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I. Introduction 

The envelope theorem is a well-known and powerful tool in static 

economic analysis (Samuelson [1947, 1960a, 1960bl and Silberberg [1971, 

1974, 1978]). However, the questions of the existence and application of a 

dynamic analogue to the envelope theorem have not been completely addressed 

in the literature, nor does the relatively simple nature of the problem 

appear to be well-understood. 

Oniki [1973] ailuded to the existence of a dynamic version of the 

envelope theorem when he suggested that it is possible to obtain a simple 

expression by substituting the optimum values of the control and state 

variables back into a control problem's objective function, and then 

differentiate with respect to the paremeter. Hochman, LaFrance and 

Zilberman [1984] correctly applied (but did not attempt to demonstrate the 

validity of) a special form of the envelope theorem in dynamic optimization 

problems. Utilizing a special form of the Hamilton-Jacobi equation 

associated with autonomous systems, intertemporal duality in a dynamic model 

of the firm has been examined by Epstein [1981) and McLaren and Cooper 

[1980), and in consumer theory by Cooper and McLaren [1980]. Another 

important, but not generally well-known, result is a dynamic analogue to the 

envelope theorem obtained by Epstein [1978) for the special case of no 

nondifferential constraints, and an autonomous system in current value form. 

Finally, Epstein and Denny [1983) apply the duality results of Epstein 

[1981) and McLaren and Cooper [1980] to the multivariate flexible 

accelerator model. 

The purpose of this paper is to derive a general statement of the 

envelope theorem in dynamic optimization problems, and to relate the theorem 
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to the previous results discussed above. The paper focuses on the effects 

of a change in an exogenous parameter on the optimal performance function 

arising from a general dynamic optimization problem. The objective 

functional may depend upon a variety of parameters including output prices, 

input prices, the discount rate, and the initial value of the state 

variables (e.g., resource stocks). The optimal performance function can 

depend on the parameters in two ways: first, the_parameter may enter the 

problem explicitly through the integrand of the functional; second, the 

parameter may enter the problem's constraints and therefore impact on the 

optimized objective function only indirectly by changing the optimal 

controls and state variables. 

The paper proceeds as follows. In Section 2 a general dynamic 

optimization problem containing an exogenous parameter is set forth. 

Section 3 presents the main result on the impact of a change in the 

parameter on the problem's optimal performance function to obtain a dynamic 

version of the envelope theorem. The basic theorem is more general than can 

be found elsewehere in the literature; the objective functional, the state 

equations, and any o~ all nondifferential constraints may depend explicitly 

on the parameter, and the system need not be autonomous. An application of 

the paper's principal result to a problem of consumer choice in a dynamic 

setting is given in Section 4. Section 5 contains a summary and conclusion. 

II. A Dynamic Optimization Problem 

The problem of interest is to 

T 
(1) maximize J = f f(x(p,t),u(t),p,t)dt 

0 

subject to 



( 2) Clx.(p,t)/Clt 
1 

i 
= g {x_(p·,-t).,u(t) ,p,t), .x-i (-p,O) 

fixed v p £ (a,b), i = 1, ... ,n, 

0, j = 1, ... ,k, 

k+l, ..• ,t, 

3 

where x is an n-vector of state variables, u is an 111-vector of control 

variables, p is a scalar parameter with observable values on an open, 

convex real interval (a,b), t indexes time, and i < m. By virtue of 

(2)- (4), the state variables x depend upon the parameter p v t .£ (O,T]• 

However, even if g and h are independent of p, the optimal choice functions 

for the controls u will depend upon p through (1), and hence so too will the 

optimal path for the state variables. 

