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Introduction 

Huanglongbing (HLB) or citrus greening disease is a major bacterial disease that affects citrus 

trees in Florida and throughout citrus producing regions worldwide. In Florida and elsewhere, 

the disease is a major source of revenue loss for citrus growers. The Asian citrus psyllid, a sap-

sucking insect, spreads the disease by feeding on infected trees and then transmits the disease to 

healthy trees. Symptoms of the disease begin benignly with yellow leaves but progress over time 

and include bitter, economically useless fruit (Brlansky et al. 2011).  

 There is currently no effective treatment for the disease, although a wide variety of 

treatments are being tested. Primary control measures include applying insecticides to control the 

insect vector, applying nutrients through foliar applications to mitigate the nutrient deficiencies 

caused by the disease, and more recently, the use of antibiotics and antimicrobials have been 

used through a temporary allowance by the Environmental Protection Agency (Gottwald et al. 

2012, Putnam 2016).  

The movement of psyllids spreads the disease both within and between blocks of citrus 

trees. Due to movement beyond the range of a single grower’s fields, Citrus Health Management 

Areas or CHMAs have been created in Florida. Insecticide applications within the CHMA are 

coordinated by a grower coordinator in conjunction with a University of Florida extension agent. 

The plans usually include four to nine insecticide applications applied throughout the year, and 

list the active ingredient to be applied and the time range for each application. 

Coordinated applications should be more effective at reducing pysllid counts than 

asynchronous applications, and the plans are designed to minimize insecticide resistance. Despite 

these features, CHMA participation rates and coordination efforts vary tremendously across 



	 	 	
	

Florida. This paper seeks to determine the effects of varying participation and control effort on 

psyllid populations and to determine if broader geographical coordination is necessary.  

 

Previous Work 

Previous work in this area falls into three main categories: optimal pest control in general, 

spatial-dynamic models of invasive species management, and dynamic models of pest and 

disease control in perennial systems. A large body of literature analyzes optimal pest control 

decisions considering risk, pesticide externalities, pesticide resistance, and intra- and inter-

seasonal insect dynamics (Feder 1979; Feder and Regev 1975; Plant, Mangel, and Flynn 1985; 

Regev, Shalit, and Gutierrez 1983, Lichtenberg and Zilberman 1986; Saha, Shumway, and 

Havenner 1997; Regev, Gutierrez, and Feder 1976). However, much of this work considers 

annual crops, which are removed at the end of each growing season. Perennial crops remain in 

the ground for many years, creating a stock of diseased trees that carries over across growing 

seasons. Additionally, perennial crops usually entail a larger initial investment with the 

expectation that the investment will produce yields for many years. The threat of disease is then 

potentially more severe. 

Models of invasive species management generally model the spread of the species across 

a landscape and assume that management options include containment and/or eradication 

(Epanchin-Niell and Wilen 2012; Epanchin-Niell and Wilen 2014; Liu and Sims 2016; Marten 

and Moore 2011; Olson and Roy 2002; Saphores and Shogren 2005; Sharov and Leibhold 1998) 

For the case of HLB in Florida, containment and eradication are no longer feasible options, and 

the disease is considered established throughout the state. Management of established vector 

populations within groves and between groves is a more relevant issue for HLB than prevention 



	 	 	
	

of invasion of new groves. 

Dynamic models of pest and disease in perennial systems include dynamic models of 

disease control in an individual field (Grogan and Mosquera 2015) and optimal rotation length or 

harvest volumes in the presence of disease (Aadland et al. 2015; Roosen and Hennessy 2010). 

Some work has spatial features of pest management, including Atallah et al. (2015), which 

considers a spatially optimal pattern of control of grapevine leafroll disease within a given field, 

and Brown et al. (2002), which considers management of Pierce’s Disease as a function of 

distance from riparian vegetation that serves as a source of the disease’s insect vector. Among 

these models, only Brown et al. (2002) consider an insect-vectored disease, but for the case of 

Pierce’s Disease, insecticide control is not an option; management of riparian habitat and 

construction of barrier habitat are the primary control options. This lessens the ability of growers 

to coordinate and instead requires coordination between managers of riparian habitat and 

growers. While most work in this area has utilized theoretical models, Grogan and Goodhue 

(2012) empirically indentify the presence of spatial externalities in the California citrus industry. 

