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Abstract

Crop yields have increased at impressive rates since 1930s and rightly received

the lion’s share of the attention in the crop productivity literature. However,

increases in average yields fail to capture changes in the higher moments of the

yield crop distribution, changes which may have larger and more immediate im-

plications for food sufficiency, security, sovereignty, and sustainability. We use a

comprehensive data set—covering roughly 80% of national corn production and

70% of national soybean production—on county-level corn and soybean yields in

the Corn Belt from 1951–2015 to examine changes in yield volatility over time and

space. We document our findings in two empirical regularities. First, the volatil-

ity of corn and soybean yields increased by factors of 2.5 and 2.0, respectively,

roughly commensurate with increases in average yields. Second, this increase in

volatility has been asymmetric across the tails for both crops, with the lower tail

getting considerably longer. Third, roughly one quarter of the spatial variation in

volatility is explained by the spatial variation in climate trends. Fourth, realized

trends in climate variables are differentially correlated across corn quantiles but

not soybean quantiles. These four regularities have yet to be empirically docu-

mented; can not be identified when analyzing average yield data; present a serious

and increasing challenge to the livelihood of rural populations; and depict a more

complete picture of the evolving relationship between crop yields, innovation, and

climate.

Keywords: attribution, crop yields, innovation, productivity, risk, volatility.
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1 Introduction

Despite impressive gains in crop productivity since the 1930s (Duvick, 1977; Duvick and

Cassman, 1999; Cassman, 1999; Hafner, 2003; Lobell, Schlenker, and Costa-Roberts,

2011; Ray et al., 2012), concerns that yields will be flat, declining, or at best, subject to

diminishing marginal returns have persisted (Ladha et al., 2003; Peng et al., 2004; Bris-

son et al., 2010; Finger, 2010; Lin and Huybers, 2012; Ort and Long, 2014). Stagnant

crop productivity would make ensuring a safe and secure food supply at relatively rea-

sonable and stable prices a challenge (Roberts and Schlenker, 2009; Godfray et al., 2010;

Tilman et al., 2011; Zilberman, 2014). This challenge could easily be exacerbated by

any number of circumstances: a growing population with evolving preferences, higher

demand for non-food agricultural products (e.g. biofuels), and adapting to an uncer-

tain future climate. A more thorough understanding of the relationship between crop

yields, climate and innovation would lessen the burden of this challenge now and for

future generations.

The effect of climate and innovation on yields is complex. While the vast majority

of scientific inquiry has focused on average or mean yields, this summarising mea-

sure nonetheless misses critical intricacies. Yield volatility measures the year-to-year

deviations from average yields; these deviations may in fact be more influenced by in-

novation and a changing climate than average yields. Furthermore, deviations have

notably asymmetric implications: low yields have far greater negative consequences for

farmers (and countries) relative to the positive consequences of high yields. For sub-

sistence farmers, lack of effective risk management to mitigate low yield outcomes has

been found to be the most important impediment to social and economic development

(Karlan et al., 2014). Governments in developed countries provide large subsidies to

mitigate the economic consequences of low yields: in the U.S. alone, federal government

outlays to the crop insurance program totalled $70 billion since 2004 and are trending
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upwards (United States Department of Agriculture Risk Management Agency, 2015).

With this in mind, we offer a more complete picture of yield volatility, paying special

attention to the lower tail of the yield distribution.

Using a comprehensive data set—with counties covering between 79.0–86.1% of na-

tional corn and 62.2–76.8% of national soybean production since 2001—we document

four broad empirical regularities in the Corn Belt over the past 65 years. First, we

find widespread evidence of increasing year-to-year volatility in both corn and soybean

yields. Second, and more nuanced, the increase in yield volatility is not even across the

tails of the distribution: more often than not, the spread between the lower quantiles

is far greater than the upper quantiles. To examine the influence of climate trends on

yield volatility, the final two regularities focus on Iowa (relatively homogeneous and his-

torically the country’s largest corn and soybean producer). Third, spatial variation in

climate trends account for roughly one-quarter of the spatial variation in yield volatili-

ties for both corn and soybean. Fourth, the magnitude of climate effects varies greatly

across yield quantiles. Perhaps most interestingly—and inconsistent with extrapolat-

ing findings for average yields to the tails of the distribution—the fourth regularity

implies yield responses to climate trends are consistently larger at lower quantiles for

corn while conversely, yield responses are relatively uniform across all quantiles for soy-

beans. These findings suggest future changes in climate will have a greater impact on

the lower tail of the corn yield distribution, but a relatively consistent impact across

the entire soybean distribution. Differential responses to a changing climate will require

different mitigation strategies and should influence public risk management policies and

research funding priorities.
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2 Data

2.1 Yield Data

To measure yield volatility we obtained county-level corn and soybean daya from the

from the United States Department of Agriculture’s (USDA) National Agricultural

Statistics Service (NASS) online database. The data, at the lowest level of aggregation

that are publicly available with high temporal and spatial coverage, are based on the

the County Agricultural Production Survey which NASS conducts to collect acreage

and production estimates for state and federal programs at the end of the harvest

season. The stated purpose of the survey is to generate data with sufficient sample size

for county-level analysis and the stated target of the survey is all farms in each state.

The USDA relies on this data for a variety of purposes pertinent to yield volatility.

For example, the USDA Farm Services Agency uses it to administer disaster assistance

programs and the USDA Risk Management Agency uses it to determine crop insurance

premiums and payments.

