T B' BA-1. 

Using the established terminology, the A(s), B(s), andG are called the 

structural parameters, while f3 and. 0 are called the reduced form parameters . 

. In general it will n:ot be an easy task to recover all of the former from the·. 

latter, For some problems, however, it is enough torec6vet only theA and B 

ffi&hl<:!ifa and this may require only knowledge of 0. !n the special .case that 

B(~j@O for s>O (i.e. there is no moving average .component in the system) it 

is. easy to see that A(s)=-G(s)A-1, C=C*A-1. Thus, once A and B are · 

estimated, the other system parameters are obtainable directly from the 

reduced. form parameters. This is an assumption that typically is made in 

stfindard treatments of SEMs and suggests that the shocks directly affect the. 
. . 

observed variables only as the shocks are realized; .all subsequent impacts 

are through interactions between the variables.4 

The stochastic nature of the model can be specified completely by 

assigning a probability law to the impulses. ·Here it is assumed that vt are 

multinorrnal;.because they.are linear combinations of the·vt, the ut are also 

mtiltinotmal. The log likelihood for this model (for Yt• t=l, ... , T) is (see 

Appendix A for details). 

Tk. · 
-- ln(21f) 

2 
T ' 1 T . -1 
2 Inlloll - 2 I <Yt-xtfl)O <Yt-xtfl)' 

t=l 

_ T~ ln(21r) + T(lnllAB- 1 11) - ~· tr(B-TA' (Y•Xfl)' (Y~XfJ)AB-l), 

_T~ ln(21r) + T(lnllAB-1 11> - ~. vec(AB- 1)vec((Y-Xf1)'(Y-XfJ)AB-l), 

where Y and X denote the matrices composed of the T observations ort Yt and 

Xt· It is assumed that x has full column rank. 

The number of reduced form parameters in this inodel equals 
- ' - . . 

J~(pk+q)+k(k+l)/2, ·corresponding to the f3 and 0 matrices. If it ls assumed· 

that B(s)=O, s>O,· then the system has (p+l)k2+qk+k2 structural parameters, 
•• •1 -~ :·. _-t 

corr~~ponding to the A(s), C, •and B matrices and therefore has (3k2·k))2 mpre 

par'.ii.meters than the reduced form. An order condition for identification thus 

"is that (3k2·k)/2 restrictions need to be imposed on .the A(s), C and B t 
. . . 

matrices. In the traditional SEM little value is placed on specific 

knowledge of B, it being considered adequate.to estimate B'B, which has only 

4 
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k(k+l)/2 free parameters;. B'B is the covariance matrix of the (non

orthogonal) structural errors (Le., the etB). This reduces the 

identification problem to one of imposing k2 restrictions on.the A(s) and C 

matrices.s It is clear that identifying restrictions cannot be placed only 

on A unless it is assUtlled that A=I, in which case the model is.no longer 

simultaneous. 

l 
IDENTIFICATION IN VAR MODELS 

In contrast, the VAR approach focuses on the A and B matrices .. The 

reason for this sterns from two features specific to this approacl). First it 

is considered desirable to be able to trace the impact of each of the 

impul~es on the endogenous variables. This ability is lost unless the 

elements of B can be identified. Second, the modeling philosophy that has 

developed with the VAR approach deems it desirable 'to leave the reduced form 

parameters associated with the lagged endogenous and exogenous variables (p) 

relatively unencumbered with model-specifiC restrictions that would be 

implied by restrictions on the A(s) and B(s), s>O, and the C matrices. 

There are at least two substantive rationales for focusing all 

identifying restrictions on contemporaneous interactions. Many economic 

variables are determined in a setting in which the values of past 

realizations of all variables relevant to a system are known to economic 

agen~s and potentially :will be used to form expectations about the future 

st.ate of the economy. These expectations provide a link between past and 

curreIJ.t realizations of all the variables in a given model. On the other 

hand., it is sometimes difficult for variables to react immediately to new 

economic developments because of information lags or adjustment costs. Such 

minimum delay considerations provide one useful source of identifying 

restrictions. A third reason is that there a significant gain in 

computati<mal ease when it is possible to separate any restrictions placed on 

P from,tJ:iose placed on A and B. There is no doubt that this has influenced 

the development of this methodology. 

By concentrating on A and B, the contemporaneous coefficients matrices, 

and. leaving the reduced form coefficient matrix p unrestricted, the order 

condition implies that the number of free parameters in A and B must be less 

5 



than or equal. to· k(k+l) /2, the numbef1 of free parameters in 0, implying that 

at least (.3k2-k)/2 restrictions must be imposed. Normalization (scaling) 

will reduce this number to 3(k2-k)/2 restrictions.6 

General (linear) restrictions can be represented by 

Rvec([A BJ) """r; 

\lthEire ~ has 2k2 columns and the number of rows in both R and r is equal to 

the nuntber of restrictions imposed on the model, these being at least 

(3k~~kj/2 (including normalizing restrictions). A more useful representation 

of the restrictions can be made, however, in terms of the underlying free 

parameters of the system, here denoted 0. This general framework is given by 

vec([A B]) ZO + W, 

where Z, e, and Ware (2k2xn), (nxl), and (2k2xl), respectively, and where 

ri ~ k(k+l)/2. Whil,e the two representations are equivalent,7 the parametric 

representation facilitates estimation, since e is the vector of underlying 

parameters to be estimated directly, with Z and W defining the transformation 

of· e into A artd B. This representation allows completely general (linear) 

constraints to be imposed on A and B, including zero constraints (the ith 

r.ows of Z and W equal to 0) as well as within- and cross-equation constraints 

(two or more non-zero elements in the j th column of Z). . 
A simple example will clarify the r.elationship between the two methods 

for representing restrictions. Suppose k=3 and it is assumed that B=Ik. 