Applications of certain insecticides reduced populations of an economically important parasitic 

wasp, lowering growers’ ability to use the wasp for pest control. 

To the best of our knowledge, no work has yet considered the efficacy of coordinated 

control of an insect-vectored disease of a perennial crop.  

 

Data  

For this study, we surveyed CHMA grower coordinators to pair with existing psyllid count data 

and information from CHMA websites. We collected information regarding when the CHMA 

was formed; if the CHMA is still coordinating insecticide applications, and if not, when 



	 	 	
	

coordination stopped; grower participation rates over time; and the effectiveness of CHMA 

coordination in terms of reduced disease spread, reduced disease severity, and reduced pysllid 

counts. We also asked coordinators what kinds of information or tools they needed to improve 

participation and efficacy. Out of the 55 CHMAs that have ever existed, 54 have persisted 

through our sample period. Of those 54, 41 had viable grower coordinator contact information 

available and 16 responded with usable responses, yielding a 39% response rate. Psyllid count 

data and parcel sizes for individual fields were obtained from the CHMA IFAS website for citrus 

growers, and CHMA land area and border length was calculated using data from the Florida 

Department of Agricultural and Consumer Services Ag-Apiary Mapping Program. 

 Table 1 reports plot-level summary statistics for data obtained for all CHMAs, and also 

separately reports the statistics for plots in CHMAs included among survey respondents. Table 2 

reports CHMA-level summary statistics for pertinent variables obtained through the grower 

coordinator survey. Figure 1 plots the number of psyllid counts averaged over all plots with a 

count during that cycle. The graph demonstrates that there is a cyclical nature to the psyllid 

population, and beginning in 2014, the peak of the cycle has been increasing. 

 

Methods 

The analysis would ideally use two layers of spatial analysis. The first would consider CHMA-

level impacts on psyllid populations as a function of CHMA characteristics. The second would 

aggregate plot-level data up to the Public Land Surveying System’s section unit (1 square mile) 

because that is the finest scale on which spatial referencing is available. Unfortunately, the 

spatial model for the latter level of analysis is still in progress. With the large number of 



	 	 	
	

observations, spatial model convergence has been problematic. The analysis that follows utilizes 

CHMA-level measures of psyllid counts only. 

For all analyses, the raw psyllid count data represent censored data. Scouts tap randomly 

selected branches and count the number of psyllids that fall from the tree onto a white platform 

held under the branch. The count data will be positively correlated with psyllid populations, but 

for some low population level, the probability of detecting psyllids in any given tap becomes 

small. Consequently, a count of zero represents a range of low psyllid populations, and the 

analysis makes use of tobit models to account for this censoring. 

 In addition to censoring, there is reason to believe that observations are spatially 

correlated. The psyllid population itself is likely correlated across space; psyllids on one field 

may contribute to reproduction and psyllid populations on neighboring fields. Additionally, the 

error terms in the model may be spatially correlated if unobserved factors like climate, weather, 

or surrounding habitat via backyard citrus or abandoned groves influence psyllid populations. To 

account for spatial externalities, we construct a matrix based on adjacent CHMAs. The weighting 

assigned to each of CHMA i’s directly adjacent neighbors is based on the percent of CHMA i’s 

total shared border that is shared with each of its neighbors j such that: 

 !"# =
%&'()ℎ"#
%&'()ℎ"+,

+-.
 

(1) 

Previous spatial analysis of disease incidence finds a median distance of 3.5 km so we do not 

expect spatial correlation beyond adjacent CHMAs (Gottwald 2010). 

 Due to the apparent changes in the psyllid population across the years in the sample, and 

anecdotal evidence about changing psyllid populations and changing efficacy of insecticide 

applications, the models are estimated for each year. For 2012 through 2016, the dataset 

represents a full year of data with seventeen to eighteen cycles of psyllid counts.  