Specifically, we collected all available county-level data from 1951–2015 for 13 con-

tiguous states which account for the vast majority of national corn and soybean pro-

duction: Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, Missouri,

Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin. All of these states pro-

duced over 200 million bushels of corn and 88 million bushels of soybean in 2015. In

terms of rank, these 13 states include the top 12 corn producers (Kentucky ranked 14th

behind Texas) and eight soybean producers (all fall into the top 15 with our data set ex-

cluding Arkansas at 9 and Mississippi at 11). For convenience of analysis, we delineate

the data set into two regions which we term the Inner (IL, IN, IA, MO, and OH) and

Outer (KS, KY, MI, MN, NE, ND, SD, and WI) Corn Belt. We removed all counties

with more than 5% of their sample missing (i.e four or more missing observations) or
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Table 1: Summary statistics of yield data, 1951–2015, corn and soybeans.

Yield (bu./ac.) Acreage (000s acres)

Min. Mean Max. S.D. Min. Mean Max. S.D. Obs. Units NA(%)

Corn (1951–2015)

All 0.3 98.2 236.0 41.9 0.5 75.5 397.0 57.1 52845 813 0.8

Corn Belt 0.3 105.2 236.0 40.0 0.7 85.9 397.0 59.4 27430 422 0.6
IL 9.0 109.3 236.0 41.7 6.0 114.5 397.0 75.0 6370 98 0.5
IN 22.2 107.7 214.9 37.2 4.6 67.9 185.9 31.9 5525 85 0.5
IA 18.3 112.2 209.6 41.5 7.0 123.4 339.5 49.2 6435 99 0.1
MO 0.3 87.3 209.7 37.3 0.7 36.4 151.5 26.4 4615 71 1.8
OH 32.0 104.2 200.0 35.6 5.5 51.4 139.0 27.0 4485 69 0.3

Outer 3.5 90.6 224.0 42.6 0.5 65.6 369.5 52.9 25415 391 1.1
KS 0 0
KY 16.0 89.6 199.1 37.3 1.6 22.8 94.7 17.9 3315 51 0.9
MI 18.6 92.0 198.8 35.0 3.7 50.5 160.0 30.9 2925 45 0.5
MN 16.1 101.1 207.4 43.6 5.8 106.9 305.0 59.4 4225 65 0.4
NE 6.2 101.9 224.0 46.8 1.4 84.6 265.9 57.1 5590 86 0.5
ND 8.0 60.9 160.5 35.1 0.5 30.0 365.5 39.8 2340 36 6.7
SD 3.5 67.3 193.8 40.7 0.5 76.8 369.5 46.4 3185 49 0.9
WI 22.0 98.7 194.2 33.2 2.0 58.6 253.0 39.8 3835 59 0.3

Soybean (1951–2015)

All 2.5 32.0 73.1 11.0 0.1 63.0 541.0 51.3 42640 656 0.6

Corn Belt 2.5 34.2 73.1 10.2 0.1 75.3 329.0 46.8 27625 425 0.5
IL 7.0 35.7 73.1 10.3 5.0 96.5 329.0 57.2 6305 97 0.3
IN 10.0 35.3 64.6 10.0 2.7 55.7 127.5 28.0 5655 87 0.5
IA 7.3 36.7 64.1 10.2 2.1 91.2 274.0 41.9 6370 98 0.1
MO 2.5 28.6 55.8 8.7 0.5 61.2 319.0 44.8 5135 79 1.6
OH 10.0 33.6 62.2 9.6 0.1 62.9 150.5 36.7 4160 64 0.4

Outer 3.0 27.9 61.7 11.1 0.1 44.9 541.0 52.2 15015 231 0.7
KS 3.0 24.4 60.0 10.5 0.1 29.6 151.3 27.8 3510 54 1.1
KY 0 0
MI 7.0 29.5 56.9 9.9 0.5 43.1 140.0 30.9 2145 33 0.3
MN 7.0 29.9 61.7 11.2 0.2 85.1 290.5 61.4 4290 66 0.3
NE 0 0
ND 7.0 24.4 41.4 8.6 0.4 132.7 541.0 131.0 260 4 4.6
SD 4.0 25.9 56.9 11.0 0.1 51.1 186.0 48.5 1625 25 1.3
WI 7.0 29.5 59.5 11.5 0.1 13.2 106.3 16.8 3185 49 0.5
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with less than 5,000 acres of production in 2011, leaving 813 counties for corn and 656

counties for soybean. Summary statistics for the sample and subsets of the sample by

region and state are reported in table 1.

2.2 Climate Data and Agronomic Metrics

Daily data for all weather stations within Iowa were downloaded from the National

Oceanic and Atmospheric Administration database for 1955–2012. Raw weather station

data was spatially interpolated to county centroids based on distance-weighted averages

of observations from individual weather stations within Iowa. This data is used to

estimate county-level yield trends separately for each crop for a total of 99 corn and 98

soybean county-level trend coefficient estimates. Dubuque county soybean is excluded

from the analysis due to an incomplete yield history. We do not directly control for

irrigation because production of these field crops is primarily, if not exclusively rainfed:

for corn (soybean): 11,051 acres (6,556) were completely irrigated, 100,470 (43,081)

partly irrigated, and 13,597,887 (9,251,957) no irrigation.

We examine potential changes in climate through three agronomic metrics—growing

degree days (GDD), harmful degree days (HDD), and vapor pressure deficit (VPD)—as

well as precipitation (PCP). GDD is a nonlinear agronomic metric which measures daily

accumulated exposure to temperatures that are beneficial for plant growth based on

daily minimum and maximum temperatures. HDD is an analogous measure but for tem-

peratures exceeding the optimum, which tend to be harmful for plant growth. Specif-

ically, a trigonometric sine curve approximation with multiple temperature thresholds

is used to calculate GDD and HDD Schlenker and Roberts (2009). Intuitively, temper-

atures below the threshold do not contribute to plant growth, temperatures between

the lower and upper threshold contribute positively, and temperatures above the upper

threshold contribute negatively. We use an upper temperature threshold of 29◦C for
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corn and 30◦C for soybean based on Schlenker and Roberts (2009) and assume a lower

temperature threshold of 10◦C. VPD is also a nonlinear agronomic metric based on

daily minimum and maximum temperature; however its purpose is to proxy for plant

water demand based on diurnal temperature variation Roberts and Schlenker (2009).