We make the following assumptions on the structure of the problem: 

(Al) f,g,h £ c2 ; 

(A2) L(x,u,p,t,A,ll) = f(x,u,p,t) + A'g(x,u,p,t) + ll'h(x,u,p,t) is strictly 

concave in u, where A is then-vector of costate variables, ll = [lJ 1 , ... ,lJk]' 

is the k-vector of Lagrange multipliers for the nondifferential equality 

constraints h ~ [h1 , ••. ,hk]~~ and ' denotes vector transpositon; 

(A3) L(x,u,A,lJ,p,t) f(~,u,p,t) + A'g(x,u,p,t) + ll'h(x,u,p,t) is strictly 

concave in x, where ll = [ll· , ••• ,lJ.]' is the t-vector of Lagrange multipliers 1 . ~ . 

for all of the nondifferential constraints h = [h1 , ..• ,h1]'; 

(A4) The set Q = {u £ Rm: hj(x,u,p,t) ~ 0, j=k+l, ..• ,i} is closed, strictly 

convex, and has a nonempty interior; where (Al) - (A4) are assumed to hold 

v p e: (a,b), Y t e: [O,T], and v (x,u) e: Rn+m such that conditions (3) and 

(4) are satisfied. 

Clearly conditions (Al) - (A4) are not the most general (weakest) 

assumptions that co1.1ld be applied·to this problem. However, they are 

sufficient for the Arrow,·Hurwicz and Uzawa [1961] constraint qualification 
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to be satisfied, and as is demonstrated below, for the optimal controls and 

Lagrange multipliers to be unique and c1 in (x,A.,p,t), and hence (from the 

development by Oniki [ 1973]) for the optimal paths of the state and costate 

variables to be c1 in (p, t), along with the existence and continuity of 

a2x(p,t)/opot v p e: (a,b), and v t e: [O,T]. These properties are 

essential to the straightforward development of a simple statement and proof 

of the dynamic envelope theorem. Although a more general statement can be 

obtained by allowing such considerations as corners along the optimal path 

or bounded state variables, most economic applications satisfy regularity 

conditions similar to (Al) - (A4). 

The Hamiltonian for the problem (1} subject to (2) - (4). is defined by 

( 5) H = f (X (p ' t L u ( t) ' p ,t) + A ( t ) I g (X ( p , t) , u ( t ) , p ' t) • 

The optimal control solution maximizes (5) with respe.ct to u for each t 

e: [O,T] subject to (3) and (4}. The Lagrangian function for this static 

optimization problem is givenby 

(6) L = f(x(p,t),u(t),p,t) + A.(t)'g(x(p,t),u(t),p,t) + ~(t)'h(x(p,t),u(t),p,t) 

Since L e: c2 and is strictly concave in u, the necessary and sufficient 

conditions for a constrained maximum with respect to u are for each t e: [O,T], 

(7) oL/Ou 

(8) oLIO~ 

of}ou + (og/au)'A. + (oh/ou)'~ = o, 

h(x,u,p,t) = 0. 

By (Al) - (A4) and the Theorem of the Maximum, the solution functions 

u(x,A.,p,t) and ~(x,A.,p,t) are c1 in all of their arguments (see, e.g., 

Varian [1978], Appendix A). 

In addition to (7) and (8), along the optimal path, x and A. must 

satisfy the conjugate differential equations on [O,T] v p e: (a,b) (Hestenes 

[ 1965' 1966]) ' 



(9) 

(10) 

ax aL 
at ax 

0 g(x,u,p,t), x(p,O) = x 

5 

Furthermore, since f, g, h, e: c2 and there are no corners (see (8)), it 

follows from Oniki's [1973] Lemma 1 that the solution functions to (9) and 

(10), x*(p,t) and A*(p,t), are c1 in (p,t) ¥ t e: [O,T] and¥ p e: (a,b). 

Now, substituting x*(p,t) and A*(p,t) for x and A in u(x,A,p,t) and 

ll (x,A,p,t) gives us the optimal controls and Lagrange multipliers as c1 

functions of (p,t) for every t e: [O,T] and~ e: (a,b), 

(11) u*(p,t) = u(x*(p,t),A*(p,t),p,t). 

(12) l.l*(p,t) l.l(x*(p,t),A*(p,t),p,t). 

Finally, along the optimal path the state equations (2) can be written 

as 

(13) ax*(p,t)/at = g(x*(~,t) ,u*(p,t) ,p,t). 