	 	 	
	

 The base model is represented by: 

 /"01 = 23/"01 + 5"16 7 + 8" + 90 + :"01 (2) 

where /"01 is the statistic representing psyllid counts in CHMA i in cycle c in year t. W is a 

spatial weighting matrix with each weight as defined in equation (1), 5"1 is a vector of 

characteristics at the CHMA level, which can vary across years but are constant across cycles 

within a year. These characteristics will be discussed further below. For unobservable terms, we 

account for time-invariant unobservables at the CHMA level 8", a spatially-invariant error term 

each count cycle 90, and a random error term in each CHMA, each cycle for year t, :"1.  

We also allow for correlation in the error terms such that: 

 ;"01 = <3;"01 + ="01 (3) 

We hypothesize that 2 will be greater than zero, given potential positive effects of large psyllid 

populations on surrounding regions. We hypothesize that < will also be positive due to the 

potential for spatially-correlated environmental attributes that might affect psyllid populations.  

 The explanatory variables considered in 5"1 include some variables specific to CHMAs 

whose grower coordinator responded to our survey and some applicable to all CHMAs. To 

control for possible bias in terms of overall psyllid populations, we include a dummy variable 

indicating if the CHMA’s grower coordinator responded. We then interact that variable with four 

variables of interest: a dummy variable indicating whether or not the CHMA was coordinating 

applications in time t, a count variable indicating the number of years the CHMA had been 

coordinating up until year t with this variable equaling 0 if the CHMA was  not coordinating in 

time t, a continuous variable representing the CHMA’s grower participation rate in the previous 

year, and a count variable representing the number of coordinated insecticide applications 

planned by the CHMA in the previous season. The latter two variables are lagged to eliminate 



	 	 	
	

the possibility that psyllid counts in that year affect participation or number of applications. We 

do not include a lag of the coordination variable because plans to coordinate generally occurred 

well in advance in order to have time to plan applications with an extension agent and fellow 

growers. Variables obtained for all CHMAs include the total land area of the CHMA; larger 

CHMAs may be able to buffer themselves from neighboring CHMAs better. We also include the 

border to area ratio for each CHMA to control for the possibility that CHMA’s with extensive 

borders could be more affected by their neighbors. Lastly, we include the average parcel size 

within the CHMA. Anecdotal evidence suggests that owners of larger citrus operations have 

more aggressively controlled psyllids. 

 

Results 

Three metrics were used to depict psyllid counts at the CHMA-level: median, mean, and 75th 

percentile of psyllid counts. The first model used the median psyllid count across all plots in 

each CHMA in each cycle. For the majority of CHMAs for years 2012 – 2015, the median value 

was actually 0. The percent of CHMA-cycle combinations with a value of zero remained similar 

for 2012 and 2013, and then steadily decreased through 2016, as overall psyllid counts increased 

throughout the state.  

Table 3 reports the results of the median psyllid count spatial tobit models estimated by 

year. The first observation to note is that the responding CHMAs had higher median psyllid 

counts in all years but 2016. Coordinators with high psyllid populations may be more concerned 

about the success of their CHMA and may have been more inclined to respond. Among 

responding CHMAs, the number of years for which the CHMA has been actively coordinating 

insecticide applications is negatively correlated with psyllid counts for 2013, 2014, and 2015, 



	 	 	
	

suggesting that sustained efforts were effective in that time period. In 2012, there was too little 

variation in years of coordination, so this variable is not included, and the base Currently 

Coordinating variable is negatively associated with psyllid counts. Both of these trends suggest 

that CHMAs were effective. 

In terms of the actions of the CHMAs, participation rates are negatively correlated with 

psyllid counts in 2012, which is as hypothesized, but positively correlated in 2014 and 2015. 

Similarly, the number of coordinated applications is positively correlated with psyllid counts in 

2012, but negatively correlated in 2015. These results do not show strong support for CHMA 

efficacy varying based on participation rates or number of applications applied in terms of 

median psyllid counts.  