High VPD is associated with hot and dry conditions when water demand will be high,

whereas low VPD is associated with cool and cloudy conditions which provide less solar

radiation for photosynthesis. Vapor pressure at temperature T in degrees Centigrade is

V P (T ) = 0.6107 expA where A = 17.269T/(T+237.3) and VPD is simply the difference

between the vapor pressure at the daily maximum and minimum temperature Lobell

et al. (2014); Ort and Long (2014). For corn and soybeans all climate variables are

calculated on a daily basis over a fixed 214 day growing season from April 1 to October

1. Then, in order to correspond with the annual yield data (i.e. one observation per

year), daily GDD, HDD, VPD, and precipitation are annualized by summing over the

214 days of the growing season. Following Roberts, Schlenker, and Eyer (2012); Lobell

et al. (2014) we also include a separate metric for July-August (July 1 to August 31)

VPD and precipitation because the magnitude and direction of these coefficients may

change over different portions of the growing season. For instance, relatively dry and

high VPD conditions may facilitate planting and plant growth throughout the growing

season except during the hot and dry months of July-August, when insufficient moisture

or excessive VPD could be harmful. These metrics are denoted VPDJA and PCPJA,

respectively. VPDJA is responsible for roughly 30 to 40% of the VPD accumulated

over the growing season, whereas PCPJA accounts variously from roughly 10 to 50%

of the total rainfall accumulated over the growing season.
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3 Methods

Our empirical approach follows what has remained the predominant view in the liter-

ature since at least Botts and Boles (1958) and Day (1965) onwards. In brief, we view

yield realizations as an annual draw from an unknown latent probability distribution.

Changes in both production processes and climate can alter the location, scale, and

shape of this probability distribution over time. The conditional mean (i.e. location)

of the latent distribution is estimated with a trend line. We then interpret (the mag-

nitude of) deviations from the estimated conditional mean as volatility. The goal of

this manuscript is to estimate how the scale and shape of the probability distribution,

which determine volatility, has changed over time. Note we do not impose a particular

form on the scale and shape of the probability distribution in any way unless otherwise

noted.1 Rather, we are examining how the upper moments are changing over time

empirically.

Estimation of the time conditional mean is clearly an important assumption of our

manuscript. Thus, we considered four different detrending specifications: linear, cubic,

median (conditional quantile regression at the median), and nonparametric (local lines

regression). All four approaches led to identical conclusions, so we report results from

linear detrending in the body of the manuscript and from the alternative specifications

in the supplemental appendix.2 The residuals from the detrending process are the

basis for the analysis that follows. The remainder of this section is divided into two

subsections. The first describes a number of ways we used to measure yield volatility

over time. The second describes the methods used to estimate the contribution of

1Given our data is at the county-level, we are interested in modeling the county-level distribution;
however, this viewpoint is general and could be as easily applied to different levels of aggregation. For
a more thorough examination of the literature on modeling the probability distribution of crop yields
over time see Tolhurst and Ker (2015).

2In fact, trends in the data look quite linear and indeed, even the more flexible forms tend to give
a very linear fit.
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innovation and weather trends to yield volatility patterns over space.

3.1 Measuring Yield Volatility

Yield Volatility Index. As a nonparametric first pass to measure yield volatility, we

constructed a yield volatility index by dividing deviations from trend into five subsets of

13 years (1951–1963, 1964–1976, 1977–1989, 1990–2002, and 2003–2015). The volatil-

ity index is the standard deviation of detrending residuals in the given time period,

normalized such that the first period equals 100.3

Timewise Non-Constant Volatility Test. We derived a timewise non-constant

volatility (i.e. heteroskedasticity) test following Park (1966). Assume the variance of

detrending residuals follows the structure:

V arêi,t(t) = σ2
i t
βi exp νi,t (1)

where êi,t are the residuals from detrending for county i indexed at time t, σ2
i is a time

independent variance at the county-level, and νi,t is a well-behaved error term. Then a

county-level coefficient of non-constant volatility, βi, can be estimated in log-log form

using least squares regression by plugging in ê2i,t for V arêi,t and αi for σ2
i :

ln ê2i,t = lnαi + βi ln t+ νi,t (2)

β̂i parametrizes the degree of non-constant yield volatility for a given county. We

can use this estimated heteroskedasticity coefficient β̂i as a dependent variable in the

attribution model presented in section 3.2. Furthermore, we could test for non-constant

yield volatility using a t-test under a null hypothesis of constant volatility H1. β̂i = 0;

3See supplemental appendix for a formal definition.
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non-decreasing volatility H2. β̂i ≤ 0; or non-increasing volatility H3. β̂i ≥ 0.4

Quantile Regression. We examine if changes in the yield distribution go beyond

the first two moments using conditional quantile regression. Coefficients are estimated

using linear programming methods as the solution to the optimization problem:

β̂τi ≡ arg min
βτ∈<

∑
t

ρτ (yi,t − tβτi ) (3)

where β̂τi are the estimated coefficients at quantile τ and ρτ (·) is a tilted absolute

value function with the τth sample quantile as the solution. Specifically, we estimated

unique conditional quantile functions for each crop-county combination across τ =

{0.1, 0.3, 0.5, 0.7, 0.9} using the quantreg package in R. For an overview of quantile

regression see Koenker and Hallock (2001).

