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Abstract 

The benefits of no-till farming are fully-realized only when no-till is used continuously over 

numbers of years. Research shows that most US farmers do not use the practice continuously. 

One of the commonly suggested reasons for the intermittent tillage is the risk of significant yield 

penalty during the first several years after converting to continuous no-till. Agronomic research 

suggests that that cover crops can be both economical and biological answer to the risk of yield 

reduction associated with the use of continuous no-till as cover crops accelerate the processes of 

converting and storing nitrogen in the soil, and improve soil structure and water infiltration. 

However, whether farmers consider the complementary benefits of continuous no-till and cover 

crops is largely unknown. The objective of this study is to evaluate the relationship between the 

uses of the two conservation practices in Indiana.  We develop a dynamic model of farmers’ 

decision-making and estimate the probabilities of moving from one tillage/cover crops category 

to another. We apply a combination of Quadratic Programming and Cross-Entropy methods to 

the data from Conservation Tillage Information Center and Indiana Tillage and Cover Crops 

Transect, spanning 1992-2016. We find that there is no evidence in favor of the complementarily 

between the use of continuous no-till and continuous cover crops in Indiana. We also find that 

the use of continuous cover crops in the state is growing steadily at a rate of approximately 30% 

during 2011-2016 whereas the share of land allocated to continuous no-till increases slightly in 

the same period. The novelty of our contribution relates to both econometric methodology and 

data used. We introduce a novel approach for estimating dynamic models of farmers’ yearly 

choices. We also demonstrate the possibility of testing for complementarity of farmers’ choices 

with very limited – aggregated and missing – data. The latter novelty also opens possibilities for 

utilizing other aggregate, e.g., county-level, data collected and reported by the US Department of 

Agriculture. 



1. Introduction 

No-till (NT) is defined as a tillage system under which soil is left with minimum 

disturbance (CTIC, 2017).  NT provides multiple on-farm and off-farm benefits: improving soil 

resilience and soil productivity, water quality (Derpsch, Friedrich, Kassam, & Li, 2010; 

Rittenburg et al., 2015). One of the most promising benefit of NT is carbon sequestration. NT 

increases the soil organic carbon (SOC) when compared with other tillage systems (T) (i.e., 

mulch, ridge and conventional tillage systems), and thus can contribute to reduction in 

greenhouse gas emissions (Lal, 2011). In 2015, USDA announced 10 building blocks consisting 

of wide range of technologies and practices that aim to reduce greenhouse gas emissions 

(https://www.fsa.usda.gov/Assets/USDA-FSA-Public/usdafiles/State-

Offices/Michigan/newsreleases/pdfs/climate-smart-fact-sheet.pdf). The first building block is to 

improve soil resilience and increase soil productivity by promoting conservation practices such 

as conservation tillage (CT) and NT systems. However, the benefits CT and/or NT are only fully 

realized when the practices are used continuously over a period of year (USDA-NRCS, 2014). 

Even a single tillage event can release all carbon gained back to atmosphere (Conant, Easter, 

Paustian, Swan, & Williams, 2007; VandenBygaart, 2016). 

Existing literature show that most farmers till their land every now and then (Derpsch, 

Friedrich, Kassam, & Li, 2010; Hill, 2001); only a small percentage of farmers in the US realizes 

the benefits of continuous NT (CNT) (Gelfand et al., 2011). Using Agricultural Resource 

Management Service (ARMS) data, Claassen and Ribaudo (2016) reported that only 21% of 

fields that grew wheat in 2009, corn in 2010 and soybeans in 2012 used NT in all 4 years. 

Horowitz, Ebel, and Ueda (2010) analyzed data from National Resource Inventory-Conservation 

Effect Assessment Project (NRI-CEAP) and ARMS, and showed that only 13% acres planted 



corn and soybeans in Upper Mississippi River Basin (UMRB) was in CNT in all 3 years 

surveyed. Hill (2001) tracked the use of CNT in Illinois, Indiana, and Minnesota during the 

period 1994-1999, and reported that on average, less than 2% field was in CNT in all 6 years 

surveyed. Profit-maximizing farmers are reluctant to adopt CNT because of the potential high 

yield penalty associated with NT, particularly, with cool, wet spring time weather (Wilhelm & 

Wortmann, 2004), and thus incentives may be needed to promote CNT (Claassen & Ribaudo, 

2016). 

