
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


GIAN 1:r-. c;.."'-"-'o .<l O F 
AGRICULTURAL. NOMI CS 

LIBR 

A?~O 1388 

FACULTY --
WORKING PAPERS 

On Estimates of the Speed of Adjustmen t 
in Inventory Investment Equa tion s 

Alastair Hall and Robert J. Rossana 

Faculty Working Paper No. 112 December 1987 

L 

I I;;_ 



On Estimates of the Speed of Adjustment 
in Inventory Investment Equations*~ 

Alastair Hall and Robert J. Rossana*S 

Faculty Working Paper Nb. 112 December 1987 

*Assistant Professor and Associate Professor, respectively, Department of 
Economics and Business, North Carolina Stat~ University, Raleigh, NC 27695. 

**We wish to thank A.R. Gallant for a number of helpful conversations on the 
subjec~ m~tte~ of this paper. Errors are, of course, the responsibility of 
the authors. 

Working papers in this series are preliminary material and should not be 
quoted or reproduced without written permission of the authors. Comments 
are welcomed. 



I. Introduction 

Appli.ed research on inventory investment has typically provided estimates 

of the adjustment speed arising in partial adjustment models of the form 

Ft - Ft-1 = l(Ft-1 - F*) 

where F refers to the stock of inventories (finished goods, materials, work-in-

process or, possibly, the sum of the three components), an asterisk denotes a 

steady-state or desired level and t refers to calendar time. The parameter l 

is the speed of adjustment, measuring the fraction of the gap between desired 

and actual levels which.is made up each period. As ,noted by Carlson and Wehrs 

(1974) and Feldstein and Auerbach (1976), the typical estimate of. this 

parameter is implausibly low for at least two reasons. If slow adjustment 

speeds are associated with severe co.sts of adjustment, then these parameter 

estimates imply very severe costs of adjustment which appears peculiar a 

priori. If firms are making expectational errors which are large, then it 

·1'ight:be possible to rationalize these slow adjustment speeds. However, direct 

estimates of these errors find them to be on the order of one or two days 

production and thus easily corrected. Therefore these errors seem not to 

provide a resolution to this puzzle. 

Maccini and Rossana (1984) (hereafterM-R) claim to provide an answer for 

these implausible empirical results. They argue that research on inventory 

investment has misspecified the nature of the optimal decision rules used by 

firms by assuming that inventory investment decisions are made independent of 

decisions on employment, hours, capital stocks and other inputs. In this 

context, inventory investment should depend upon the levels of all these quasi-

fixed factor inputs, as well as their associated factor prices.l In addition, 

1This is the essence of the multivariate flexible accelerator first 
examined by Lucas (1967). 
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' they argue that inappropriate attention to the presence of serial correlation 

has produced biased estimates of adjustment speeds with the bias tending to 

understate the true speed of adjustment. They produce empirical evidence for 

the manufacturing sector (Total Manufacturing, Nondurable and Durable 

Manufacturing) which, at monthly data frequencies, suggests that adjustment 

speeds are on the order of sixty percent or more per month. In addition, they 

find significant stock adjustment effects in all estimated finished goods 

equations. 

Blinder· (1986) has recently taken issue with these results. Using data 

which is more disaggregated than that used by M-R, he produces estimated 

adjustment speeds which are much smaller than those reported by M-R. To 

reconcile differences in results, Blinder argues that in the presence of serial 

correlation, the identification of adjustment speeds is problematic since these 

parameters are identifiable only if other parameters in estimated equations are 

significant. In practice, these other parameters are often barely significant 

rendering empirical estimates formally identified yet unreliable. Second, he 

argues that the estimation method used by M-R produces parameter estimates that 

correspond to a local minimum sum of squared residuals where serial correlation 

parameters and adjustment speeds are high. Evidence is presented that low 

speeds of adjustment are found at the global minimum sum of squared errors. 

Although these points are raised in the context of a particular empirical model 

of inventory investment, these issues have potentially far reaching 

implications ·for applied work since partial adjustment models are widely used 

in applied macroeconomic research. 

In this paper, we re-examine the issues raised by Blinder and find that 

his rationale for the causes of the discrepancies in results appearing in these 
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two studies is only partly correct. There are a number of differences between 

each empirical study·which make it difficult to determine why results differ. 