Two Trend Mixture Model. As another means of testing if the higher moments

of the yield distribution have changed over time we estimated the two trend mixture

model of Tolhurst and Ker (2015). Specifically, assume yield from county i at time t

follows a mixture of two normals

yi,t ∼ λiN (µui (t), σ
u
i
2) + (1− λi)N (µ`i(t), σ

`
i

2
) (4)

with time dependent component {µui (t), µ`i(t)}, but time independent mixture weights

λi and component variances {σui 2, σ`i
2}. Using deterministic time trends for the time

4However, as shown in the supplementary appendix, the power of this test tends to be low (not
surprising given our sample size is fairly small for a test of the second moment). As a robustness check
for this specification we also estimated the model V arêi,t(t) = σ2

i E[yi,t]
βi exp νi,t with E[yi,t] = ŷi,t per

Harri et al. (2011) which leads to qualitatively identical results, though a slightly different interpretation
of βi, presented in the supplementary appendix.
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dependence in the means gives:

yi,t ∼ λiN (αui + βui t, σ
u
i
2) + (1− λi)N (α`i + β`i , σ

`
i

2
) (5)

which can be estimated using the EM algorithm with weighted least squares in the

component trends. For convenience of interpretation (and without loss of generality)

assume αui + βui t ≥ α`i + β`i t so that superscript u is the upper component and ` the

lower component. The parameters of this model are estimated for each crop-county

combination using the robust starting value procedure detailed in Ker, Tolhurst, and

Liu (2016).5 In addition to using the estimated parameters for the analysis, we impose

the functional form to compute the variance of yi,t as a function of time t:

V aryi,t(t) = λiσ
u
i
2 + (1− λi)σ`i

2
+ λi(1− λi)

(
αui − α`i + (βui − β`i )t

)2
(6)

and plugging in the parameter estimates we can examine changes in the upper moments

over time. Note this is the lone exception where we impose form on the scale and

shape of the yield distribution; however, the functional form is quite flexible. For

instance, with one set of parameters the distribution of yi,t could: begin as symmetric

and unimodal, become asymmetric and unimodel in the middle of the sample, and be

asymmetric (or symmetric) and bimodal at the end of the sample.

3.2 Yield Volatility Attribution Model

The contribution of innovation and climate on yield trends is estimated using the cross-

sectional model of Lobell and Asner (2003a), which regresses yield trend coefficients

against climate trend coefficients. For i = 1, 2, . . . , k counties let ((dc1, dy1), . . . , (dck, dyk))

be a sequence of county-level yield and climate trends where, with j climate variables,

5Also included in the supplemental appendix.
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dci = (dci1, . . . , dcij)
>. Note the yield and climate trends are observed over the same

time periods. Then we estimate

dyi = r0 + dc>i ry + εi, i = 1, 2, . . . , k (7)

where r0 is a regression constant, ry = (ry,1, . . . , ry,j)
> is a j unknown parameter vector,

and εi are random regression residuals. For climate trends we use linear trends in the

agronomic metrics detailed in section 2.2.2. The resultant model explains cross-sectional

variation in yield trends using cross-sectional variation in climate trends. All estimates

of (7) are computed using acreage as weights (NASS planted acreage in 2011) in a

weighted least squares problem with heteroskedastic standard errors clustered at the

crop reporting district level.6

Lobell and Asner (2003a) use this model with estimates of the conditional mean

as the dependent variable.7 Instead, we used a number of different yield volatility

trend measures as the dependent variable described in section 3.1: (i) the nonconstant

volatility coefficient, β̂i; (ii) the positive residual coefficient analogous to (i), β̂+
i ; (iii) the

negative residual coefficient analogous to (i), β̂−i ; and (iv) five conditional quantile coef-

ficients, β̂τi for τ = {0.1, 0.3, 0.5, 0.7, 0.9}. Further, given that the relationship between

asymmetry in volatility and trends in agronomic metrics is undoubtedly complex, we

also considered a number of potentially interesting transformations: (v) the differ-

ence between (ii) and (iii), β̂+
i − β̂−i ; (vi) the ratio of (ii) to (iii), β̂+

i

/
β̂−i ; (vii) the

difference in the two trend mixture model estimated variances evaluated at 2015 and

6There are 100 clusters in the corn data and 76 clusters in the soybean data. Kézdi (2004) argues
approximately 50 well balanced clusters are sufficient for accurate inference. In both data sets the
number of clusters range from one to 16 counties with a median of nine counties. We would argue the
clusters are fairly well balanced—16 clusters is 1.96% of the corn sample and 2.44% of the soybean
sample—but nevertheless include the degree of freedom correction M

M−1
N−1
N−K to account for the un-

balanced nature of the clusters where M is the total number of clusters, N is the length of a given
cluster, and K is the rank of the model.

7We also do this and report the results in the supplementary appendix.
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1951, V̂ aryi,t(t)
∣∣
t=2015

−V̂ aryi,t(t)
∣∣
t=1951

; and (viii) the ratio of two the two trend mixture

model estimated variances evaluated at 2015 and 1951, V̂ aryi,t(t)
∣∣
t=2015

/
V̂ aryi,t(t)

∣∣
t=1951

.8 Note the regression constant, r0, estimates the climate-adjusted yield effect (i.e. when

ry = 0) corresponding to the given dependent variable. Thus

Net climate effect ≡ dyi − dyi|dci (8)

and we can attribute the difference between the conditional and unconditional mean of

dyi to the net effect of climate on dyi.