Recent data show that cover crops (CR) increase corn and soybeans yields by 2.1%, and 

4.2% respectively (http://www.ctic.purdue.edu/Cover%20Crops/). CR accelerate the process of 

converting and storing nitrogen in the soil, and improve soil structure and water infiltration 

(Amado et al., 2006; Delgado & Gantzer, 2015; Kaspar & Bakker, 2015; Villamil, Bollero, 

Darmody, Simmons, & Bullock, 2006). Using CR and NT on the same farm/field increase the 

benefits of the use of CNT exponentially (Snapp et al., 2005; USDA, 1996). Long term research 

shows that the economic benefit of NT can be fully realized after some seven years of CNT 

(Hoorman, Islam, Sundermeier, & Reeder, 2009). In these transition years, adoption of CR and 

NT simultaneously can improve the soil productivity and minimize the yield loss or even 

eliminate the loss associated with CNT (Hoorman et al., 2009; Le, 2017). Overall, agronomic 

evidences in favor of complementarily between the use of continuous CR (CCR) and CNT, but 

only limited number of farmers have adopted bundled conservation practices such as NT and CR 

(Wade, Claassen, & Wallander, 2015). The complementarity between use of CNT and CCR is 

largely unknown because panel CR and tillage data are limited and often unavailable to 

researchers.  

http://www.ctic.purdue.edu/Cover%20Crops/


Recent NT and CR data covering large regions are rarely available to researchers. 

Conservation Tillage Information Center (CTIC) collected nationwide tillage data annually for 

1989-1998, biannually for 2000-2004, and for selected counties and states for 2006-2008 (CTIC, 

2017). CTIC relied on road transect survey method to gather tillage and crop management 

systems but did not track the same farms/fields. Thus, CTIC data are not useful to assessing the 

extent of CNT. In addition, the CTIC data are only available at county level.  ARMS and NRI-

CEAP indicate that the use of NT is growing, though neither data set estimates the use of CNT 

either (Horowitz, Ubel, & Ueda, 2010). Moreover, ARMS and NRI-CEAP data are confidential 

and thus they are only available to researchers in aggregate forms  at a county or state level. 

Recently, CR and NT data became available through The Census of Agriculture. However, the 

data are only available for the year 2012 and do not provide a separation of CT adoption rates by 

crop. Finally, remote sensing techniques show promising potential in collecting crop residue 

covers data (Sharma et al., 2016; Sullivan, Strickland, & Masters, 2008), but  significant 

improvement is needed to provide a reliable estimation of crop residue covers (Quemada & 

Daughtry, 2016; Zheng, Campbell, Serbin, & Galbraith, 2014). 

One notable exception in terms of NT and CR data is Indiana. The Indiana Conservation 

Partnership (ICP) has been collecting and reporting county-level NT and CR adoption rates using 

road transect survey method. NT adoption rates are available for 1990, 1993, 1997, 2000, 2004, 

2009, 2011, 2013, 2015 and 2016. ICP has also gathered and reported the CR adoption rates for 

2011, 2013, 2014, 2015 and 2016. Similar to the CTIC, ARMS and NRI-CEAP data, ICP does 

not provide the information on the levels of the use of CCR and CNT.  

The data limitations above described do not let us test for the complementarity between 

the use of CNT and CCR using the method introduced by Perry, Moschini, and Hennessy (2016).  



To overcome our data restrictions – aggregated data with some years missing – we use a 

combination of Quadratic Programming (QP) and Cross-Entropy (CE) approach  a non-

parametric approach (Golan, Judge, & Miller, 1996)  to infer the probabilities of farmers’ year-

to-year NT and CR choices. We then use the Bayes’ theorem to test for complementarity 

between the use of CNT and CCR in Indiana. The novelty of our contribution relates to both the 

data used and econometric methodology that we apply. We introduce a novel approach for 

estimating dynamic models of farmers’ yearly NT and CR choices and for testing for 

complementarity of farmers’ choices with very limited – aggregated and/or missing – data. The 

novelty not only extends the recently introduced approached of Perry et al. (2016), who rely 

heavily on field-scale, panel data, but also opens up the possibilities for utilizing other aggregate, 

e.g., county-level, data reported by USDA.  