For example, M-R.use the residual adjusted Aitken estimator devised by Hatanaka 

(1974) while Blirtder uses nonlinear least squares. In Section 2, we examine 

the properties of each estimator and find that they generally may be expected 

to produce different parameter estimates in finite samples, despite the fact 

that they have identical asymptotic properties. In this same section, we also 

find that it is not possible to predict how parameter estimates will differ 

using these two methods because each study differs in model specification. For 

example, Blinder uses time series models to approximate expectations whereas M­

R use Almon lags for the same purpose. In addition, these studies differ in 

their selection of other regressors. In Section 3, we attempt to control for 

model specification in ass~ssing the performance of each estimation method by 

using the model structure employed by M-R at the same level of aggregation used 

by Blinder. There we report estimates of adjustment speeds under each 

estimation method, for the same model specification, and under the two model 

specifications for the same estimation method. In this way, we can observe how 

model specification and estimation method influence results. 

Generally speaking, our empirical results confirm Blinder's results in 

that, for the same model specification, the Hatanaka estimator seems. to 

systematically overstate the speed of adjustment relative to nonlinear least 

squares. We also find that, for a given estimation method, adjustment speeds 

tend to be lower when time series models are used to,approximate expectation 

formation. We also find some evidence, by comparing our results to Blinder's, 

that estimated adjustment speeds can be very different as one changes model 

specification, suggesting that applying the same model across industries may be 
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a misspecification. This may also account for implausible estimated adjustment 

speeds. 

II. Econometric Issu~s 

In this section we examine two econometric issues raised by Blinder 

(1986) ·• First, we consider the question of identification in partial 

adjustment models with serial correlation. Second, we consider both the 

relationship between Hatanaka's estimator and nonlinear least squares, and.the 

extent to which these estimators are affected by the existence of multiple 

optima. 

For the purpose of our discussion of multiple optima in partial adjustment 

models with serially correlated errors, it is sufficient to consider the 

following model: 

Yt - Yt-1 * {3(y - Yt-1) + QXt + Ut (2.1) 

(2.2) 

where y* represents the desired level of Yt, and Xt is an exogenous variable 

and et an independently and identically dii;;tributed mean zero error'term. 

Equations (2.1) and (2.2) imply 

Yt = /3(l-p)y* + (l+p-{:J)yt-1 + (/3-l)pyt-2 + axt - paxt-1 + et' (2.3) 

Consider also the unrestricted form of (2.3), namely 

(2 .4) 

If the model in (2.4) is estimated by nonlinear least squares, then the 

optimand, ~et, will have multiple minima as a function of (/3, p, a) if more 

than one set of values for(/3, p, a) whiCh yield a particular set of values for 
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In the. special.case where a - 0, .then as Blinder observes, there are 
. . 

· .. Jiiultiple optima because there are pairs of values ({3, p) which give a 

particular set.of values for µo, µ1, µ2. These two solutions for ({3,p) are 

c~aracte~ized bya 11hi.gh p" or "low p" solution. 
. . 

Blinder argues that although 

M-R's tnodel includes "a variety of other regressors and hence are identified irt 

the formal sense," the "identification hinges precariously on regressors which 

are often of minor empirical importance" rendering distinguishing between high 

p and low p solutions "difficult" (Blirider, 1986, p. 357). This supposition is 

based on the following continuity argument. We can take the following mean 

value expansion.of the optimand for estimation, 

·. 
L(/3, p, a) 

.· 8L ., 
L(/3, p, 0) +_ a 

aa a* 
(2.5) 

wliere 0 <a*< a. If.a is close to ·Zero then aL I a is close to zero. In 
aq . a* . . 

which case the two sets of ({3, p) values which minimize L({J, p, 0) are going to 

yield roughly equal values.of L(·); both close to the global minimum. However, 

whether or not high p ot low p solutions yield the global minimum depends on 

. 8L 1 · . 
a. 

·aa a* 
In other words, it depends crucially on the model estimated. Of 

course if a is not close to zero.the problem disappears. 

There are several difference.s. between the mod.els estimated by Blinder and 

and .M-R, which we explore in further detail in Section 3. ·However, for the 

.present, it is sufficient to note that these differences imply that one should 
. . 

be cautious in generalizing multiple optima arguril.ents from one model to the 
. . 

other. Furthermore, these ~peqificatio~ differences may cause the "high 

. p" solution to be the global minimilin in one model,. but the "low p" solution to 
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be the global minimum in the other model. The existence of multiple optima or 

near multiple optima is clearly an empirical matter and we examine this 

question for the stock adjustment models considered by Blinder and M-R, in 

Section 3. 