However, a different picture emerges when considering the mean psyllid counts at the 

CHMA level in each cycle. This metric better accounts for CHMAs with some plots with large 

numbers of psyllids. As before, survey respondents have higher psyllid counts, and current 

coordination and longevity of coordination are negatively correlated with psyllid counts. Using 

mean counts, the number of coordinated applications is negatively correlated with psyllid counts 

for all years except for 2016, providing stronger support that the coordinated applications and 

their number were effective when considering plots with higher psyllid pressure. The 

insignificance of the variable in 2016 could be due to developing resistance among Florida 

psyllid populations. While median psyllid counts demonstrated little spatial correlation, the mean 

counts demonstrate strong spatial correlation both in terms of the psyllid counts themselves as 

well as the error term for 2014 and 2015. For 2013 and 2016, while the spatial coefficients are 

insignificant, the spatial autocorrelation model is still preferred to a non-spatial tobit.  

Finally, the analysis considers the 75th percentile of psyllid counts to directly consider 



	 	 	
	

those plots that have higher than average psyllid counts. The results are similar to those found for 

mean psyllid counts with regards to number of coordinated insecticide applications. Applications 

are negatively correlated with psyllid counts for all years except for 2016. While Currently 

Coordinating and/or Years of Coordination were statistically significant for all years using mean 

counts, they are only significant for 2012, 2013 and 2014 when using the 75th percentile of 

counts. Base level coordination appears ineffective at managing higher psyllid populations in 

more recent years. In terms of spatial correlation, there is evidence of correlation using this 

metric for 2014 and 2016. 

 

Conclusions 

The results support the hypothesis that CHMAs effectively reduce psyllid populations. Base 

levels of coordination appear more effective for low to moderate psyllid pressure, while the 

number of applications applied appears relevant to determine efficacy for higher psyllid 

populations. Interestingly, by all metrics, CHMAs did not demonstrate much efficacy at reducing 

psyllid counts in 2016. This could be due to increasing resistance to the common insecticides 

developing among psyllid populations. This could also be due to a prevalence of abandoned 

groves serving as sources of psyllids, making insecticide applications less effective as psyllids 

from abandoned groves re-populate treated groves.  

 While we hypothesized that spatial correlation would be present across CHMAs, this 

correlation is not robust across years or psyllid count metrics. The current CHMAs appear to be 

encapsulating many of the spatial externalities that occur across fields within their boundaries.  

 Future work should consider data for 2017 when more rounds of count data are available 

to determine if the ineffectiveness of CHMAs found for 2016 persists into 2017. The analysis 



	 	 	
	

will also be expanded to section-level data to make use of the ample data provided by the CHMA 

program. This analysis will also consider regions of Florida to determine if spatial patterns vary 

across the state.   
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Table 1. Summary Statistics of Data Obtained for All CHMAs 

  Respondents Whole Sample 
Variable Mean Std. Dev. Min Max Mean Std. Dev. Min Max 
Plot-Level Statistics          
   Psyllid Count 5.58 12.92 0.00 100.00 5.51 12.63 0.00 100.00 
   Any Directly Neighboring Plot 0.95 0.21 0.00 1.00 0.93 0.25 0.00 1.00 
   Parcel Size (Acres) 25.42 26.11 0.00 200.80 23.09 25.80 0.00 297.70 
   N 117,036    423,537    
CHMA-Level Statistics          
   Total Land Area (1,000 Acres) 108.03 58.44 37.02 235.26 156.02 188.72 18.50 961.73 
   Border Length to Area Ratio 0.40 0.13 0.21 0.61 0.41 0.18 0.13 1.13 
N 16    54    

 

 

 



	 	 	
	

Table 2. Summary Statistics of Survey Responses 

Variable Mean Std. 
Dev. Min Max 

Total Citrus Acres in CHMA 10625.00 8850.08 1000 30000 
Participation Rate, if Active 60.98 27.79 1 100 
Number of Coordinated Applications, if Active 3.85 2.21 1 8 
Years of Coordination 4.94 1.61 2 7 
Year Formed 2102 1.61 2010 2015 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 	 	
	