The model is intended to separate the impacts of climate and innovation on observed

yield trends, though this attribution exercise involves some caveats. The primary con-

cern is the interpretation of r0 as innovation when it may be confounded with other

variables. For instance, Kucharik (2008) notes the model implicitly assumes other fac-

tors which may contribute to yield trends (e.g. ozone, pests, disease) but are uniform

across space would be erroneously attributed to r0. It also should be noted that identi-

fication of the statistical model relies on historical yield data and assumes technologies

adopted during the sample have not been targeted at mitigating the effects of a chang-

ing climate (also noteworthy because this approach may not be possible with future

yield data).9

8Note V̂ aryi,t(t)
∣∣
t=2015

/
V̂ aryi,t(t)

∣∣
t=1951

∝ β̂ui
/
β̂`i (and analogous for difference), so we could es-

timate (vii) and (viii) using the estimated component trends instead; however, we do not for brevity

and because β̂`i is allowed to be zero.
9In a survey of 1,276 Iowa farmers in 2011, 55.4% of participants did not believe climate change

is occurring or believed it is a natural phenomenon and were “[far less likely to believe] that steps
leading to adaptation should be pursued,” (Arbuckle, Morton, and Hobbs, 2013). Implicit then, at
least anecdotally, is that extensive preemptive or reactive technologies had not been widely adopted
in Iowa over the sample period.
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4 Results: Four Empirical Regularities

Regularity 1: Volatility increased dramatically over time through-

out the Corn Belt.

Figure 1 plots changes in the yield volatility index for corn (left) and soybean (right)

over time and space. The top panel presents an aggregate measure of yield volatility

in 11 year bins with 1951–1963 standardized to a value of 100. For both crops yield

volatility has increased steadily over time. The value of the index in the 2003–2015

implies volatility more than doubled for corn and nearly doubled for soybean. This

is roughly equivalent to the increase in average yields during the time period and, as

argued above, has greater economic consequences for producers in both developing and

developed countries.

The bottom panel of figure 1 disaggregates these patterns to the county level. Each

map shows the yield volatility index at the county level for the 2003–2015 period with

increasing volatility shown in red, constant volatility yellow, and decreasing volatility

green.10 A small share of counties have experienced declining or relatively constant

volatility, slightly more so for soybean: the volatility index is less than 100 in 1.6% of

corn counties and 3.8% of soybean counties. Overall, yield volatility is unambiguously

increasing the vast majority of counties—greater than 150 in 92.0% for corn and 80.2%

for soybean. More often than not, 77.9% for corn and 51.7% for soybean, the yield

volatility index more than doubled from 1951–1963 to 2003–2015.

To support the illustrations in figure 1, we conducted the timewise non-constant

volatility test at the county level. At the 5% level, the null hypothesis of constant

volatility (H1) was rejected in 60.8% of corn and 45.4% of soybean counties. In the

10Counties not meeting the criteria for inclusion in the data set are in gray. County-level yield
volatility index is V Ii,Tj and aggregated yield volatility index is V IPool,Tj as formally defined in the
supplementary appendix.
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(left) and soybean (right). Boxplots show the index value averaged over all counties in
the sample segmented into 11 year windows. The maps illustrate the increase in in the
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15



overwhelming majority of counties, this non-constant volatility is increasing: using

the one-sided test under the null of non-decreasing volatility (H2) rejected 60.0% and

45.3% of counties for corn and soybean, respectively. In contrast, under the null of

non-increasing volatility (H3), only 0.7% and 0.2% of counties rejected the null, far

below the size of the test. In light of the relatively low power of tests for changes in the

second moment,11 these results indicate increases in yield volatility has been significant

and widespread throughout the Corn Belt over the past 65 years.

Next, we considered these patterns by region and state. Interestingly, we found the

aggregated yield volatility index is quite a bit lower in the outer Corn Belt than the

inner: the volatility index in the 2003–2015 period is 298 for the inner but only 203 for

the outer. The pattern is similar for soybeans, but less dramatic: 186 for the inner and

179 for the outer. Along these lines, no corn counties had index values less than 100 in

the inner region, while 3.3% of corn counties in the outer region did. For soybean the

share of index values less than 100 are nearly identical for the inner and outer regions at

3.8% and 3.9%, respectively. The share of soybean counties with index values over 200

in 2003–2015 are also nearly identical at 51.7% for the inner and 51.5% for the outer;

however, for corn the share is much higher in the inner region at 87.9% compared to the

outer at 67.0%. The pattern of higher volatility in the inner region was also reflected in

the timewise non-constant volatility test. For corn H1 is rejected 66.4% for the inner

region and 54.7% for the outer region, H2 is rejected 66.4% for inner and 53.2% for the

outer, and H3 is never rejected the inner and in 1.5% of counties in the outer region. As

expected, rejection rates are also higher for soybean in the inner region but at a lower

magnitude: H1 is rejected 46.8% for inner to 42.9% for the outer, practically identical

rates for H2, and H3 is rejected in only four counties (0.2%) in the inner region and

never in the outer region. In sum, we found non-constant and almost always increasing

11See analysis in the supplementary appendix.
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yield volatility in both regions, though with increasing volatility more prevalent in the

inner region of the Corn Belt than the outer.

For brevity, we summarized the results across states by focusing on the top and

bottom three for each metric. We found the aggregated yield volatility index was high-

est for corn in Kentucky, Missouri, and Indiana, while lowest in Minnesota, Michigan,

Nebraska (notably Iowa was the fourth lowest). For soybeans the highest were Wiscon-

sin, Ohio, and Michigan with the lowest South Dakota, Missouri, and North Dakota

(notably Illinois was the fourth lowest). The states with the highest share of counties

with yield volatility index values greater than 200 were Kentucky (100.0%), Illinois

(95.9%), and Ohio (94.2%) for corn and Wisconsin (98.0%), Michigan (69.7%), and

Ohio (67.2%) for soybeans. The lowest share of counties with volatility index values

below 200 were Minnesota (66.2%), Michigan (51.1%), and Nebraska (34.9%) for corn

and Missouri (38.0%), South Dakota (28.0%), and North Dakota (none). As expected,

these are (mostly) reflected in the timewise nonconstant volatility hypothesis test rejec-

tion rates. The highest rejection rates of H1 for corn were in Ohio (92.7%), Kentucky

(88.2%), and North Dakota (72.2%) (Illinois fourth at 71.4%), while for soybean they

were Wisconsin (83.7%), Ohio (53.1%), and Indiana (51.7%). The rejection rates for

H2 are practically identical as for H1. Interestingly, all rejection rates for H3 were

zero except for in Nebraska for corn (7.0%) and Iowa for soybean (1.0%). The lowest

rejection rates for H1 (and H2) were in Michigan (48.9%), Iowa (46.5%), and Nebraska

(22.1%) for corn and Illinois (36.1%), South Dakota (24.0%) and North Dakota (none)

for soybean. Taken together, these results show there is considerable variation in the

magnitude of volatility trends in the the Corn Belt over time; however, the pattern of

increasing volatility is remarkably consistent throughout.