For the remainder of this section we consider the relationship between 

Hatanaka's estimator and nonlinear least squares. To facilitate the 

exposition, we consider the following simple model: 

ut = pu + et t-1 

where Xt and et are as in (2.1). 

Hatanaka's method consists of two steps. First, estimate (2.6) by 

(2.6) 

(2.7) 

instrumental variables (IV) to yield consistent estimators of a, {3. which we 

denote a, {3. These in turn c·an be us~d to construct a consistent estimator of 

p, p given by 

p (2.8) 

where Ut = Yt - o:xt -·f3Yt-l· 

In the second step p is used to quasi-difference (2.6) and estimators of 

a, fJ and p-p are obtained by ordinary least squares applied to this quasi-

/\. " " -
differenced model. Hatanaka's estimators are therefore~. f3 and p = 0 + p 

I\ I\ I\ 

where a, fJ and 0 minimize 

0. 
n 

where O = p - p. Such an estimation strategy is equivalent to minimizing 

(2.9) 
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n 2 
0 - E [e + (p-p)ut~·1 - (p-p)ut-1] 

n t=2 t 

n 2 ·- 2 
=E e + (p-p) 
t=2 t 

with :respect to a, {3, p. 

n 2 n 
E (u -ut-l) + 2(p-p) E e (u -ut-l) 

t=2 t t=2 t t 

The nonlinear least squares (NLS) estimators of a, f3 and p minimize 

L 
n 

n 
E 2. 

et 
t=2 

(2.10) 

(2.11) 

(2.12) 

Therefore in finite samples the respective minimands of Hatanaka' s. and NLS 

estimation methods are different. In general, therefore, one would expect the 

Hatanaka estimator to be numerically different from NLS. The size of this 

difference depends on the relative magnitudes of the three elements of On in 

(2.11). Although no definitive statement;s are possible, some observations 

about the possible impact of t~e second and third terms in On (2.11) can be 

made. Note that if t~2 et(ut-ut-l) > 0, then there is an incentive for the 

estimator to stay close to p. However, if 

then there is an incentive for the Hatanaka.estimator to move away from p. In 

moderate to large sized samples, one would expect E et2 to be the dominant term 

in (2.11).in the sense that the values of (a, {3, p) which .E et2 should. 

approximately minimize On due to the consistency of the IV estimator. By the 

same reasoning, Hatanaka's estimator is asymptotically equivalent to NLS. This 

allows an interpretation of the Hatanaka estimator. It can be shown, see 

Harvey (1981, p. 270) for instance, that Hatanaka's .estimator is equivalent to 

the estimator obtained by minimizing (2.12) with a two step Gauss Newton 
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method. This implies also that Hatanaka's estimator is asymptotically 

efficient under normality (see Harvey, 1981, p.140-1). 

It is interesting to examine the performance of the Hatanaka estimator in 

t:he model (2.3) with a= 0. The natural solution to underidentification is to 

introduce sufficient additional information to identify the parameters. At 

first sight it would appear that the use of IV is such additional information 

and so the Hatanaka estimator c.ircumvents the underidentification problem. 

However this is not so. To see this, consider the case where a =·O in (2.6). 

The properties of Hatanaka's estimator depend on the consistency of the IV 

estimator of {3. However due to the multiple optima, it is not possible to 

obtain a unique expression for Yt in terms of {3, and so conventional arguments 

for consistency of IV break down. 

A summary of our arguments is as follows: the stock adjustment models 

estimated by M-R and Blinder are formally identified, but if the exogenous 

variables do not contribute much to explanation of the change in inventories, 

one might observe near multiple optima. However, the nature of the problem 

depends not only on the structure of model but also on the exogenous variables 

included. If the model is identified, then the Hatanaka estimator is 

consistent and asymptotically efficient under normality; the relevant question 

is whether the sample size is large enough (relative to the number of estimated 

parameters) for the estimator to have converged to its limit. Both these 

issues are empirical by nature, and so in the next section we compare the 

estimation results for both M-R and Blinder's models using both NLS and 

Hatanaka's technique. 



!IT. Empirical Results 

In.this sectian, we provide estimates of inventory equatians using NLS and 

.·the H~tanaka estimator under alternative model specifieations whenever serial 

c.orrelation is indicated ip. the disturbances. ·. Our basic estimating equation is 

similar to, though not :identical with, the one used by M-R .. We incorporate 

hours per wor'ker as a state variable in our estimating equations.' In view of 
- . 

our .e~rlier discussiOn concerning identification, it. is wise to include an. 

additional state variabl~ as an aid to identification. Second, we use an.· 

.iJl!,plicit deflater for materials inventories and thus omit the prices, of .. 

i:ntermediate materials which are not held in inventory. These differences are 
. . 