Letting vec(A?=Z18+W1 and vec(B)=Z28+W2, this restriction can be imposed by 

setting Z2=0 (,9xn) and W2=vec(I3). This imposes k2=9 restrictions and 

therefore at least k(k-1)/2=3 additional restrictions must be imposed. Let 

these restrictions be a31=0, a12=a2i• artd a13+a23+a33=l. 

cap. b.e imposed directly according to R1vec(A)=r1, where 
. ' , -. . 

R1 = [o o .1 o o o o o o.] 
0 1 0 -1 0 0 0 0 0 

·• 0 0 0 0 0 0 1 1 1 

and 

These restrictions 

Note tha.t R and r are not unique and that the same restrictions would be 

imposed if both were pre-multiplied by any non-singular .matrix. The 

restrictions can also be imposed irt parametric. fashion by setting 

6 



Z1 - 1 0 0 0 0 0 and W1 - 0 
I 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 
0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 1 0 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 -1 -1 1 

With Z1 defined in this way 0 corresponds to (a11 an a22 a32 a13 a23), but 

th:Ui need not be the case. The same restrictions would be imposed if. Z1 wen~ 

post-multiplied by any non-singular matrix, with 0 appropriately redefined. 

The order condition for identification involves simply counting the 

number of free parameters in the model or, equivalently, the number of 

restrictions imposed on A and B. As Rothenberg has shown, the necessary and 

sufficient condition for the local identifiability of any regular point in Rn 

(i.e., any point, 0, for which the Information matrix. I(O) has constant rank 

ina neighborhood of 0) is that I(O) be fu11 rank (expressions for I(O) are 

derivedin Appendix A) .. In principle this condition should be verifiable by 

examination of Z and W, which define the restrictions on A and B. 

·Unfortunately no general results appear to be available. As a practical 

matter the examination of the rank of I(O) for a few random values of 0 

should be sufficient to establish the local identifiability of a given model. 

It should be pointed out that neither rank(Z)=n nor rank(A)=rank(B)=k is 

sufficient to establish the identifiability of a given structure, though 

these clearly are necessary conditions. An example will suffice to 

demonstrate this point. Suppose k=3, B=Ik and let 

Z1 = 1 0 0 0 0 0 
0 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
0 0 0 0 0 0 

and 0;.,(1 2 1 3 1 1)'. This model satisfies the order condition for (exact) 

identification (n=k(k+l)/2=6) with rank(Z)=6 and with 

A = [l 1 l] , A -1 = .[ . 3. - 3 -1] . . . 0 0 1 . . -2 2 1 
2 3 0 . . 0 1 0 

7 



Note; however, that 

I(O) = 22 -8 -6 2 0 0 
-8 3 3 -1 0 0 
-6 3 17 -7 0 0 

2 ,..1 :-7 3 0 0 
0 0 0 0 13 -13 
0 () 0 0 -13 15 

wliitrn i.S rank 5, the first colt1mh being equal to the second through fourth 

coiumxis times (-3 1 2)'; 

r:kls example admittedly is somewhat trivial, in that the first two 

columns of A involve the same variables and hence one would not ~xpect the 
I 

model to be identified. In cases of higher dimensional kit is.quite 

possible, however, to have other kinds of problems that are not as readily 

not~ceable. · 

It is also important to note tha.t there is art essential redundancy in 

the A and B .matrices. ·The restrictions imposed on A can be thought of. as 

describing how the .variables in the system interact contemporaneously,· while 

the restrictions on B describe the direct impacts of the shocks on the. 

eqµat;,:i.on,s of the system, so that non-diagonal elements of B allow for more 

than one shock to eri.ter a given equation directly. There often are more thari 

one ~ay to formulate a given model, however. For examp~e, it .should be 

obviolls that the model 

A= 
[
al a2 OJ 
. 0 a3 a.4·· · 
o · o as 

and; that given by 

A == [a~ :; :~] 
0 0 a6 

given by 

B = ·[l .. 0 bl] 0 1 0 
0 0 1 

B=.[l.··00] 0 1 0 
.· . 0 0 1 

are the same. In both the first shock is equated with the innovation to the 

first variable. Hence it is irrelevant whether its impact on the third 

va'riable is said to· enter through A or through B. Indeed, if general non

irii.Ja.r restrictions were used technically there would be no need to use both 

m~tric~·~ explicitly,. as either one or the other would suffice .8 In practice, 

however, it may be preferable to place restrictions ori both matrices if such 

restrictions can be given a readily interpretable meaning. 

8 



ESTIMATION TECHNIQUES 

One of the main advantages of the VAR model is that the identifying 

restrictions allow the reduced form parameters to he estimated separately 

from the contemporaneous coefficients matrices, A and B. The reduced form 

coefficients can be efficiently estimated used OLS. Maximum likelihood 

estimates of A artd B then can be estimated conditional on the estimated 

values of the reduced form coefficients. This two-stage estimation approach 

ybic:l.s ,IML coefficient estimates even if the model is over-identified 

because the identifying restrictions on A and B have no implications for the 

reduced form.coefficients (this differs from the case of the general SEM). 