Our estimated results indicate that there is no evidence in favor of the complementarity 

between the use of CNT and CCR in Indiana during 2011-2016. We find that neither the use 

CCR increases the probability of adopting CNT nor the use of CNT increased the probability of 

adopting CCR. We also find that the use of CCR in the state is growing steadily at a rate of 30% 

during 2011-2016 whereas the use of CNT increases slightly during the same period. 

The rest of the paper proceeds as follows. We first present the data and the model to be 

estimated, beginning with an exposition on the challenges associated with the econometric 

analysis of dynamics of farmers’ NT and CR choices with only aggregate and missing data. We 

then specify the model and present the econometric procedure for estimation of the use of CNT 

and CCR. We follow with the presentation and discussion of the empirical results. The paper 

concludes with a discussion of policy implications and possible extensions of the study.  



2. Methodology  

In this section, we present the data followed by the statistical model. We applied a 

combination of QP and CE approaches to estimate Markov transition probabilities of farmers’ 

NT and CR choices. The QP is used to estimate prior information for the CE method. In addition, 

due to missing data, we use Maximum Entropy (ME) to recover missing data. We then use ME 

to estimate the joint and conditional probabilities of CNT and CCR adoptions based on estimated 

transition probabilities. To test for complementarity between the use of CNT and CCR, we apply 

Bayes’ theorem. 

2.1. Data 

 

Figure 1. No-till adoption rates, 1992-2016, Indiana.  

In this study, we use data from two sources. We use CTIC tillage data for 1992-1997, 

2000, 2002 and 20041, whereas the ICP tillage and CR are used for 2007, 2009, 2011 and 2013-

2016. We also use the USDA Census of Agriculture NT and CR data to test the models’ 

performance. 

                                                 
1 The difference between the CTIC- and the ICP-reported NT adoption rates for 1993, 1997, 2000 and 2004 is 

negligible.  
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Figure 2. Cover crops adoption rates, 2011-2016, Indiana.  

2.2. Statistical model 

 We use combination of QP and Generalized Cross Entropy (GCE) estimate 1st order 

Markov nonstationary transition matrices for the use NT and CR. The GCE techniques, which 

are founded on the directed divergence or minimal discriminability principles of Kullback 

(1959), were introduced by Golan et al. (1996). The GCE Markov problem can be formulated for 

a given t as follows: 

min ( , ) ln( ) ln( )
i j j m

I     
ij jm

ij jm ij jm

ij jm

p (t) u (t)
p (t) u (t) p (t) u (t)

q (t) w (t)
        (1) 

Subject to 

 ij js(t +1) s(t)*p (t) e (t)     ,  1, 2, 3, 4i j       (2)   

1
j

 ijp (t)   1,2,3,4i j          (3) 

1
n

 jmu (t)   1, 2,3,4, 1,2,3j m          (4) 
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j n

 j jm me (t) u (t) v  1, 2,3,4, 1, 2,3j m        (5)  

And  

0ijp (t)    ,i j  and 0jmu (t)   1,2,3,4, 1, 2,3j m       (6) 

 The minimization of function (1) subjects to constraints (2)-(6) is run one transition 

matrix at a time. Here, s(t) is the one-by-four vector of tillage-crop shares in time t, 

corresponding to NT corn, tillage (T) corn, NT soybeans, and T soybeans for NT model2  and CR 

corn, no CR (NC) corn, CR soybeans, and NC soybeans for CR model; 
ijp (t) are the elements of 

transition matrix that represent the probabilities of moving from one crop-tillage/cover crops 

category, i, to another crop-tillage/cover crops category, j, in time t. ( )ijq t is the prior information 

for ( )ijp t . The error includes two components: error weight, u  and error support, v  (Golan et 

al., 1996). Equation (1) represents the GCE criterion, which minimizes the distance between the 

prior distribution (
ijq ) and transition matrix (

ijp ). Simultaneously, the distance between error 

weights ( jmu ) and their prior information (
jmw ) is also minimized.  Equation (2) is the Markov 

data consistency constraint. Equation (4) represents set of additivity constraints for the required 

Markov row constraint, while equation (5) does so for the proper probabilities of the 

reparametrized error. All proper transition probabilities and errors are required to be nonnegative 

( , 0ij ijp u  ). The prior information on the error weights is uniformly distributed with 1/w m , 

3m  ( 2)m   because further increases in m are shown to have little effect on the mean-square-

error of estimates (Golan et al., 1996). The support bound are set to [ ,0, ]v MAE MAE  , with 

MAE being the Mean Absolute Error of QP method.   