. : . ...· ' 

minor and have little bearing upon conclusions drawn from our empirical 

results. The Blinder m~del differs by including a. measure of expected demand 

errors, a nominal interest rate and a measure of inflation expectations.2 ·We· 

chose the M~R specification sihc.e it see.med desirable to ~test that model in a 

'more disaggregated data set to observe the effects .of disaggregation upon 

:adjustment spe.eds ·~ 

Our basic estimating equation can be written in log'-linear form as 

(3.1) 

. ' 

. where. F - Finished Goo.ds,. E == Production Wo~kers, . H. ":"' Hours per Production 

Worker, M ·""' Materials, W - Work- in-Process; U = Unfilied Orders, Q ... Real New ·· 

ord~rs, V Real Materials Prices,· t ... Calendar Time, Et ='disturbance term. 

the· superscript. e ·refers to. an expectation. A discussion of th~ economics 

·~ : ; : : . 

This 
lags 

2Blinderalso uses shipments wherea~ we use new ~rders in our regressions. 
is. obviously unimportant for stock producing industries where delivery 
are negligible. 
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underlying (3.1) may be found in M-R, a discussion which may be used to place 

sign restrictions on the parameters "Yi•3 Our data sources are the same as 

M-:R with exceptions noted above.4 The analysis uses monthly data, covering 

1958 through 1984. The sample size for all estimates is well above two 

hundred.. We provide estimates for nondurable goods producing industries at the 

twc:> digit manufacturing .level. Unlike Blinder, we exclude durable goods 

industries. It is generally believed that stock producing firms produce a 

homogeneous output and this seems to correspond to nondurable goods 

industries. On the other hand, durable goods industries produce a more 

heterogeneous output and thus appear to be.producing to order.s So as to.avoid 

estimating inventory equations where it may be inappropriate, we simply exclude 

durable goods industries. 

We report estimates of adjustment speeds under alternative assumptions 

about expectation formation. Following Blinder, we use twelfth order 

autoregressions as one way of approximating expectation formation. In addition 

we use Almon (distributed) lags as another method of approximation as in M-R. 

We assume that the lag on new orders is 36 months and that the lag on real 

materials prices is 12 months. These lag lengths are roughly on the order of 

those used by M-R. We use the same lag lengths in all regressions. 

3An analysis of the relationship between finished goods and labor inputs 
is provided in Rossana (1984). 

4nata on hours.per production worker can be obtained from Employment and 
Earnings, published by the Bureau of Labor Statistics. Materials prices are 
obtained from nominal materials data provided by the Census Bureau, and 
deflated materials stocks, provided by the Bureau of Economic Analysis. 

SThis is the essence of the distinction between stock and order producing 
firms introduced by Belsley (1969). 

. ' 
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The data are se.!l,so,n~lly adjusted. As a result, we te~~~d the disturbances 

<for .first arid twelfth order serial correlation, Test statistics indicate that, 

in all industths but two, serial correlation was presertt.at.these orders of. 

the autoregressivedisturbance process . 
. • . 

Fcir those industries where serial correlation was absent, we can examine 
. . " : . . .· . 

. . 

ordinary least squar.es estimatf,!s of adjustment speeds. table 1 prov~des these 
' . . 

~stimated lidJustment speeds for each ·method of expectation formation. 

Table 1 
Adjustment Speeds-Investment in Finished Goods 

Nondurable Goods Industries 

·.Industry 
·. 22 

Textile Mill Products 
29 

Petr.oleum and Coal Products 

Time.Series Models 
' - . 05 

(.019) 
-.101 
(. 026) 

Almon Lags 
-.045 
{. 021) 
-.0803 
(.034) 

Standard errors are given within parentheses beneath each estimated adjustment 

~pe~d. Here we can make unambiguous stat~ments about adjustment.speeds which 

are independent of the method used,to approximate expectations. These 

adjustment speeds are smal.l .and are of the magnitude felt to be implaµsible by 

many researchers. These results .are little affected by aite'rnative methods of 

·modelling expectations and seem especially peculiarfroin·a. different 

perspective. Aggregation over .firms is widely believed to.reduce estimates of 

adjustment speeds. Here we find that, relative toM-R's results, adjustment 

·speeds are. slower,as we'disaggreg~te;.the opposite of the conventional view. 