Details of-the estimation strategy proposed here are most easily derived 

for the case in which B=Ik. This restriction implies that each .system 

impulse enters onl~.one equation directly (i.e. Bis diagonal), and that the 

normalization restrictions are applied to B. This results in-the log 

likelihood:. 

Tk · • 1 · .· · 
,e = -2 ln(21f) + T lnllAll - 2 vec(A) 'vec(U'UA), 

'It cari be shown (see Appendix A) that 

ai(O ,(3) == vec(X'UAA') = vec(X' (y-X(J)AA') . 
. avec(f3) 

'Setting· this equal to 0 and solving for f3 yields 

P. = (X'X)- 1X1 Y, 

i.e., the OLS estimator (recall that X is assumed to have full column rank). 9 

.To derive an estimator for 0 note that the FIML estimator for the 
" .,.. 

innovations, U, is U=Y-X(J, which can be used to construct the estimator for 

Gov(u,t)=O given by O=U'U/T. 

·'J;he fact that the FIML estimator for (3 is independent of A suggests the 

two stage estimationprocedure discussed by Sims (1986). In the first stage 

theOLS estimate of f3 is calculated. In the second stage numerical 

optimization methods are used to solve for 
" " · 0 = arg max i(O ,(3). 

0 

-This strategy yields FIML estimates of 0 and f3. 

In Appendix A it is shown that 

9 
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0 J. ( 0 jti . I ( .. ( 'l') ( I ) ) aO . . ... Z1 T vec />:.- . ~ vec U UA . 

E~a.hiating the likelihood and, its gradient with respectto 

·.,.(.0,p) = -T{~ln(21r) + liiCllAI!)·-} vec(A)'vec(~)J. 
artd . ·. . 

:: : . I\· 

~it,~1,9 fl} 
. , '· i&>'#t"ti.. ,.I:' 
. tJe TZivec(A-T OA) • 

· .... · .. > 

" 0 a.t · {3. yields · · 

~t!th_ ~t these functions involve fJ and the data 'only through the esti~~tor 0:, 

.. a fact that g:reatly facilitates estimatfon of 0. . 

It should be n()ted, however, that O is not necessarily ~he FiML . . . 
·. . . . I\. ,;., A .· ·. . . ,...· I\.-- . 

estimator' of 0, which is instead given by 0-A-TA;..l, where vec(A)-ZlO+W1·· ·a 
is not FIML because it fails to account for possible over-'iderttifying 

restrictions, though the two estimators should be quite close if the: 

i~entifying restrlctio~s are good. In the exactly identified case, -h~w~'.\1e:r, 
it. win• always be possible to find art A such that ~A.:TA'."1; which satis.fies · 

th~ firs.t ~rder necessary co~ditions (FONC) .·for a maximum. The two 

estimators therefore ~ill coincide in the exactly :i.dentifi~d cas~. This 
~~·· ' ' . ' ' ' ' ' 

si tua~.~~n is discussed by Bernarike I who.·. developed an alternative 'estimation 

proceciu:re that. exploitl:l this fact.10 This fact also ·gave' rise to whB.thas 

become-a' standard "identification" technique in VAR analysis.in which A.is· 

s~e-~· e-q~a.l to the inverse of the Cholesky decomposition of '1 .. This Jmpo·ses an .. 

l1pper triangular form ~n A>and implies that the syst7m has a recursive 

structure al~ Wold .. The "identification;' problem thus is reduced to 

~~tabl~shing an o'~de:ring forthe variables in the system . 

. , ... If the assumption that B(s)=O,. s>O, has been made,, th~ .invarianp:e. 

property of ML estimators allows the "structuraii• coefficient inatrices to be 

~erived .from the Mt. es.tiinators of G(s) ,: c*, and A: 

I\ . "' I\ 

A(s) - G(s)A; · s:>o; 
·· li: · .and· 

·····;;, :,_:;;' "*" 
'G-~C A. 

' · ·For evaluating th_e quality of th~ estimator$ a!ld for hypothesis te~ting, 
;a.s weli as for checking model identification, it is useful to have art 

explicit expre~sionfor the !nformation matrix, the inverse of whiC!h i~ equ.;tl' 

.·_to \:he .• asympt()tic Coy(o·,-p)_:. The· in;formatlon matrix. for this .model is·· 
'.·· ~ ·. ·. 

. '·. -~:-.:. \. . ., .. ; ~ . 10 
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I(0,{3) 

the block diagonality of which is demonstrated by noting that the upper 

right-hand term 

-Epvec~;'UAA')] = O, 

sirtce tf ls not affected. by 0 and has expectation zero.11 This is further 

manifestation of the separability of the reduced form: coefficients and. the 

Jdentifying restrictions on A in this model. 

In Appendix A it is shown that 

82,e -T -1 , 
8080 , = -Zi(TPk(A ®A ) + (Ik®U U))Z1 , 

where. Pk is a permutation matrix constructed by arranging the columns of the 

k2 identity matrix in the order: 

l,k+l,2k+l, ..• (k-l)k+l,2,k+2, ..• (k-l)k+2, ..• (k-l)k, ..• k2. 
-1 . 

It may be noted that Pk is symmetric, that Pk = Pk, and that, for any (kxk) 

matrix .A. vec(A' )=Pkvec(A). 

Th~ upper left hand block of the information matrix, which is associated 

with 0 (and here denoted I(O)), may be obtained by replacing U'U with its 

e~pectation, T(A-TA-1): 

I(O) = TZi(Pk(A-T®A- 1) + (Ik®A-TA-l))Z1. 