                                                 
2 In this study, NT include NT and strip-till. Other tillage practices (mulch, ridge and conventional tillage practices) 

are included in the tillage category. 



2.2.1. Estimation of prior information using Quadratic Programming 

The prior information plays a significant role in the success of GCE technique 

(Aurbacher & Dabbert, 2011; Golan et al., 1996; Howitt & Reynaud, 2003; You, Wood, & 

Wood-Sichra, 2009). We apply QP to estimate stationary transition matrix during 1992-19973 

(Kelton, 1994; Kurkalova & Tran, 2017; Lee, Judge, & Takayama, 1965; Lee, Judge, & Zellner, 

1970; Tran & Kurkalova, 2016) to estimate prior transition matrix (
ijq ). The  fit of QP technique 

is evaluated via MAE, which is defined for each year n by  

4

1

1
ˆ                                                                                      (7)

4

n n n

j j

j

MAE s s


    

  s(t +1) s(t) q ε ,          (8) 

where  is the vector of random errors. The stationary transition matrix stp is estimated by 

minimizing the quadratic form  

/min( ) ( )
q

s(t +1) - s(t)*q s(t +1) - s(t)*q       (9) 

Subject to  

0 1, , 1,...,4                                                                                           (10)i j  ijq   

4

1

1, 1,..., 4.                                                                                                 (11)
j

i


  ijq  

  In this study, we assume that all the transition probabilities from soybeans to soybeans 

are equal to zero. In many parts of the northern Midwest, soybeans-soybeans rotation is very 

unlikely choice (Hennessy, 2006; Sahajpal, Zhang, Izaurralde, Gelfand, & Hurtt, 2014; Secchi, 

Kurkalova, Gassman, & Hart, 2011; Stern, Doraiswamy, & Akhmedov, 2008; Stern, 

                                                 
3 QP is only applicable when the number of data point is greater than the number of state and transition matrix is 

stationary.  



Doraiswamy, & Raymond Hunt, 2012). Thus, we restricted the four transition probabilities from 

soybeans to soybeans to zero:  

0, , 3,4.i j ijp  

2.2.2. Recovering missing data 

Another problem in this study is missing data. As mentioned above, CTIC has collected 

CRM data annually from 1989 to 1997 and biannually from 1998 to 2004, and ICP has been 

collecting NT adoption rates of 1990, 1993, 1997, 2000, 2004, 2009, 2011, 2013, 2015 and 2016. 

Thus, when we combine the two data sources, we do not have the data for 1999, 2001, 2003, 

2005, 2006, 2007, 2008, 2010, 2012 and 2014. And ICP has been gathering the CR adoption 

rates for 2011, 2013, 2014, 2015 and 2016.  We recover the missing data by treating them as 

unknown parameters in the GCE. To this end, Generalized Maximum Entropy (GME) is 

specified to let the aggregate crop-tillage shares in year t determine the most likely aggregate 

crop-tillage shares in year t+1 as well as the transition matrix for that period. For example, 

transition matrix for 1998-1999 and the tillage-crop shares for 1999 will be derived from the 

crop-tillage shares in 1998 and the prior information estimated from 1997-1998. The GME 

specified is: 

min ( ) ln( ) ln( )

ln( ) ln( )

i j k

j n k m

I    

   

 

 

ij k
ij jm ij k

ij k

jm km
jm km

jm km

p (t) s (t +1)
p (t),s(t),u (t) p (t) s (t +1)

q (t) φ (t +1)

u (t) δ (t)
u (t) δ (t)

w (t) γ (t)

       (12) 

Subject to  

( ) 0 ij j js(t +1) s(t)*p (t)+e (t)+ η (t)     , 1,..., 4i j        (13)

1
j

 ijp (t)   , 1,..., 4i j           (14)  



1
m

 jmu (t)   1,...4, 1, 2,3j m           (15)  

j m

 j jm me (t) u (t) v  1,...4, 1, 2,3j m         (16)  

1
k

s(t +1)   1,..., 4k           (17)  

1
m

 kmδ (t)   1,...4, 1,2,3k m           (18)

k m

 j km mη (t) δ (t)  1,...4, 1,2,3k m         (19)     

and  

0ijp (t)    , 1,..., 4i j  , ( ) 0jmu t    1,...4, 1,2,3k m   , ( ) 0ks t     1,..., 4k   and 

0jmδ (t)   1,...4, 1,2,3k m           (20) 

 Equation (13) represents data consistency constraints, and  j are the errors of crop-

tillage shares estimated, with km and m being the error weights and supports, respectively. Both 

prior information for shares ( ) and their errors ( ) are assumed uniformly distributed. 