, ~e remaining indust.ries all displayed evidence of .serial, correla~fon .so· 
" ·. . . . : . 

that, for these industries, the estimatfon method is now an. issue to be ' 

. ad<iressed. We provide estimates, fn Table 2, of the remaining nondurable two 

digit: industries using the Hatanaka estimator (H) and nonl.inear leas.t squares . 
. . ·, . 

. ~ . '. 
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InstrWµents must be chosen to implement :the Hatanaka method; In all case,s, we . 
. \ 

used a constant, a time trend with linear and quadratic components,:and one 

.'lagged vaiue of new orders, real wages and real materials . pric.es. •. These. 

·variables are·suffi~iently correlated with inventories so.as to b~ satisf~ctory 

Table 2 
AdJustment Speeds - Investment in Finished Goods 

Nondurablegoods Industries 

Industry 
20 

. ·. F~od and Kindred Products 
21 

Tobaqco Manufactures 
23 

Apparel and Other Textile Products 
26 ' . . . 

Paper an_d Allied Products •. 27 .. 
Printing and Publishing · 

-~·· 28 . 
Chemicals and Allied Products 

·. 30 ·. 

Rubber and Miscellaneous Plastic 
.·Products 
• 31 

Leather and Leather Products 

Time Series Models 
!t 

- .12 
(. 031) 
-.32 
(.044) 
- .18 .. 
(. 052) 
-.082 
(. 025) 
- . 65. 
(.079) 
- .077 
(.034) 
-.29 
(.045) 

- , 16 
(.038) 

NLS 
- .079 
(.025) 
"'. 35. 
(;061). 
- • ls. 
( .034) 
~ .082 
(. 021) 
- .13 .. 
·(. 029) 
- .031. 
(. 016) 

.. .., .034 
. (. 024) 

- .14 
(.036) 

Almon 
H 

-.25 
.(~OS7) 

::. .so 
(.OS3) 
>77 

.( .060) 
- . 38 
(.04S) 
-.98 
(.088) 
-.. 76 . 
"(.069). 
'"·· 76 . 
( .067) .•.. 

,.. 
-.28 
(.093) 

Lags 
.NLS 

.., .067 . 
(.027) 

-1.13 .. 
"( .064) 
- .21 . 
(.048) 

.;.1.14 
(.065) 
- .18 
(. 042) .. 
- .032, .· 
C.Ola) 
~;02s 
(, 023) 

~:is. . 
( •. OSl)'· 

fo:;- our purposes.. . •. .·· .. · . ·.. ·• .. : ·.·· 

Consider the .estimated adjustment speeds· in Table 2 wher·e we co~p,!ire 

·estimation methods for a given structural specification of expect;ation . . . ,. . . . 

. fo:i;m.itfon. In almost every case, the Hatanaka estimator produces a pa:tamet~r. '. . 
. . 

estimate which e~ceeds the. nonlinear least. squares estimate' somet.imes hy art .. 
.. . . 

enormous amount. For example, in.indu~try twenty seven, the Hatanaka:estimatoi: . . . 
. . . . . . -

produces an adjustment speed which i~dicat;es complete adjustment within the ... 

month, whereas NLS produces an estimate indicating that t~enty.percent of the 

~ap between desired and actual levels· is made. up 'each month., It is clear that, 

',:;' 

. '!.· 
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in these models, the Hatanaka estimator overstates the speed of adjustment as 

Blinder suggests. 

We argued above that, purely as a theoretical matter, there was no rea.son 

to believe thatthe Hatanaka estimator would systematically choose a local 

minimum sum of squares in these models. In any particular application, it is 

then an empirical question as to whether or not this occurs. We observed the 

same results as Blinder in that all of our NLS re$ults produced "convergence'; 

at high and low values of the adjustment speed and first order serial 

correlation parameter. · To guard against locating a local minimum sum of. 

squared residual, we initialized our nonlinear. estimation using various values 

of these two parameters and, due to the fact that the parameter space is large, 

we initialized all.other parameters at the same values. Even with an extremely 

tight convergence criterion, we observed multiple minima.6 . Further, it was 

generally true that: the Hatanaka estimator produces parameter estimates 

corresponding to a local minimum associated with high values of the adjustment 

speed.and first order serial correlation parameter. Within this data set, 

Blinder's conjecture is correct that the Hatanaka. method produces estimates 

close to, though not identical with, a local minimum use of squares. Given our 

arguments in Section 2 about the finite sample differences between the minimand 

in estimation by NLS and the Hatanaka method, these observations suggest our 

sample was insufficiently large for the IV estimator to have converged to their 

limits. 