Since g, x* and u* are all at least c1 in p, it follows that 

(14) a 2x* = ~ ax* + ~ au* + ~ 
atap ax ap au ap ap ' 

exists and is continuous forte: [O,T] and p e: (a,b). With these 

preliminary developments, we are now prepared to state and prove the main 

result in the next section. 

III. The Dynamic Envelope Theorem 

Consider the optimal performance function 

(15) J*(x0 ,p,T) = !~ f(x*(p,t),u*(p,t),p,t)dt. 

In this section we state and prove the main result which provides two 

equivalent ways of expressing the marginal effect of a change in the para-

meter p on J*. This result is the following: 
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,. 

Theo-rem 1. If the dynamic optimization problem (1) subject to (2) - (4) 

satisfies conditions (Al)- (A4), then J* £ c1 in p, ~nd 

(16) 
0 a J* (x , p , T) = 
ap 

!T (!f ax* + af 9u* + af)dt 
0 ax ap au ap ap . 

= 1T (af +A.*'~+ *'ah)dt . o ap ap P ap 

= JT 3L(x*(p,t),u*(p,t),A.*{p,t),p*{p,t),p,t) d. 
~ . t. 

· 0 . . op 

Proof: J* £ cl in p follows from (Al) and the fact that x*,u* £ c1 • 

Therefore, the first equality in (16) follows from partially differentiating 

(15) with respect to p and applying Liebnitz' rule to the right hand side. 

Along the optimal path for each t £ [O,T], the nondifferent:i.al constraints 

are identities 

(17) h(x*(p,t),u*(p,t),p,t): 0. 

Partially differentiating {17) _with respect to p .and taking the vector 

product with p*(p,t) gives 

(18) 
*( t)'(ah ox*+ oh ou* + oh) = 0 

p p' ax ap . au ap ap 

for p £ (a,b) and t £ [O,T]. ·Therefore, adding zero to the integrand in 

(16) does not. change the •alu~ of the definite integral, i.e. 

{19) 

+ a f + *, a h )d t • 
ap P ap · 

Now, the first order condition (7) for a constrained maximum in u implies 

(20) 
af a · . ah -' = - (A.*'~ + p*'-) v t £ [0 T]. au au . au ' 
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Substituting this expression for df/3u' into (19) and cancelling common 

terms, 

(21) 0 
aJ*(x ,p,T) =IT((~' + *'dh)3x* 

dp 0 . ax J.l ax ap 

Of . ah)· +-.- + J.l*'- dt. ap ap 

>..*'~ au* 
au ap 

If we solve (14) for (ag/au)au*/ap, substitute the result into (21), and 

group terms, we obtain 

(22) 

0 aJ*(x ,p,t) _ !T 
aP - o 

_ JT >..*' a2x* dt + 1T .(~ + "-*'~ + *' ah)dt o apat o -ap ap . J.l ap · · 

where a2x*/dtap = a2x*/dpat by Young's Theorem. 

The proof is completed by demonstrating that the first two integrals on the 

right hand side of (22) sum to zero. To show this, we integrate the second 

term by parts 

(23) 1T >..*(p t)'a 2x*(p,t) dt = >..*(p t)'ax*(p,t) IT 
o ' apat ' ap · 

0 

!T at..*(p,t)'ax*{p,t) dt = _ !T a>..*(p,t)' ax*(p,t) d 
o at ap . o at ap . t, 

0 
where the second equality follows from x(p,O) = x , fixed V' p e: (a,b) and 

the variable endpoint transversality condition >..*(p,T) = 0. But the 

differential equations for the costate variables (10) imply that this last 

expression in {23) is just the negative of the first expression in (21). 