 

Figure 1. Average Number of Psyllids Trapped across All Plots in Florida over Time



	 	 	
	

Table 3. Spatial Tobit Model of Median Psyllid Counts at the CHMA-Level by Count Cycle 
Median Psyllid Counts 2012 2013 2014 2015 2016 
Survey Respondent (SR) 1.358*** 2.468*** 2.180*** 2.072** -0.431 

 
(0.448) (0.580) (0.755) (0.855) (1.320) 

SR x Currently Coordinating -1.472** -0.733 -1.000 -0.834 1.654 

 
(0.574) (0.728) (0.631) (0.743) (1.563) 

SR x Currently Coordinating x Years of Coordination -1.559*** -0.837* -1.017*** -0.043 

  
(0.457) (0.461) (0.362) (0.298) 

SR x Participation Rate, t - 1 -0.112** 0.042 0.047** 0.065*** -0.030 

 
(0.045) (0.039) (0.020) (0.019) (0.021) 

SR x Number of Coordinated Applications, t - 1 2.018* -1.404 -0.052 -0.223* 0.045 

 
(1.136) (1.042) (0.106) (0.120) (0.152) 

Total CHMA Land Acres (1,000s) -0.008*** -0.001 -0.002 0.002** -0.002* 

 
(0.001) (0.001) (0.001) (0.001) (0.001) 

CHMA Border to Area Ratio -9.514*** -2.732* 2.758*** 1.687 -2.247 

 
(2.057) (1.464) (1.049) (1.402) (2.246) 

Average Parcel Acres -0.053*** -0.077*** 0.063*** -0.171*** 0.046* 

 
(0.019) (0.018) (0.019) (0.029) (0.026) 

Controls for Cycle Yes Yes Yes Yes Yes 
Constant 6.467*** 3.584*** 4.188 -4.978 11.030 

 
(1.584) (1.245) (1.101) (1.360) (2.044) 

Rho -0.032 0.077* 0.027 0.022 0.030 
Lambda 0.057 -0.043 -0.009 -0.016 -0.050 
Sigma -3.840*** -3.591*** 2.681*** -4.414*** 6.456*** 
N 846 799 846 799 799 
LR Test (Rho = 0) 0.459 2.867* 0.561 0.412 0.771 
LR Test (Lambda = 0) 1.554 0.128 0.046 0.165 1.655 
LR Test SAC vs. OLS (Rho + Lambda = 0) 4.716* 2.967 0.741 0.619 1.926 
Wald Test 92.575*** 65.248*** 549.711*** 6.295 434.670*** 
Number Censored 594 578 516 442 316 

Notes: *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. 
Robust standard errors in parentheses  



	 	 	
	

Table 4. Spatial Tobit Model of Mean Psyllid Counts at the CHMA-Level by Count Cycle 
Mean Psyllid Count 2012 2013 2014 2015 2016 
Survey Respondent (SR) 1.687*** 2.173*** 4.958*** 2.311*** 2.161** 

 
(0.388) (0.448) (0.590) (0.629) (1.017) 

SR x Currently Coordinating -2.163*** 0.840 -1.435* -1.142** 0.128 

 
(0.412) (0.636) (0.758) (0.496) (1.026) 

SR x Currently Coordinating x Years of Coordination 0.918 -0.693*** -0.328 -0.809*** -0.487** 

 
(0.744) (0.188) (0.263) (0.214) (0.230) 

SR x Participation Rate, t - 1 -0.003 -0.006 0.007 0.055*** 0.001 

 
(0.011) (0.009) (0.014) (0.012) (0.013) 

SR x Number of Coordinated Applications, t - 1 -1.490* -0.703*** -0.539*** -0.284*** 0.026 

 
(0.836) (0.101) (0.094) (0.076) (0.127) 

Total CHMA Land Acres (1,000s) -0.004*** 0.002* 0.003*** 0.003*** 0.003*** 

 
(0.001) (0.001) (0.001) (0.001) (0.001) 