Finally, we also assessed the sensitivity of the estimates to detrending and bin width

assumptions using the two trend mixture model. Specifically, we used the estimated
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parameters of the two trend mixture model and calculated the fitted variance (6) at

1951 and 2015. Examining the percentage change in volatility, we find a very similar

pattern to the earlier results. The percentage change in volatility is positive in 97.7% of

corn counties and 98.3$ of soybean counties.12 Once again we see both corn and soybean

volatility increased, but corn tended to do so at a higher relative rate: the volatility

increased by a factor of one in 67.9% of corn counties and 68.2% of soybean counties;

in over half (52.7%) of corn counties and just less than half (48.2%) of soybean counties

yield volatility increased by more than a factor of two; and one quarter of corn counties

increased by more than a factor of 3.7, while one quarter of soybean counties increased

by more than a factor of 3.1. Further, we find a similar pattern to the earlier analysis

when we consider results at the regional level for corn. Volatility in the Inner Corn

Belt tended to increase faster than in the Outer: for example, in the median county

volatility increased by a factor of 2.5 in the inner region compared to 1.6 in the outer.

For soybean, the results are slightly different in that the outer region experienced higher

volatility than the inner region; however, like the earlier results the differences between

regions tends to be fairly small. For example, in the median county volatility increased

by a factor of 1.9 in the inner region and 2.0 in the outer region. Overall, these results

show that the finding of substantially higher yield volatility over time throughout the

Corn Belt is robust to specification assumptions.

12Of the 19 corn counties where the fitted variances indicate decreasing volatility, there was one in
each of Illinois, Kentucky, and Michigan, two in Wisconsin, six in Nebraska, and eight in Minnesota.
Of the 11 soybean counties where the fitted variances indicate decreasing volatility there were two of
each in Iowa, Michigan, and Ohio, and the remaining five were in Illinois.
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Regularity 2: Increases in volatility over time were not sym-

metric across the distribution.

Beyond the increase in volatility considered above, one may be concerned with the

changes in the shape of the distribution, especially in the relative length of the distri-

bution’s tails. Figure 2 gets at how the shape of the corn (left) and soybean (right) yield

distribution has changed over time. The top panel reproduces the top panel of figure 1

but with separate volatility index values for positive (blue) and negative (orange) de-

trending residuals. The bar heights are standardized such that the positive residuals in

the 1951–1963 bin are 100. For both crops it is clear that: (a) the index values on both

signed residuals increased substantially; (b) this increase was steady over time; and,

perhaps most importantly, (c) the index value of the negative residuals is always higher

than the index value for the positive residuals. In the first bin the value of the negative

residual index was 128.7 for corn and 116.3 for soybeans. In contrast, the value of the

negative residual index was 1.5 times the value of the positive residual index for corn

and 1.4 times for soybeans. The values of the index suggest negative residuals increased

by a factor of 2.8 for corn and 2.0 for soybeans, while positive residuals increased by

factors of 2.3 and 1.6, respectively. These results imply volatility has increased asym-

metrically throughout the Corn Belt in the past 65 years; in particular, the lower tail

has gotten relatively longer than the upper tail, which is important because lower tail

realizations are arguably more important to agricultural producers.

The bottom panel of figure 2 plots a representative county (Adair county, Iowa)

of corn and soybean yields with conditional quantile trend fitted lines at the 10th,

30th, 50th, 70th, and 90th quantiles. The conditonal quantile trend lines clear shows

a pattern of greater spread in the coefficients at higher quantiles for both corn and

soybean. This pattern is indicative of non-uniform changes in yield volatility: a lower
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Figure 2: Pattern of changes in yield distribution over time. Top: Modified boxplots
from fig. 1 for corn (left) and soybean (right) where the index is calculated separately
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rate of technological change in lower quantiles necessarily implies increasing dispersion

and therefore increasing volatility over time.

The bottom panel of figure 1 disaggregates these patterns to the county level. Each

map shows the yield volatility index at the county level for the 2003–2015 period with

increasing volatility shown in red, constant volatility yellow, and decreasing volatility

green.13 A small share of counties have experienced declining or relatively constant

volatility, slightly more so for soybean: the volatility index is less than 100 in 1.6% of

corn counties and 3.8% of soybean counties. Overall, yield volatility is unambiguously

increasing the vast majority of counties—greater than 150 in 92.0% for corn and 80.2%

for soybean. More often than not, 77.9% for corn and 51.7% for soybean, the yield

volatility index more than doubled from 1951–1963 to 2003–2015.

To capture this we estimated conditional quantile regression trends at the 10th,

30th, 50th, 70th, and 90th quantiles. The bottom panel of figure 2 illustrates a prevalent

pattern in corn and soybean county plots: the narrow (and relatively constant) space

between the upper quantiles suggests a relatively short and fixed upper tail, while the

wider (and widening) space between the lower quantiles suggests an increasingly long

lower tail. In fact, this pattern occurs in 74.9% of corn and 66.0% of soybean counties.

In sum, this pattern suggests that technological innovations have: (a) shifted mass

upwards significantly and uniformly in the middle to upper part of the yield distribution;

(b) shifted mass upwards moderately in the higher part of the lower tail of the yield

distribution; and (c) had a relatively small effect on the extreme lower tail of the yield

distribution where, as we see in empirical regularity 4, is relatively more dependent on

climate.