Thus, 

(24) 
0 

aJ*(x ,p,T) = 
ap !T (~ + !..*'~ + J.l*'~hp)dt. o dp ap o 

Q.E • .D. 
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Remarks: 

1. Theorem 1 is a dynamic analogue to the familiar env~lope theorem 

associated with static constrained optimization problems. The static 

envelppe theorem asser.ts that the rate of change .iri an indirect 

objective function with respect to aparameter, allowing all choice 

variables to adjust to the change, is equal to. the partial derivative 

of the Lagrangian with respect to the parameter, holding the choice 

variables constant at their optimal level. The intertemporal version 

states that the rate of change in a control problem's optimal 

performance function with respect to a parameter, allowing the.state 

variables, controls, auxiliary variables and multipliers to adjust to 

the change, is equal to the integral of the partial derivative of the 

Lagrangian with respect to the parameter, where all the state 

variables, controls, auxiliary variables and multipliers are held 

constant with respect to p at their optimal levels for each point in 

timet e: [O,T]. 

2. Theorem 1 is a generalization of the following commonly analyzed 

special case, first derived for finite horizon problems by Epstein 

[1978], and subsequently for infiniteplanning periods by Cooper and 

McLaren [1980], McLaren andCooper [1980), and Epstein [1981}. 

Consider the infinite. horizon problem where t -+ OQ' 

f(x,u,p,t) -rt 
= v(x,u,p)e J ag(x,u,p)t)/at ~ 0, and 

h(x,u,p,t) - 0 v-. t e: [o,oo). We assume that the transversality 

condition lim A*(p,t)'x*(p,t) = 0 is satisfied at the optimal solution 
t-+oo 

for any possible p (see Arrow and Kurz [1970, p.46] and Halkin [1974)). 



(25) 

Define the current-value Hamiltonaian by 

~(x~u~l,p) ~ v(x,u,p) + l•g(x,u,p) 

rt · · rt = e [f(x,u,p,t) + l'g(x,u,p)] = e H(x,u,l,p,t), 

9 

"' where 1 
rt, 

e A.; The current-value optimal performance function for the 

time interval.[t,oo), 

(26) "' rt . "" . -r(T-t) J(xt,p,t) = e /t v(x*,u*,p)e . dT 

"" . -rT 
= J v(x*,u*,p)e dT 

0 

does not depend upon t explicitly. Furthermore, the maximized current-value 

Hamiltonian is constant throughout t £ [O,oo); see, e.g. Arrow and Kurz 

[1970, pp. 47-51]. 

"' rt Since J(xt,p,t) ~ e J*(xt,p,t), it follows that at initial time t=O, 

"' 0 0 .·. . J(x ,p,O) = J*(x ,p,O), where J* 1s the present value optimal performance 

function for the time interval [t,""), 

(27) 
"" . . -r(t-t) 

= It v(x*,u*,p)e dT. 

The proof of Theorem 1 remains unchanged for this infinite horizon problem. 

Therefore, equation (24) takes the form 

(28) 

"' "' aH !"" e-rt dt =! aH, 
ap 0 r ap 

so that r3J*/3p "' = aH/ap. This is the link between the intertemporal duality 

results of Cooper and McLaren [1980], McLaren and Cooper [1980], Epstein 

[1981], and Epstein and Denny [1983] and the general envelope theorem in 

dynamic optimization. 

IV. Applications 

Like the familiar static envelope theorem, the dynamic result obtained 

above can be applied to a variety of problems. In this section the dynamic 

envelope theorem is applied to a problem of a consumer maximizing discounted 

utility from consumption subject to a lifetime budget constraint. A dynamic 
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version of the Slutsky equation is obtained, first for the case of constant 

prices or static expectations, and then fo.r the case of time dependent 

prices and perfect foresight. 

4.1 A Lifetime Consumption Problem. 

Consider a consumer choosing the time path of ann- vector of 

consumption c(t) to 

T · ~pt 
(29) maximize U = [ 0 u(c(t))e · dt 

subject to the budget constraint 

(30) 
· .· -rt · 

am(p,t)/at = p'c(t)e , m(p,O) = 0, m(p,T) ~ M ¥ p E ~. 

where p is the cons~mer's personal discount rate, u is the instantaneous 

utility function; p is an n-vector of constant prices w:ith values in the 

n . . 
set ~ a subset of R+' r is the market rate of discount, and .M; is the 

present value of the consumer's lifetime earnings. The optimal consumption 

M . 
path can be_written as c (p,M,t),_and the optimal level of discounted 

utility flows- is given by 

(31) 
T M · -pt 

U*(p,M,T) = 10 u(c (p,M,t))e dt. 