CHMA Border to Area Ratio -5.637*** 0.286 4.073*** -0.327 -0.835 

 
(0.845) (1.005) (0.830) (0.870) (1.525) 

Average Parcel Acres -0.038*** -0.028*** -0.084*** -0.0806*** -0.122*** 

 
(0.010) (0.008) (0.008) (0.010) (0.015) 

Controls for Cycle Yes Yes Yes Yes Yes 
Constant 5.501*** 1.995** 4.231 2.046*** 4.396*** 

 
(0.609) (0.841) (0.885) (0.753) (1.119) 

Rho 0.017 0.136 0.480*** 0.224*** 0.059 
Lambda -0.045 -0.002 -0.333*** -0.260*** 0.080 
Sigma 3.168*** 3.059*** 3.358*** 3.603*** 5.241*** 
N 846 799 846 799 799 
LR Test (Rho = 0) 0.098 1.116 63.726*** 9.577*** 1.015 
LR Test (Lambda = 0) 0.426 0.0001 11.065*** 8.643*** 1.346 
LR Test SAC vs. OLS (Rho + Lambda = 0) 0.509 15.991*** 126.358*** 9.694*** 11.421*** 
Wald Test 880.111*** 1014.575*** 1428.715*** 1248.370*** 1283.080*** 
Number Censored 5 5 4 16 15 

Notes: *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. 
Robust standard errors in parentheses  



	 	 	
	

Table 5. Spatial Tobit Model of the 75th Percentile of Psyllid Counts at the CHMA-Level by Count Cycle 
75th Percentile 2012 2013 2014 2015 2016 
Survey Respondent (SR) 2.503*** 1.395* 6.009*** 2.173* 3.346* 

 
(0.707) (0.736) (1.116) (1.198) (1.993) 

SR x Currently Coordinating -3.149*** 1.087 -2.218* -0.189 -0.681 

 
(0.802) (0.998) (1.332) (0.912) (1.951) 

SR x Currently Coordinating x Years of Coordination 2.932 -0.999*** -0.425 -0.606 -0.475 

 
(0.359) (0.583) (0.419) (0.477) (0.477) 

SR x Participation Rate, t - 1 -0.028 0.003 0.040 0.062* -0.001 

 
(0.027) (0.012) (0.028) (0.022) (0.027) 

SR x Number of Coordinated Applications, t - 1 -3.720** -0.616*** -0.663*** -0.486*** -0.070 

 
(1.832) (0.139) (0.174) (0.141) (0.242) 

Total CHMA Land Acres (1,000) 0.006*** -0.001 0.002* 0.002 0.001 

 
(0.001) (0.001) (0.001) (0.002) (0.002) 

CHMA Border to Area Ratio -9.340*** 0.555 4.916*** -0.830 -3.602 

 
(1.703) (1.926) (1.707) (1.841) (2.966) 

Average Parcel Acres -0.101*** -0.004 -0.051*** -0.043** -0.140*** 

 
(0.022) (0.016) (0.018) (0.019) (0.031) 

Controls for Cycle Yes Yes Yes Yes Yes 
Constant 5.007*** 7.527*** 6.798*** 12.809*** 9.819*** 

 
(1.211) (1.362) (1.683) (2.640) (2.060) 

Rho -0.009 -0.008 0.216*** -0.004 -0.043 
Lambda -0.052 0.039 -0.047 0.001 0.134* 
Sigma -5.911*** 4.843*** 5.759*** 6.672*** 9.634*** 
N 846 799 846 799 799 
LR Test (Rho = 0) 0.059 0.049 160.067*** 0.002 0.53 
LR Test (Lambda = 0) 1.165 0.593 0.399 0.0001 3.583* 
LR Test SAC vs. OLS (Rho + Lambda = 0) 1.636 0.633 30.966*** 0.014 5.456* 
Wald Test 672.157*** 825.546*** 1179.787*** 875.287*** 962.132*** 
Number Censored 201 205 221 163 93 

Notes: *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. 
Robust standard errors in parentheses. 