13Counties not meeting the criteria for inclusion in the data set are in gray. County-level yield
volatility index is V Ii,Tj

and aggregated yield volatility index is V IPool,Tj
as formally defined in the

supplementary appendix.
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Regularity 3: Changes in climate were correlated

with changes in volatility.

In this section we estimate the contributions of climate and innovation to yield volatili-

ties in Iowa via Lobell and Asner (2003a); that is using yield volatility trend coefficients

as opposed to yield trend coefficients as our dependent variable as discussed earlier. We

restrict the analysis (and regularity 4) to Iowa for a number of reasons: (a) the relatively

homogeneous topography of Iowa reduces the possibility of climate interpolation errors;

(b) we do not need to directly control for irrigation because production of corn and soy-

bean in Iowa is almost exclusively rainfed with only 0.81% of Iowa corn and 0.53% of

Iowa soybean acreage fully or partly irrigated in 2012 (2012 U.S. Census of Agricul-

ture); (c) there is a complete yield history for corn and nearly complete yield history

for soybean (all but Dubuque county); (d) 99.2% and 88.0% of the corn and soybean

observations, respectively, report more than 25,000 harvested acres in any given year;

and (e) the value of agricultural production in Iowa is the second largest in the U.S.

(behind California), corn and soybeans are Iowa’s two largest crops, and historically

the state of Iowa is the largest producer of corn and soybeans by acreage, production

and value in the country. In fact, Iowa produced 17% and 14% of total national corn

and soybean production, the value of which exceeded $9.6 and $5.5 billion, respectively,

in 2013 NASS (2015).

Overall, as reported in table 2, changes in climate variables explain roughly one-

quarter of the spatial variation in yield volatilities: 26.1% for corn and 28.6% for soy-

bean. Unlike mean yields where the directional impact of certain climate variables is

arguably well-known, there is no established directional impact of climate variables on

yield volatility coefficients. Interestingly, trends in GDD were broadly favourable and

were significantly correlated with lower levels of yield volatility in both crops, while
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Table 2: Contributions of Innovation and Climate to Yield Volatility Trends

Corn Soybean
Constant 0.762∗∗∗ 0.346∗∗

(0.112) (0.153)
GDD −0.072∗∗ −0.119∗∗∗

(0.036) (0.040)
HDD 1.328∗∗ 3.324∗∗∗

(0.536) (0.680)
VPD −0.465 0.408

(0.318) (0.405)
PCP 0.026 0.125∗

(0.050) (0.067)
VPDJA 0.925 −1.725

(0.913) (1.151)
PCPJA −0.082 −0.150

(0.092) (0.119)
n 99 98
r2 0.261 0.286
F 5.411∗∗∗ 6.061∗∗∗

the opposite was true for HDD. VPD was negatively correlated with yield volatility

trends for corn but positively correlated for soybeans, though neither were statistically

significant. This pattern was reversed for VPDJA, with a positive correlation in corn

and negative correlation in soybean, though again neither were statistically significant.

While growing season precipitation was positively correlated with yield volatility in

both crops (and significant at the 10% level for soybean), July-August precipitation

was negatively correlated with yield volatility. The F -statistics demonstrate that spa-

tial variations in climate trends explain spatial variations in yield volatility trends to

a statistically significant degree (both p < 0.01%). Consistent with the first empirical

regularity, the constant coefficients are positive and statistically significant, indicating

innovations have induced higher yield volatility over time. By comparing the constant

in the climate regression to the average while not conditioning on climate variables

indicates the directional effects of climate on yield volatility. Given the average yield
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volatility trend coefficients of 0.389 for soybean and 0.583 for corn, the regression results

indicate that changes in climate induced volatility in soybean and reduced volatility in

corn (see Methods for caveats of this attribution approach).

Regularity 4. Changes in climate were asymmetri-

cally correlated across quantile trend coefficients.

The literature has yet to consider whether climate and innovation have differential

impacts across the yield distribution. That is, do climate and innovation have identical

impacts across the lower tail, mean, and upper tail of the yield distribution? To answer

this question, we repeat the analysis in regularity 3 and estimate the contributions of

climate and innovation to yield trends across various quantiles using Lobell and Asner

(2003a) with yield quantile trend coefficients as the dependent variable (Methods). The

results are summarized in table 3. With corn the response of yield quantile trends to

changes in climate trends is consistently higher at lower quantiles. GDD and growing

season VPD are unambiguously positive and statistically significant determinants of

yield quantile trends, where the effects are generally strongest on the lower quantiles.

That is, counties with higher GDD and VPD trends experienced higher yield trends in

the lower quantiles. July-August PCP was positively and significantly correlated with

the middle yield quantile trends, but did not have significant effects on the extreme

lower or upper quantile trends. In contrast, the effect of growing season PCP trends

was ambiguous and never statistically different from zero. The effects of HDD and

July-August VPD were unambiguously negative and statistically significant. Despite

acting in a different direction, similar to GDD and growing season VPD the magnitude

of HDD and July-August VPD effects were progressively higher at lower quantiles.

Soybean illustrates an interesting contrast to corn because the response of yield
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quantile trends to changes in climate trends is fairly constant over quantiles. GDD

trends are positively and significantly correlated with yield trends across all quantiles

with slightly higher effects on the lower quantiles than the median or upper quantiles.

The effects of GDD trends are relatively constant over the median and upper quantiles.

HDD has a strong negative and significant effect on the lower tail, but a positive and

insignificant effect on the upper tail. Growing season VPD and July-August PCP have

fairly consistent positive and significant effects across quantiles (with the exception

of VPD’s effect on the 10th quantile which is negative and insignificant) suggesting

counties with higher VPD and July-August PCP had uniformly higher yield trends.