Now consider the dual problem of choosing a consumption path c(t) to 

'\, 
minimize the present value of lifetime expenc:litures on consumption, subject 

to a constraint which holds discounted lifetime utility con~tant at some 
' 0 

level, say U , 

(32) minimize J 
T -rt = 10 p'c(t)e dt 

subject to 

(33) au(t)/at = u(c(t))e-pt, U(O) = o, u(T) = u0 • 

u . 0 . 
Denote this-problem's solution by c (p,U ,t), and.the minimal net present 

value of consumption expenditures by 
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(34) 
o T , U o -rt J*(p,U ,T) = 10 p c (p,U ,t)e dt. 

Both of these problems can be represented as isoperimetric problems by 

rewriting (30) and (33) in integral form 

(30') 
T -rt 10 p'c(t)e dt = M 

(33') 

A well-known result from the calculus of variations states that, for 

isoperimetric problems of this type, the solution (31) is equivalent to (34) 

if the variable M appearing in (30) is equal to ~* (for a proof see Clegg 

[1968, pp. 117-121]). Therefore, we have the following identity: 

(35) 
U o M o . 

c (p,U t)- c (p,J*(p,U ,T),t) ¥ t £ [O,T]. 

Then, the effect on the consumption flow of good j at each point in time t 

from a change in the prite of good k is given by 

(36) 

+ (ac~(p,J*(p,U0 ,T},t)/3M)3J*(p,U0 ,T)/apk. 

Applying the dynamic envelope theorem to J*(p,U0 ,t) obtains 

(37) 
. 0 
3J*(p,U ,t) = 

aPk 
T U o -rt 10 ck(p,U ,t)e dt. 

Substituting (37) into (36) gives 

(38) 
M u M !T eM -rt · 

acj/apk = acj /3pk - (ac./3M) e · dt. 
J 0 k 

The above expression is a dynamic version of the Slutsky equation. The 

impact of a change in pk on consumption of commodity j can be decomposed 

into two effects: a "utility-held-constant" substitution effect and a 

wealth effect. The derivation of (38) parallels the derivation of an 

"instant" Slutsky equation for the standard single period model of a 

consumer found in Silberberg [1978, p. 248- 250]. 



12 

In the previous example, the assumption that prices are constant or 

that consumers have static expectations plays an important role in the 

structure of the optimal consumption path. This assumption also appears in 

the intertemporal duality studies discussed above. However, dynamic 

economic problems frequently contain uncontrolled state variables which are 

not necessarily constant over the planning horizon. Examples include time 

dependent prices of inputs and outputs ina model of a comp~titive firm, a 

time dependent discount rate, and the size of the labor force in a model of 

economic growth. 

In those cases where some of the state variables vary over time but are 

not subject to control, we might wish to assume that decision makers form 

their expectations about the movement of these variables such that the 

initial values are not (necessarily) expected to remain constant throughout 

the planning period. The optimal solution to such a problem will contrast 

significantly from the solution which arises from assuming, for example, 

that decision makers have static expectations but are able to update these 

expectations instantaneously (i.e., the dynamic decision problem is 

characterized by open loop control with feedback and the decision maker only 

carries out the t = 0 part of his planned sequence of actions - see Epstein 

[1981]). In particular, without the static expectations assumption, the 

'V 
special form of the Hamilton-Jacobi equation, rJ* = H, exploited by Cooper 

and McLaren [1980], Epstein [1981], Epstein and Denny [1983], and McLaren 

and Cooper [1980] does not arise because the current value Hamiltonian is no 

longer constant. 