Finally, cons~der how the parameter estimates vary as we change our method 

of. approximating expectation formation. for a given estimation method. With few 

6The default value of our convergence criterion was lOE-08 which controls 
the reductions in the sum of squared errors. We reduced this to lOE-13 to 
guard against multiple minima.· 
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.. e~ceptions, the Almon lag method systematically produces adjustment speeds 
. . . . 

which exceed the time series method, again by an enormous a.mount :i.n s.ome. 

instances. To cite just one example, NLS. estimates .for industry twenty ~ix 
..... -· ·,. 

· produce an adjustment speed of eight percent when time series models are used 

and, . in the Almon· lag. case, produce an adjustment speed .indicating complete 

adjustment within the month. The Almon lag - Hatanaka estima:te.s generally 

cor~obor~te those provided.by M-Ras aresearcher looking only. at these result~ 

would be likely to .conclude that. adjustment speeds·. are considerably higher thB.n 

those •Observed in previous research. They also seem to make sense from the 

po'irit of view of disaggregation in the sense that they seem somewhat higher 

over<:!-11 than those reported by M~R in more highly aggregated data. 

It is interesting to compare our results with those reported in Blinder . 

. (19·86)~ · Blinder finds a high speed of adjustment in ind~stries 20 and 29 .· 
. . . 

. . . 

,(..f.78~ and - . 999 respectively). Whereas· with a differe~t model; we find high·· 
. . . . . . . ' 

sp~eds of adjustment .in industries 21 and 26. · One possible interpretation of ' · 
. . 

·'>this resultis that.empirically low adjustment.speeds may be due to the 
. . . 

imposition of a common model specification across industries which are too· '· 

· disaggregated for such a· strategy to be· appropriate.·. These observations on 
. . - . . . . . . . 

spe·eds of adjustment complement the results in Ghysels (1987) where fr ii;r ·., 

demonstrated the time series properties of several industrial. series for two 

digit-industries are neither constant across type of seriesnor industry. 

IV. Summary 

EstimatiI1g the speed of adjustment in dynamic models can provide important 

insights into the adjustment path followed by. aggregate economies. .· Mariy 

' . ' 

empirical studies have found estimates of speeds of adjustment irt inventory 
.· . . . 

. · models. which are thought to be implausibly ·low. M-R argued that these low 
' . : 
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speeds were due to taking insufficient account of serial correlation in the 

errors during model estimation. Using an estimator proposed by Hatanaka 

(1974), they estimated the speeds of adjustment which were both higher than 

those previously reported and also in a plausible range of values. In a recent 

article Blinder (1986) argued that when serial correlation in the errors is 

allowed for in estimation, stock adjustment models for inventories exhibit 

multiple optima: one with a high speed of adjustment and one with a low speed 

of adjustment. He argues that M-R's results were due to the use of the 

· Hatanaka estimator, which typically converged to the local, but not global, 

optimum with the high speed of adjustment. 

In this paper we have provided a more thorough examination of the issues 

raised by Blinder and find that his criticism of M-R is only partially correct. 

It is demonstrated that while the Hatanaka estimator is asymptotically 

equivalent to NLS, the two'estimators are different in finite samples. 

Provided the model is identified, the relevant question is therefore whether 

the sample size is large enough relative to the number of parameters estimated 

for the estimator to have converged to its limit. The empirical evidence 

reported here suggests that M-R's sample is insufficiently large. By extending 

5linder's analysis, we find that in general the problems caused by near 

multiple optima depend.on the model being estimated. Our empirical results 

demonstrate that one observes different speeds of adjustment depending on the 

method used to approximate expectations. Furthermore, the Almon lag 

specification used by M-R seems .to generate higher speeds of adjustment than 

the autoregressive approximation used by Blinder. There are other differences 

between the model here and the one in Blinder (1986). It is interesting to 

observe that both studies only observe "plausible" speeds of adjustment in 2 
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out of the 10 two digit SIC nondurable industries considered here, and that the 

two industries concerned are different in each study. One possible 

interpretation of this result is that the slow adjustment speeds estimated may 

be due not only to an inadequate model specification but also to the imposition 

of a common specification across industries which may be too disaggregated for 

such a strategy to be appropriate. 
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