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Stochastic Optimization of Switchgrass-based Biofuel Supply Chain Considering Feedstock 

Yield Uncertainty and Risk Preference

• Biofuel produced from switchgrass is potentially a socio-economically 

sustainable renewable energy source. 

• However, feedstock yield uncertainty and high production costs are significant 

barriers to invest in a feedstock supply chain for biofuel production. 

• Stochastic supply chain designs have primarily focused on optimizing  

expected economic performance based on the assumption of risk neutrality. 

• Design of a risk efficient supply chain that considers biomass yield 

uncertainty is key to the commercialization of biofuel industry.

INTRODUCTION

Design a risk efficient switchgrass-based biofuel supply chain for large scale   

biofuel production under biomass supply uncertainty. Specifically, this study:

• Developed the optimal supply chain incorporating strategic land use decisions 

based on yield uncertainty and risk preferences of decision makers.

• Estimated the impact of USDA’s Biomass Crop Assistance Program (BCAP) on 

designing a risk efficient supply chain under different risk preferences.

OBJECTIVES

ANALYTICAL METHODS

• When supply chain design decisions are made before the realization of 

uncertain parameters, a two-stage stochastic model is often employed.

• First-stage (strategic/investment) decisions have to be made before the 

realization of uncertain parameters, whereas the second-stage (operational) 

decisions are allowed to have recourse.

Expected cost minimization (Model 1): Risk-neutral preference

• Computation of optimal strategic and operational level variables is driven by 

the minimization of the first-stage cost (𝐶𝑜𝑠𝑡
1𝑠𝑡−𝑠𝑡𝑎𝑔𝑒

) and the expected second-

stage random costs (𝐶𝑜𝑠𝑡
2𝑛𝑑−𝑠𝑡𝑎𝑔𝑒

𝑠 ) with the probability associated with each 

random feedstock yield scenario (𝑝𝑟𝑜𝑏 𝑠 ).

𝑀𝑖𝑛: 𝐸 𝐶𝑜𝑠𝑡 =

𝑠∈𝑆

𝐶𝑜𝑠𝑡(𝑠) × 𝑝𝑟𝑜𝑏 𝑠

𝐶𝑜𝑠𝑡 𝑠 = 𝐶𝑜𝑠𝑡
1𝑠𝑡−𝑠𝑡𝑎𝑔𝑒

+ 𝐶𝑜𝑠𝑡
2𝑛𝑑−𝑠𝑡𝑎𝑔𝑒

𝑠

𝐶𝑜𝑠𝑡
1𝑠𝑡−𝑠𝑡𝑎𝑔𝑒

= 𝐶𝑖𝑛𝑣
𝑓𝑎𝑐

+ 𝐶𝑒𝑠𝑡
𝑠𝑤𝑖 + 𝐶𝑜𝑝𝑐

𝑠𝑤𝑖

𝐶𝑜𝑠𝑡
2𝑛𝑑−𝑠𝑡𝑎𝑔𝑒

𝑠 = 𝐶𝑝𝑟𝑜
𝑠𝑤𝑖(𝑠) + 𝐶𝑠𝑡𝑔

𝑠𝑤𝑖(𝑠) + 𝐶𝑡𝑟𝑎𝑛𝑠
𝑠𝑤𝑖 (𝑠) + 𝐶𝑐𝑜𝑛𝑣

𝑏𝑖𝑜 (𝑠) + 𝐶𝑡𝑟𝑎𝑛𝑠
𝑏𝑖𝑜 (𝑠)

• Scenario independent first-stage costs include annualized costs of conversion 

facility investment (𝐶𝑖𝑛𝑣
𝑓𝑎𝑐

), switchgrass establishment (𝐶𝑒𝑠𝑡
𝑠𝑤𝑖), and opportunity 

cost of switchgrass (𝐶𝑜𝑝𝑐
𝑠𝑤𝑖). 

• Scenario dependent second-stage costs include costs of switchgrass production: 

𝐶𝑝𝑟𝑜
𝑠𝑤𝑖(𝑠), switchgrass storage: 𝐶𝑠𝑡𝑔

𝑠𝑤𝑖(𝑠), switchgrass transportation: 𝐶𝑡𝑟𝑎𝑛𝑠
𝑠𝑤𝑖 𝑠 , 

biofuel conversion: 𝐶𝑐𝑜𝑛𝑣
𝑏𝑖𝑜 𝑠 , and biofuel transportation: 𝐶𝑡𝑟𝑎𝑛𝑠

𝑏𝑖𝑜 𝑠 .

Decisions without BCAP subsidies

RESULTS

Conditional Value-at-Risk minimization (Model 2): Risk-averse preference

Within a given confidence interval z, Value-at-Risk (𝑉𝑎𝑅𝑧) of random costs is 

defined as the lowest value t such that with probability z the cost will not be greater 

than t (Rockafellar and Uryasev 2000). Conditional Value-at-Risk (𝐶𝑉𝑎𝑅𝑧) is the 

conditional expectation of the cost above the value t.