To introduce uncontrolled time dependent state variables into the 

analysis, consider the following problem: 



(39) maximize J = !~ f(x,u,p,t)dt 

subject to 

(40) 

(41) 

(42) 

Clx/Clt = g(x,u,p,t)~ x0 fixed~ 

dp/dt 
0 

= n(p,t), p fixed, 

j 
h (x~u,p,t) = o~ j 1' ... ,k, 

hj(x,u,p,t) < 0, j = k+1, ... ,t. 

13 

We assume that the solution to (41), p(t) = 4>(p0 ,t), exists uniquely and is 

twice continuously differentiable. Note that even if f;g,n,h do not depend 

upon t explicitly, the solution to (41) will in generalbe an explicit 

function of t. For example, if 

(43) 

then 

(44) 

dp/dt 
ci 

= a + Sp, p(O) = p , 

o · o St . St 
p(t) = 4>(p ,t) = p e + a(e -1)/S vt. 

-rt Clearly, even if f = ve , the inclusion of p among the arguments of v,g or 

.h with any sort of time dependent structure for p makes it impossible to 

generate an autonomous system in current value form if decision makers do 

not have static expectations about future values of p(t). 

Substituting 4>(p0 ,t) for p in (39) - (42), under conditions (A1) - (A4) 

unique, continuously differentiable solution functions x*(p0 ,t), u*(p0 ,t), 

A*(p0 ,t) and ~*(p0 ,t) exist. Indeed, the arguments of sections 2 and 3 

carry over to this situation unchanged. From Theorem 1, the impact of a 

0 
change in p on the optimal performance function is given by 

(45) <lJ*/Clp0 = !~ (<lf/<lp + l*'<lg/ap + p*'3h/<lp)<l4>/ap0dt4 

In general, (45) will not reduce to an expression like (28) except when 

o o -rt 
4>{p ,t) = p and f = ve , where v,g,h do not depend upon t explicity. 



l4 

Now we wish to examine the lifetime consumption problem for the case of 

time dependent prices and perfect foresight. Let p(t) be an n-vector of 

prices which depends upon the initial set of prices and time, 

(46) 
0 

p(t) = HP ,t). 

The consumer is fully.aware of (46)~ or equivalently, the differential 

equation system (43), and wishes to maximize (29) subject to the budget 

0 constraint (30), where pis replaced by ljl(p ,t). The optimal consumption 

M o 
path can be written as c (p ,M,t). 

Similarly, the optimal consumption path for the dual problem of 

minimizing (32) subject to (33) using (46) to describe the motion of p can 

u 0 0 . 
be written as c (p ,U ,t), and the minimal present value of consumption 

expenditures is 

(47) J*( o Uo T) . p ' ' 
T o , U o o · -rt = 10 ljl(p ,t) c (p ,U ,t)e dt~ 

Applying Theorem 1 to (47) implies 

(48) 

Setting M = J*(p0 ,U0 ,T) and partially differentiating 

M( o ( o G ) ) U( o o .) c p ,J* p ,U ,T ,t - c . p ~u ,t -

with respect to p~ for a given t € [O,T) therefore implies 

(49) ac~/ap~ = ac~/ap~- ac~/aM !~ (oljl/op~)'cMe-rtdt. 

Note that the "wealth effect" of the dynamic Slutsky euqation (49) 

includes the marginal impact on all values of all future prices due to a 

change in the initial value of the kth price, which is considerably more 

complicated than the static expectations case (38). 

··. 
-·;. 
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V. Conclusion 

The envelope theorem is a powerful tool in economics. In static 

models, it provides a link between indirect objective functions and demand 

and supply euqations, greatly simplifying estimation problems. It is also 

quite useful in conducting comparative statics, in welfare analysis, and in 

interpreting Lagrange multipliers. 

In this paper, we have shown that the solutions to dynamic optimization 

problems are characterized by an exact intertemporal analogue to the static 

envelope theorem. The result obtained is general enough to encompass all of 

the special cases that have appeared in recent literature, as well as 

dynamic processes on the parameters affecting the intertemporal choice 

problem. As such, the results presented here should be useful for the 

interpretation of the results contained in previous studies, and in future 

applications of dynamic optimization. 
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