Note that this term is functionally independent of {3. Similarly, it: can be 

shown that 

82,e 
= -AA'®X'X. 

8vec({3)8vec({3)' 

xt contains lagged val~es of Yt and the expectation of this term involves the 

autocovariance function of y, which is unknown. Under the stationarity 

assumption, however, X'X has a well defined asymptotic value and thus AA'®X'X 

provides a consistent estimator of this block of the information matrix. 

If'the model is generalized to include a non-diagonal B matrix the 

separation between the reduced form parameters, (3, and 0 continues .to hold, 

This again allows for a 2-step estimation procedure. Indeed.the' first step 

is identical and yields the estimator 0. The likelihood and its gradient 
I\ 

with respect to 0 canagain be evaluated at (3, yielding (see Appendix A for 

11 



" with respect to 8 can again be evaluated at {3, yielding (see Appendix A for 

details) 

and 

" . (k . II - i 11 1 . - 1 -1 ) .. i.(8,{3) = -T z-ln(211") + ln( AB ) - 2 vec(AB ) 'vec(OAB ·) , 

TZ' [ vec(A-T. - OAB-lB. -T) J · 
vec(B-TA'OAB-lB-T - B-T) 

ifi th:h case a:ny A and B such that O=A-TB'BA-lwill satisfy the FONG for a 

·maximum and, again, such a solution will always be possible in the just 

. identified case; The information matrix again will be block diagonal with 

the upper left hand block given by: 

1(9) = TZ' [Pk(A-T®A-l)+(B-lB-T®A-TB'BA-1) , ]z. 
-(B-lB-T®BA-1)-l'J,;(B-T®A-l) (B-lB-T®Ik)~Pk(B-T®B-1) 

Finally it is noted that there is a special case of the geheralVAR 

model .of interest because it permits a simple recursive two stage least 

squares (2SLS) algorithm to be used to estimate the coefficients of A and B. 
The quasi-triangular specification is one in which, for some ordering of 

variables and equations, A has unit diagonal and B is diagonal and in which 

the ith equation (column of A) involves at most (i-1) elements of 8. This 

special case is discussed more fully in Appendix B. It is also discussed by 

Bernanke and used in an empirical application by Blanchard.and Watson . 
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IMPULSE ACCOUNTING 

The ability to separate the estimation of the reduced form coefficients 

from that of the contemporaneous coefficients is only one of the features 

that distinguish VARs from other dynamic SEMs .. The other, and more profound, 

distinction is that the VAR model is iderltified in such a way.th.at the impact 

on observable variables of a i:;et orthogonal shocks (impulses) can be given a 

meaningful interpretation. In the jargon that has grown up around VAR 

ili~chdili6iogy this has been called innovation accounting or, more properly, 

impulse accounting. Two descriptive measures.are used to represent these 

impacts, the Impulse Resporise Function (IRF) and the Forecast Error Variarice 

Decomposition (FEVD). 

To develop these measures it is necessary to derive the Moving Average 

(MA) representation for the system. Recall that the ut are the 1-i:;tep ahead 

forecasting errors, i.e. , 
.. · ... 12 

Ut = Yt - Et-1 [Ytl. 

By s1,1ccessive substitutions it is straightforward to show that 

1 
·. Yt - Et-1'-l[Ytl = I ut-sM(s), 

s=O 

where ~(s) can be calculated from t:he G(s) according to the relationship 

s 
M(s) = I G(i)M(s~i) 

i=l 

min(s, p) 
I G(i)M(s-i), 

i=l 

(G(i)=O for i>p). ·.Notice that M(s) involves only the G(i) for i5s. M(s) 

also involves M(i), s-min(s, p)<i<s, which gives rise to a straightforward 

recursive computational algorithm. 

(*) 

From (*) it can be seen that the MA representationl3 describes the (.e+l) 

step ahead forecast error of Yt as a weighted sum of the period t-1 through t 

1-step ahead forecast errors (innovations). The MA representation, since it 

involves only the reduc~d form coefficients, is independent of the 

identifying restrictions placed on A and B. It is, however, generally not ()f 

much interest in itself, since it is not possible to disentangle the separate 

effects of the typically non-orthogonal forecasting errors. Furthermore, the · 

forecasting errors generally will not have any clear interpretation. 

·of more interest is the IRF, which utilizes the relationship 

13 



.... ·\ 

"i· 

-. :-~=~. 

. ' : ·. . . ..· J 
Yt - Et-J-.l[Yt] ·- l VtBA-lM(~) 

s-0 . 
~ . .. . 

l 
.... l VtR(s); ·. 

s-o. ' . . ' . . 

where R(s)~BA-lM(s). The R(s) trace the impact of each.of the (oithogonal) 

' . , .. 
·• .. ~ 

·. syste!ll impulses on the observable system variabies. For example, R(8J1j • 

i:eprEis.~nts th~ tmpaet on variable j of impulse i of one unlt (one standard 

~~.V!~~l~ti) sizes periods 'prevfous1.y. The IRF, therefo~e. measures bo.th1:he 
' . . . . . 

86\!"ttle arid the stre:ngth of each of the forces affecting,a.giveriva,riabie as -
- -

wE!11-as the time path .of. the .response to those forces . 
·.· . .. : ... · .. · .. · : . ... 