Growing season PCP has a statistically negative effect on the lower tail trends, but

its effect on the median and upper tail is not statistically different from zero. While

the pattern of effects is not as consistent for soybean as for corn, the magnitude (and

sometimes even the direction) of the effects are not equivalent across yield quantile

trends; that is, there are differential climate contributions across quantiles. This is

especially reflected with July-August VPD, which has a positive and significant effect

on the 10th quantile, but negative and significant effects on the median and upper tail

trends.

We can also use these estimated models to test some interesting hypotheses about

the contributions of climate and innovation to yield quantile trends (Methods). The

F -statistics reported in table 3 show the inclusion of the climate trend variables jointly

improves the fit of the model. In other words, climate trend variables are statistically

significant determinants of yield quantile trends; however, this does not speak to the

net effect of these climate trends. By comparing the regression model constants (or

climate-adjusted yield trends per Lobell and Asner (2003a)) to the average conditional

quantile trends, we infer the average net effect of climate on respective yield quantile

trends and present the results in table 4. For corn the climate-adjusted yield trends
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Table 4: Net climate effect across conditional quantile trends

Corn Soybean
Quantile Effect p-Value Effect p-Value
10 +0.2628 0.0291 −0.0450 0.0807
30 +0.1479 0.0203 −0.0076 0.3942
50 +0.1467 0.0903 +0.0079 0.3631
70 +0.0709 0.0880 +0.0340 0.0479
90 +0.1042 0.0574 +0.0181 0.1819
Note: Net climate effect in annual bushels per acre.

are consistently lower than the conditional quantile trends across quantiles implying

observed changes in climate have shifted yield trends upwards. Once again, we see

climate has had the largest effect on the lower tail of the distribution. The results

for soybean are more ambiguous: climate has had a negative effect on the lower tail

(though neither are statistically different from zero at the 5% level) but a positive effect

on the median and upper tail.

Overall, spatial variations in climate trends explain 19% to 46% of the spatial vari-

ation in yield quantile trends for corn and 25% to 37% for soybeans. Interestingly, the

explanatory power of the model steadily decreases at higher quantiles for corn, implying

changes in climate disproportionately affect the lower tail (as expected but yet to be

empirically documented). In an interesting contrast, explanatory power does not follow

a consistent pattern across soybean conditional quantiles, likely reflecting the plant’s

plasticity and lower responsiveness to climate and management Vega et al. (2001). It

is also clear the response of yield trends to differences in climate trends are not con-

stant over quantiles. That is, the probability and magnitude of low yield outcomes

are impacted by changing climate differently than average yield outcomes; considering

climate effects only at the mean would be misleading.
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5 Concluding Remarks

Due to the importance of agricultural production and the unknown impacts of climate

change, substantial research efforts have been directed towards a better understanding

of the complex relationship between weather outcomes and crop yields (Lobell and

Asner, 2003a; Peng et al., 2004; Kucharik, 2008; Schlenker and Roberts, 2009; Lobell,

Schlenker, and Costa-Roberts, 2011; Osborne and Wheeler, 2013; Lobell et al., 2014;

Ray et al., 2015). While these research efforts have led to important advancements in

knowledge, the literature has focused almost exclusively on average yields. While useful,

the effect of climate on yield volatility has been largely ignored. This is problematic

for multiple reasons: (i) changing climate and innovation are likely to impact yield

volatility more than average yields; (ii) yield volatility is likely to impact year-to-year

food supply more than average yields; and thus (iii) yield volatility is likely to have

greater and more immediate economic consequences than average yields.

We focus on the volatility of yield outcomes as measured by the overall dispersion

in the tails. The first regularity finds significant increases in the year-to-year volatility

of corn and soybean yields throughout the Corn Belt. The second empirical regularity

demonstrates that the increased volatility observed in the first regularity is not spread

evenly across the tails of distribution: more often than not, the lower quantiles shifted

upwards slower than the upper quantiles (recall figure 2). Our results in the third empir-

ical regularity suggest one-quarter of the spatial variation in yield volatility coefficients

can be explained by variation in trends in climate variables. Interestingly, the net effect

of observed climate trends has had a volatility-reducing effect during the sample period.

The findings in the fourth empirical regularity are not only inconsistent with extrapo-

lating findings for average yields to the tails of the distribution, but are also arguably

the most interesting. The response of corn yield quantile trends to changes in climate

trends is consistently higher at lower quantiles; in contrast for soybean the response of
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yield quantile trends to changes in climate trends is fairly constant over quantiles.

During the study period there were a number of notable advancements in technology

that may explain our findings: self-pollinating hybrids; ongoing germplasm heterosis

and specialization in conventional breeding (Duvick, 2005); genetic traits for pest resis-

tance and herbicide tolerance complemented by advances in nutrition, weed and pest

management (Qaim and Zilberman, 2003); earlier planting dates (Kucharik, 2006); and

more recently, the increasingly sophisticated and adopted precision agriculture (Mulla,

2013). Interestingly, gains in average corn yields per acre have been driven by the ability

of newer hybrids to tolerate higher plant populations, which means potential yield per

acre is highly dependent on high plant populations (Tollenaar and Wu, 1999; Echarte

et al., 2000; Sangoi et al., 2002); however, higher plant populations have a range of

adverse consequences for corn yield stability (Tollenaar and Lee, 2002; Tokatlidis and

Koutroubas, 2004). While average corn yields roughly doubled, so too did plant popu-

lations and volatility. However, the mechanism for increasing soybean yield volatility is

undoubtedly different, as soybean has the ability to produce relatively constant yields

across different plant populations (Carpenter and Board, 1997). Most importantly, un-

derstanding the causes of the prevalence and magnitude of increases in yield volatility

suggest an important question for future research with important implications for a

range of fields.
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