𝑀𝑖𝑛: 𝐶𝑉𝑎𝑅𝑧 𝐶𝑜𝑠𝑡, 𝑧 =
σ𝑠∈𝑆∅ 𝑠 × 𝑝𝑟𝑜𝑏 𝑠

1 − 𝑧
+ 𝑉𝑎𝑅𝑧 𝐶𝑜𝑠𝑡

Subject to: 

∅ 𝑠 ≥ 𝐶𝑜𝑠𝑡(𝑠) − 𝑉𝑎𝑅𝑧 𝐶𝑜𝑠𝑡 , ∅ 𝑠 ≥ 0, 𝑉𝑎𝑅𝑧(𝐶𝑜𝑠𝑡) ≥ 0

Modeling influence of BCAP subsidies   

Introduced subsidy for feedstock establishment and maintenance costs offered in 

the BCAP.

ANALYTICAL METHODS (Cont’d)

• Low opportunity cost pasture land was primarily selected without BCAP 

subsidies. Only crop land near the biorefineries was converted (Figs 2 and 3). 

• Model 2 selected more acreages under both the pasture and crop lands to reduce 

high costs of low yield scenarios in Model 1.

• The color in the spit is either supplying from pasture or pasture/cropland.

• Reduction of biofuel shortage in Model 2 lowered costs of low yield scenarios 

(Fig 4).

Fig. 4. Optimal scenario costs and biofuel shortage

Note: Small and large insets capture 95th percentile and above cost distribution for Model 1 and 2 

respectively

RESULTS (Cont’d)

• Biorefinery locations shifted with increased crop acreage and less pasture 

acreage (Figs 6 and 7).

• A greater reduction in opportunity costs due to payments from BCAP for crop 

lands induced increased crop acreage selection. 

• However, changes in land use was higher for Model 2 (Figs 3 and 7) than 

Model 1 (Figs 2 and 6) with more land with high spatial yields being selected. 

CONCLUSION

• More acreage was selected to reduce the cost associated with low yield 

scenarios in the CVaR minimization model.

• With BCAP subsidies, crop land selection increased whereas pasture land use 

decreased. Biomass transportation costs were also lowered. 

• Optimal investment decisions i.e. feedstock acreage as well as biorefinery 

configuration, were more responsive to BCAP subsidies with risk-averse 

compared to risk-neutral decision makers under switchgrass supply uncertainty.
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Scenario Yield (ton/acre) Prob.

S1 0.9 ≤ δ* < 1.89 0.005

S2 1.89 ≤ δ < 2.88 0.016

S3 2.88 ≤ δ < 3.88 0.067

S4 3.88 ≤ δ < 4.87 0.124

S5 4.87 ≤ δ < 5.86 0.159

S6 5.86 ≤ δ < 6.85 0.220

S7 6.85 ≤ δ < 7.84 0.183

S8 7.84 ≤ δ < 8.84 0.118

S9 8.84 ≤ δ < 9.83 0.063

S10 9.83 ≤ δ < 10.8 0.023

S11 10.8 ≤ δ < 11.8 0.009

S12 11.8 ≤ δ < 12.8 0.007

S13 12.8 ≤ δ < 13.8 0.002

S14 13.8 ≤ δ < 14.8 0.002

S15 14.8 ≤ δ ≤ 15.8 0.002

Fig. 5. Changes in objectives with BCAP

Fig. 2. Model 1 without BCAP Fig. 3. Model 2 without BCAP

Fig. 6. Model 1 with BCAP Fig. 7. Model 2 with BCAP

Objective Unit Model 1 Model 2

E(Cost) Million $ 1,124 1,249 

CVaR(Cost) Million $ 1,441 1,358 

Table 1. Simulated Yield Scenarios

Table 3. Optimal Objective Values

*Denotes spatial yield 

Decisions with BCAP subsidies

• With BCAP subsidies, both 

E(Cost) and CVaR(Cost) reduced 

but Model 2 achieved larger 

reduction because of more acreage 

selection (Fig. 5).

KEY DATA AND PARAMETERS

• Spatial data in 5 square-mile for switchgrass 

production and biorefinery location was used 

for West Tennessee (Yu et al. 2016). 

• Annual demand of 290 million gallons 

biofuel from blending facility near Memphis.

• Penalty for not fulfilling demand equals 

$5/gallon and the risk aversion parameter z 

equals 95th percentile.

• Fifteen yield scenarios were generated from 

mature switchgrass yield at west Tennessee 

in 2006-2011 (Boyer et al. 2013) (Table 1). 

• Within each scenario, normally distributed 

yield pattern is mapped following Jager et al. 

(2010). 

RESULTS (Cont’d)

• Although expected cost increased in Model 2, risk of high costs has been 

minimized i.e. CVaR decreases by $83 M (Table 3).

• Similarly, risk corresponding to 95th percentile of cost distribution has been 

reduced significantly in Model 2 i.e. VaR decreases by $117 M (Fig 1). 

• Probability of those high costs was effectively reduced in Model 2 (Fig 1) .

Cost* C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Model 1 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S4 S15 S3 S2 S1

Model 2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S2 S1

*Ranked in the ascending order

Table 2. Optimal Scenario Costs

α=95%(CDF2) α=95%(CDF1)

VaR1=1360
VaR2=1243
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Fig. 1. CDF of optimal costs under both models

Note: Cost1 and Cost2 denotes optimal costs associated with yield scenarios for the Model 1 and 2 

respectively. CDF1 and CDF2 denotes cumulative density of the optimal costs for the Model 1 and 2 

respectively. Cost rank of each scenario under each model is shown in Table 2.
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