Another_ mechaniSm for-. desct.ibing the strength of the forces afrecttirig. a 

·.given v~riable is. the Forecast Etror V~riance Decomp·osition (FEVD)_. This 

decom~()sitfon measures the proportion of the J-step. ahead for.ecasf error · 

'variance attributable to each impulse. The J-step ahead forecast e~ror at 

ti~· t.is 

. ··,: 

. <:.. 

. _J. 
e 

.t 

J-1 J-1 -1 ' 
l ut n . M(s) - - l v t+n·-.sBA_· M(s) == ' . +..11 - s - A\ s=O .. · . - . · s=O 

1-1 -
. ·~ v _-. R(s}. 

L t+l•s .- · . s=O · · · . 

·. '!'he' :Vt:+s are serially urtco:rrelated and mutually. or.tho:gcmal; hertce the ... 

c-ovarfimc.e of the -forecast error is 
··:_.- ;· 

-. . . . 

-.[J-1 ' ' - -. J 
Cov(~~) == E I .. · R(s}' v' .-· ··. v . · . R(s). · . 

_.:.· ··""-'' . ·0- . -.. - t+J-s t+J-s · .· 
s~ - . - . 

J-1 
== l R(s)'R(s). 

- s;.:o 

The variance of the 

- ·el_emen,t: of Cov(e~), 

forecast error of the j th variable, the j th db!.gonal 

can be written 

; ;. J.-.1 k 
'l l 
s;,,,O i,.,;,O 

this suggests that the J-step ahead forecast error variance c.!m be decomposed 

· 'rrito ·¢proponents attributable to each of the k intpulses .- in the syst~m. . Thus 

the: 'P,~r~entage contribution of the ith impulse to the J,.step ahead for:ec.~st-. -.·. • · 
.. ·' th . . . . ' - . 

~:r:i:'or' vari~rice of the J -.- variable is 

F(J) .. = ' ' l.J 

; ~· . 14 -. 
·." ... ,': 

.··, .. · 

J .. ' 

......... 



Although estimation of the !RF and the FEVD is fairly straightforward, 

given estimates of A, B, and {3, it is difficult but not impossible to 

·construct good measures of their quality. These estimators are based on non

linear functions of A, B, and the G(s).. The !RF is· a linear function of the 

MA coefficients, M{s), and their quality is therefore dependent in part on 

the.tttiB:lity of the estimates of the M(s). These in turn are functions of the 

d(i}, i:::;min(s,p), which creates two problems. First any sampling errors in 

· tHi! d(:ij matrices for low i .will be compounded in constructing the M(s}. 

Second, if the order of the autoregression is truncated prematurely {pis too 

low), the misspecification will result in biased estimates of the G(i) and 

therefore of the M(s). This is a.difficult problem in that such 

misspecification may be hard to detect. It. is possible·. that the estimated 

residuals of a low order model are indistinguishable from white noise but 

that a higher order model is more appropriate for describing the dynamics of 

the system. Given that most methods of detecting misspecification are based 

on measures of predictive accuracy, this problem can be extremely hard to 

uncover. It shouldbe pointed out that this problem is notunique•to the VAR 

approach but can exist in any dynamic SEM model.14 

Generally meaningful interpretations of VAR models· are based on the !RF 

and FEVD. These measures can be used to trace the partial and. the cumulative 
. :'.;,., 

illipact of a given independent source of variation in a system on each of.the 

observable variables. If the model provides a·reasonably good representation 

of the system then this :i..s a powerful tool. On the other hand these measures 
I 

seem to be fairly sensitive td model specification and therefore Illay not 

··provide robust results. 

SUMMARY 

This paper has attempted to point out how VAR models are related to and 

. distinguished from other dynamic SEMs. It. is hoped the attempt is helpful iri 

brh1ging together those economists that attempt to use VAR methods in 

structural modeling and those that dismiss such attempts; That meaningful 

~hterpretation of VAR ~odels.depends critically on the iaentifying 

restri.ctions imposed on the model is a fact that many users of these models 

have riegle.cted. · 
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The distinguishing featurel of the VAR methodology is the imposition of 

identifying restrictions only on the contemporaneous interactions and on the 

use of orthogonal impulses that can be given economic interpretation. 

Unfortunately _the usual practice of VAR modelling has involved the use o.f a 

rather-suspect form Of identifying restrictions. Furtherni<>re many_ 

ptactitioners seem to ~e using these restrictions implicitly rather thati 

explicitly, without a clear recognition of the implications. It i.s not 

·litiUf:Jtlta.1. to find discussion of the need to· 11 orthogonallze 11 the innovations 

(the ut) to construct the IRF as if this were a mechanical operation. While. 

the limitations of the usual practice of using a "triangular 

orthogonalization" with its implication that the system is recursive seems to 

be well recogniz·ed, the response by practitioners has been to examine 

alternative orderings. of variables to assess the robustness ()f the results. 

This does not address the issue of whether the results are robust to other 

identification regimes, and, as Bernanke points out, the practice im.plies a 

strarige'prior in which the analyst believes strongly in the recursiveness of· 

the system but is not sure in what order the variables should be arranged. 

While it is clear that the recursive model is not generally acceptable, 

therekre at least two reasons for focussing on the contemporaneous· 

,iptel;"actions within the system. First, economic theoJ;"y says very little that 
·-: .. \· .. ' 

is not controversial about the nature of expectations. It is therefore 

prudent to leave relatively unrestricted the reduced form of the m.odel,. whiCh 

cah itself be viewed as a forecasting model. Second, lags in the speed with 

which variables can respond to shocks due to information lags and adjustment 

costs lead to a minimum delay rationale for contemporaneous identifying 

restrictions. Formulating believable identifying restrictions is never a 

·trivial task. Whether VAR models prove to be -useful for structural analysis 

will 9-epend on whether such cons,iderations will -lead to enough restrictions 

to . identify a model. Identifying situations in which this is .. or is not . the 

case is the challenge to economists posed by the VAR methodology. 