The objective function (12) is minimized subject to constraints (13)-(20), providing the estimates 

of transition matrices and missing data. 

2.3.Evaluating models’ performance  

We compute MAE to evaluate the fit of QP approach.  For the GCE and GME approaches, 

the normalized entropy ( ps ) measures the amount of information in the estimated coefficients, 

corresponding to a pseudo 
2 1 pR s   ( 0 1ps  )  (Golan et al., 1996): 

ln( )

ln( )

ij ij

i j

p

p p

S
k k

 





        (21) 



2.4. Bayes’ theorem for testing complementarity  

Consider two events: (1) Event CNT occurs when an acre of Indiana is adopted CNT and (2) 

event CCR when an acre of Indiana is adopted CCR. When the two events are not independent, 

Bayes’ theorem states that the conditional probability of event CNT occurring given that event 

CCR has occurred, ( / )P CNT CCR , is equal to the joint probability of the two events, 

( )P CNT CCR , divided by the marginal probability if even CCR occurring, ( )P CCR . 

Similarly, conditional probability of event CCR occurring given that event CNT has occurred, 

( / )P CCR CNT : 

( )
( / )                                                                   (22)

( )

( )
( / )                                                                    (23)

( )

P CNT CCR
P CNT CCR

P CCR

P CNT CCR
P CCR CNT

P CNT







 

Thus, we have   

( ) ( / )
                                                                             (24)

( ) ( / )

P CNT P CNT CCR

P CCR P CCR CNT
   

 We compute ( )P CCR  and ( )P CNT  based on estimated transition matrices and crop-

tillage/cover crops shares, and then use the estimated ( )P CCR  and ( )P CNT  to estimate 

( / )P CNT CCR  and ( / )P CCR CNT using GME. The main constraint in the second step is stated 

as equation (24). Then, we compute the joint probabilities. 

To test for complementarity between CNT and CCR, we estimate two probabilities: the event 

CNT occurring given that the complement of event CCR has occurred, ( / ) P CNT CCR , and the 

event CCR occurring given that the complement of event CNT has occurred, ( / )P CCR CNT .  

( / ) ( ) ( / ) ( )
( / )        (25)

( ) [( ) ( )

P CCR CNT P CNT P CCR CNT P CNT
P CNT CCR

P CCR P CCR CNT CCR CNT
 

  
   



( ) ( )
( / )                                                    (26)

1 ( )

P CCR P CNT CCR
P CCR CNT

P CNT

 




( ) ( )
( / )                                                     (27)

1 ( )

P CNT P CNT CCR
P CNT CCR

P CCR

 



   

If ( / )P CNT CCR > ( / )P CNT CCR , the adoption of CCR has increased the probability of 

adopting CNT. If, ( / )P CCR CNT > ( / )P CCR CNT , the adoption of CNT has increased the 

probability of adopting CCR.  

3. Results and discussions 

3.1.The performance of the models  

We first evaluate the models performance based on MAE and Sp values. MAE for both CR 

and NT dynamics models are considerably small (less than 2%). The normalized Entropy values 

are ranging from 0.30 to 0.55 for NT model and from 0.15 to 0.27 for CR model. We also 

compare our estimates and observed data. Regarding the CR model, the observations come from 

two sources: ICP and the 2012 Census of Agriculture. Similarly, CTIC and ICP NT data are used 

for the NT model. The comparison between the observed and measured CR and NT rates is 

presented in figures 3 and 4, respectively. It is worth noting that the 2012 Census of Agriculture 

estimates are considerable higher than that of ICP for both CR and NT. For instance, according 

to ICP, NT rates are 40% and 37% in 2011 and 2013, respectively, whereas the Census of 

Agriculture NT rates are estimated at 48% in 2012.  



 

Figure 3. Estimated versus measured percentage of cover crops in Indiana 

Notes: The observed data come from ICP for all years except 2012. The 2012 data are from 

the Census of Agriculture.    

 

Figure 4. Estimated versus measured percentage of NT in Indiana 

Notes: *the observed data come from ICP for all years except 2012. The 2012 data are from 

the Census of Agriculture. 