A.final note concerns the place of VAR models in policy analysis. One 

issue that arises when using statistical models ls whether.policy is best 

v;~ewe~ as ·the setting of levels. of given variables, as·. a particular setting 

of the parameters relating variables to one another., or as an external shock 

to the economy. The latter view is the most conSistent withthe way VAR 
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models have been used and implies that policy is endogenous to the system but 

subject to exogenous shocks. Whatever view is represented in a model it is 

important to ask whether a given contemplated policy represents an 

interpolation or an extrapolation of model results. It is probable that no 

one of these three lilternatives is completely satisfa~tory for all 

situations. It is also probable that these issues wil1 continue to be the 

subject of lively debate. 
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APPENDIX A 

Calculation of score functions and Hessians is facilitated by a number of 
resµlts of matrix algebra and calculus, the more unfamiliar of which are 
reproduced here, with references to the text by Graham. These results use . 
the convention that.the derivative of an n,-vector with respect to an m-vector 
is (mxn), with [~Y/aX]ij=aYj/aXi. 

(l) tt(AB) = (¥ec(A')'vec(B) 

(2) 

(3) 

(4) 

(5) 

(6) 

vec(AYB) = (B'®A)vec(Y) .. 

8tt(~~AXB) = AXB + A'XB' 

a1~ix1 = x-T I xi > o 

avec(AXB) 
avec(X) = B®A' 

-1 . . 
avec(AX B) == _ (X-lB)®(X-TA,) 

avec(X) · 

( ?). az · aY az .· 
ax= ax aY ·where X,· Y, and Z are vectors 

(Table 1, p.121) 

(Eq. 2.13, p.25) 

·(Table. 6, p .124) 

(Table 6, p.124) 

,(Eq. 5 .. 3, p.71) 
! 

I 
\ 

(Table 5, p .124) 

(Table'. 3, p; 122) 

The me'f:hC>ds discussed by Graham (Second Transformation Principle, p, 74} can 
be used to derive the following results. Noting that, for any(kxk) matrix * . . . . .... · .... ·. .. . X, veq(¥')=Pkvec(X), these results can also be obtained by the use of the 
pfoduct rule and ( 5) , (6) , and ( 7) • 

(8) 

(9) 

av~c(X~T) 
avec(X) 

avec (Ax- lx-T) = -(X-lX-T®X-TA') - Pk(X-T®X-lX-TA') 
avec(X) 

Pk is a permutation matrix constructed by arranging t:he columns of Ik2 in 
the order: . .· . .· . . 
l,k+l,2k+l, ... ,k(k-l)+l,2,k+2, ... ,k(k-1)+2, ... ,k,2k, ..• ,k(k-1), .... ,k2. 
It can be shown, for X and Y both (kxk), that Pk(X®Y)=(Y®X)Pk, with the 
corollary that Pk(X®X') is symmetric . 
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The·log-likelihood for the model discussed in the paper is a function 
of the vectors, (} and f:J, corresponding to the contemporaneous and the 
reduced form parameters. The score function and the diagonal blocks of the 
Hessian are calculated below, with references t.o the numbered results given 
above.. These are first given for the special case when B=I and then for the 
general case. 

1((} ,{3) = _ T~ ln(27r) + T lnllAll - ~ I 
t=l 

Tk 1 
T 

,,.. --2-ln(27r) + T lnl!All - 2 I 
t=l 

u AA'u' t. t 

tr(A'ufytA) 

Tk 
+ T lnllAll 

1 
tr(A'U'UA) --ln(27r) - 2 2 

_ T~ ln(27r) + T lnllAll - ~ vec(A) 'vec(U'UA) (1) 

Th 1 . . . 
-2ln(27r) + T lnllAll - 2 (Z1e+W1), (Ik®(Y-X/3), (Y-X/3)) (Z1e+W1)). (2) 

81 .!. 8vec(U) 8tr(AA'U'U) 
8vec(f3) 2 8vec(/3) 8vec(U) 

1 
= 2(Ik®X')vec(UAA'+UAA') 

= vec(X'UAA') 

81 8vec(A) (T 8lnllAll _ .!. 8tr(AA'U'U)J 
8(} = 8(} 8vec(A) 2 8vec(A) . 

I . -T . . 
Z1(T vec(A ) - vec(U'UA)) 

8vec(X'UAA') 
8vec(f3)8vec(/3)' 8vec(f3) 

8vec(U) 8vec(X'UAA') 
8vec(/3) 8vec(U) 

- (Ik®X') (AA'®X) 

- -AA'®X'X 

a21 azj (T vec(A"".T) - vec(U'UA)) 
8()8~' = 8(} 

z I (T avec(A-T) - . avec(U'UA)J z 
1 aver. (A) ' avec (A) 1 

• -T -1 . 
-Z1(TPk(A ®A ) + (I®U'U))Z1 

I((}) Tzi(Pk(A-T®A-l) +. (I®A-TA-l))Zl 
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(7) 

(5' 3) 

(2) 

(7) 

(4,3) 

(7) 

(5,5) 

(7) 

(8,5) 



In the general case in which B is not necessarily the identity matrix 
the gradient and the Hessian with respe.ct to f3 are unchanged except that AA' 
is replaced by AB~lB-TA'. Other results follow. · · 

i.(8,{J) - _T~ ln(21f) + T lnJIAB- 1 JI - ~ 

_ T~ ln(21t) + 't(lhllAll-lnilBll) 

Tk II - l 11 1 ~ 1 . . . - 1 
= ---zln(21f) + T(ln AB )- 2 vec(AB )'vec((Y~X{J)'(Y-X{J)AB ) 

8.R, 8vec(A) (r 8lnllAll . _ .!_ 8tr(A'U'UAB-1B-T)) 
aB = 88 8vec(A) 2 8vec(A) 

+ 8vec(B) (-.!. ave.c(B-1). atr(B-TA'U'UAB-1) 

88 . 2 8vec(B) avec(B-1) 
_ T alnlJBll .·] 

avec(B) 

(1,2) 

(7) 

= Z'[ -T . -1 -T l T vec(A ) - vec(U'UAB B ) 
. -T . -1 -T -T (3,4,6,2) 

vec(B A'U'UAB B ) - T vec(B ) 

·a2i· 
aeae• 

8ve~(B-TA'U'UAB-lB-T)]z 
+ avec(B) · · 

-T -1 -T 
avec(B A'U'UAB B ) = -(B-lB-T®Q) - pk" (QB-T®B-1 + B-T®B-lQ) 

av~c(B) 

-T -1 T 1 where Q=B A'U'UAB (note that E[U'U]=TA- B'BA- ·and hence E[Q]=Tik). 

I('B) 
"C TZ' [Pk(A:T~-1- )+:B-lB-T®~-TB:BA-1) 

-(B 1B T®BA 1 )-Pk(B T®A 1 ) 
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Append:Lx B 
.; . ·. 

· A quasi-triangular specification is a special ca:se of, the general 
. : " . - ·' 

formulation that permits. a recur·:;ive two stage least squares '(2SLS) 

estimRtor to be employed. Tn the over-Jdentffied case thls 'wtll rt'bt .result, 
. . . 

ln general, in the FIML estimator but typically will provide quite goo(i 

starting values if the FIML estimator is desired; While more general 

specifications are perhaps possible, it will be assumed here that, for' some 

6rd~rfflg of variabJes and equations, A. has unit diagonal and B is diag-0n,aL 
. . . ~ . 

·A quasi-triangular systelll is one in which the ith equation (.column o:f A) 

i'nvolves at most ;(i-1) elements of 8. This condition is equivalent to the 

i:th (kxnJ'biock of .. Zl having at ~ost(i-l)non-z~:to columns. If .only zero-
. . . 

. ' ' - . 
rest:dct:i.ons are l.lsed '(in additicm to the normalization) a quasi-triangular 

specification is one in which t:~e ith equation involves at most i variables .. 

. It was in this sense that the term was used by Bernanke. 

Estimation of such a model with recursive 2SLS involves using the first 

(i-1) columns of V, the system impulses, to create instruments for the 

variables included in the ith equation. The p.rocedure can be described as 

follows. ('.reatea'~et of index variables ii that contain the indexes of.the. 

elernent·s' eft· o.t1:::K~.t ~ilter ·the ith equation. but that have not yet been 
.::·:·'_,:· ·;,._,:, ,o·:,. '· '. 

, :f:.:'.~ifu.~~';d~ Note that i 1 and possibly others may be empty. Let· zf equal. the 

<"{ cdiumns of Zli, the ith block of Z1, and initialize 8=0 (rixl) and 

vec(A)=W1 . 

On the ith iteration check if ii is empty. If not set 

8 == ( Q. IQ. ) - lQ. IR. lA. i, . £i 1 1 . 1 . 1-

~here Ri-1 equals the first (i-1) rows of V'U/T andQi=Ri_ 1zt. At this 

point A will be based only on those elements of 8 that have already been 

estimated (and on W1). Update A by setting vec(A)=Z18+W1. On all 

iterations set Bii=(A.i'OA.i)O.S and set Ri=A.i'O/Bti· Notice that the 
" " algorithm requires only 0 and not U and that V is not directly calculated. 

Qi.is the projection of the included columns of U in equation ion columns 1 

though (i-1) of V, a mapping that is facilitated by the fact that 
!'' . 

. E[V'V]=Tik. 
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NOTES 

1. Note that this formulation post-multiplies variables by coefficients, 

2. Theinclusicm of deterministic variables in the Zt vector raises no 
problems. For strictly exogenous variables to be included will require 
careful interpretation of model results in some C'!brttexts, as ih the · 
~f'l~~rpretatfort of Impulse Response Functions. · Strictiy exogenous 
va.i'iables are those that ate uncorrelated with the system impulses and 
not affected by the endogenous (system) variables, This is essentially 
etj_tH.valent to assuming a block triangular structure for the A(s) and a 
block diagonal structure for the B(s). · This allows the density function 
for y and z to be partitioned into a part representing y conditfonedon 
z and a part representing the density of z, which is independent of y. 
Maximum likelihood estimation therefore can be performed on eitbe:r part 
separately. Note that this implies that lagged y is not useful in 
predicting current.z, suggesting an exogeneity test, which, if rejected;. 
leads to rejection of the exogeneity assumption, but which, if accepted; 
provides only partial evidence of exogeneity. 

· 3. It should be noted, however, that the determination of the lag length is. 
not an easy or trivial matter. It is possible for the systemtoha'\Te a 
dynamic structure involving relatively high values of p, but that can be 
~pproximately represented by a low p system. If standard prediction 
error methods are used to determine the· level of p, the lower value will 
b~:chosen and the st:ructural aspects of the system will be incorrectly 
represented .. 

4. Many theoretical models assume some dynamic structure for model shocks; 
'.ko>that B(s)fO, s>O. Typically there does not seem to be any compelling 
rationale, . however, for the choice of particular lag. structures in such 
mbdels. The main rationale for working with low order ARMA models seems 
to be one of parsimony, since it is possible that a given model can be . 
represent~d.using fewer parameters if shocks are modeled as serially 

. correlated. ·It is also possible in this situation that the effe.cts of 
omitted variables are less severe. The serially uncorrelated shocks 

. ai;sumptiori can be rationalized on grounds that the dynamics of the 
shocks have been solved out of the model by incorporating their effects 
into the autoregressive parameters of the model. As longas the 
structural aspect of the model desired .is the response of the system to 
the independent shocks (the vt), the assumption should riot be troublesome. 

5. Re~trictions could also be imposed on B'B matrix; but this has been done 
only rarely in practice; However, see Hausman and Taylor and Hausman, 
Newey; and Taylor. 

l). There are, of course, other identification issues that are common to 
. other SEMS '.. The first, which thus far has been implicit, is the choice 
9£ variables to include in the vectors Yt and Zt· The latter can 
include variables that are stric'tly exogenous,. which. is. equivalent to 
positing a block triangular structural for the A(s) and B(s) in a larger 
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. ·';-~·-· 

model that includes bothy and the non-deterministic variables of z 
· (Wu) . This aspect of the ·identification issue essentially requires tha.t 

the current impact of variabies omitted from t:he system, which are -
. manifested in the shocks, must be uncorrelated with both.the included 
... exogenous variables and with lagged endogenous variables. 

· ·. · A second issue involves determination of the lag length, p • 
.fypically there are not strong theoretical' criuria for making such a 
det.ermination, e:itcept that any relevant technologica1 artd seasonal 
factors should be'considered. :Seyond thi.s a data-based approach i.s 
perhaps the only way to proceed. Such an approach uses some criteria to 
b(:)thpare .alternate lag lengths. Two common criteria .that are simple, 
irtdeed mechanical, to apply are the Akaike Information Criteria (AIC) 
and the Schwartz Criteria. (SC). Both of these adjust the maximum of the 
log-likelihood function fora given lag length by the number of 
parameters in the ·model. The maximum of the log-likelihood for a given 

. sampie of size T is a function only of ~· the sample error covariance 
·matrix with lag length p, given by . ·· · 
.. · max J. == -T/2(k(ln(27r)+l) + lnl~ I). . · . ·. . · 

. Clearly maximization of the loglikelihood for a, given p is equivalent to 
. mit:timization of I~ 1 .. However' additional lags will never decrease the 
value of the log-likelihood. The AIC and SC sugges.t that the optimal . 
lag length can be determined by finding the p that minimizes 
lnpl+2k(pk+q)/T arid l°i>l+ln(T)k(pk+q)/T, respectively. . . · 

0 Another remaining issue concerns the identifiability. of the reduced 
form parameters, the necessary and sufficient condition being that X has 
full column rank .. ;rt is assumed that these.issues have .been addressed 
and that attenti<?n therefore can be directed to the issues specific to 
VAR models. 

7.· This can be checked by simply setting 0 .randomly arid verifying that 
R(ZO+W)-r=O. 

8. Nofi~liriear restrictions could be written ifi the form 
vec(A) ... f(O) 

or, if it is desirable to explicitly include B, in theform 
vec([A B]) = f(O). 

Restrictions of this type have arisen in the context of rational 
expectations econometric models, where 0 is taken to be a vector of 
Hdeep" structural parameters representing such things as technology and 
agent preferences. By defining Z(O)=Df(O) the results derived in 

· Appendix A. and discussed in the section on estimatiOn could be extended 
in a very straightforward manner. Such an extension iS not pursued 
h~re, however . 
. :.-

9. . The uniquenes.s of this estimator is guaranteed when A has full rank, 
a cortditionwhich is also necessary for identification. 

. I 

. : . . 

10; Bernanke suggests that only in the exactly identified case will the two 
stage procedure yield FIML estimates. This has been.shown to be incorrect. 

. . .. 

11. The discussion of .this point by Bernanke (pp. 13:-:4) seems to be in error. 
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12. Strictly speaking this is only true when Zt contains only deterministi.c 
VB;riables .. If Zt contains exogenous variables then ut can be thought of 
as the forecasting error due to the impulses alone and the analysis 
remains unchanged. The impacts on the exogenous variables can be 
analyzed by examination of the regression coefficients alone; .there is 
no need to use a. moving average representation to disentangle their ~· 
effects. · · · 

13. 'l'ypically' the term MA representation is applied to the limit of (*) as 
1-+oo. Furthermore for this actually to be the MA representation of the 
gy~tem it is necessary for the system to be stationary. This can be 
ch~cked by examining the eigenvalues of 

r::~: I lk~p-1'1' 
If all the eigenvalues have modulus less than unity, the· system is 
stationary. 

.. . 

14. For.further discussion of the assessment of the IRF and FEVD seeRunckle 
and the accompanying discussion. 
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