3.2. Dynamics of no-till 

   Figure 5 presents the comparison between the observed percentage of NT and estimated 

percentage of CNT. The estimated CNT strongly suggest that farmers often alternate NT with 

tillage practices. We estimate that only approximately 30% of land classified as NT is actually 
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under CNT. The estimated CNT also indicates the potential effect of the change in corn and 

soybeans prices on the use of CNT. The percentage of CNT decreased during the period of 2008-

2014, corresponding to the increase in the prices for corn and soybeans. The use of CNT increase 

after 2014. It is estimated that 12% of Indiana cropland in 2014 is under CNT compared with 

26% in 2016 (table 1).   

 

Figure 5. Estimated CNT versus observed percentage of NT in Indiana 

Table 1. The change in the use of CNT, 2008-2016 
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3.3. Dynamics of cover crops  

 

Figure 6. Estimated CNT versus observed percentage of NT in Indiana 

 Figure 6 shows the dynamics of the use of CCR. Similar to the use of CNT, we estimate 

that on average, only half of land under CR remains under CR after one year. Even though the 

use of CCR increased significantly during 2013-2016, the CCR is still used on less than 5% of 

total cropland in Indiana in 2016. Given the use of CNT in the state is almost 30% in the same 

period, the low use of CCR suggests that only a small fraction of Indiana farmers adopt CCR and 

CNT on the same farms/fields.  

3.4. Complementarity between the use of CNT and CCR 

Table 2. The use of CCR and CNT for 2011-2016, Indiana 

 Probability 2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 

CCR 0.015 0.008 0.022 0.040 0.051 

CNT 0.143 0.151 0.125 0.160 0.262 

P(CNT/CCR) 0.00912 0.00347 0.00108 0.00037 0.00014 

P(CCR/CNT) 0.00096 0.00019 0.00019 0.00009 0.00003 

( / )P CNT CCR  0.136 0.148 0.126 0.166 0.275 

( / )P CCR CNT  0.017 0.010 0.025 0.048 0.069 
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Estimated shares and conditional probabilities of Indiana CCR and CNT for 2011 through 

2016 are presented in table 2. In all years, the conditional probability of using CNT given CCR, 

P(CNT/CCR), is lower than the conditional probability of using CNT given the probability of not 

using CCR, ( / )P CNT CCR , indicating that the use of CCR does not increase the probability of 

adopting CNT. Similarly, the conditional probability of using CCR given alternating NT or 

continuous conventional tillage, ( / )P CCR CNT , is higher than the conditional probability of 

using CCR given CNT, ( / )P CCR CNT , indicating that the use of CNT would not affect the 

Indiana farmers’ decision to adopt CCR. It is worth noting that the gap between the P(CNT/CCR) 

and ( / )P CNT CCR does not narrow over time, indicating that even though the use of CCR is on 

the rise in the state, the increasing adoption of CCR does not improve the year-to-year 

probability of using CNT. In conclusion, the Bayes’ theorem results reject the hypothesis  of 

complementarity between the use of CNT and CCR in Indiana.  

4. Conclusions 

Soil is one of the most important resources worldwide. Agronomic evidence indicates 

that the benefits of CNT to the soil health and water quality are enhanced if CNT is used 

simultaneous with CCR. However, only very small portion of farmers adopt CNT and CCR on 

the same farms/fields. Using a combination of QP and Entropy approaches, we find that there is 

no evidence in favor of the complementarily between the use of CNT and CCR in Indiana during 

2011-2016. This finding is in line with the only previous study that looked into simultaneous use 

of these two practices.  Wade, Claassen, and Wallander (2015) used national ARMS data 

collected in the 2010 and 2011 surveys to show that the CR and NT adoption rates were less than 

2% and 40%, respectively, indicating that US farmers have not customarily used NT and CR on 



the same fields to take advantage of complementarity of the two practices. We also find that the 

use of CCR in the Indiana is growing steadily at a rate of 30% during 2011-2015 whereas the use 

of CNT adoption rates increase only slightly in the same period. 

Our study contributes to the literature in both methodology and data leveraged. First, we 

introduce a novel approach for estimating dynamic models of farmers’ yearly choices with very 

limited – aggregated and missing – data. Second, we demonstrate the possibility of testing for 

complementarity of farmers’ choices with aggregated and incomplete data. The latter novelty not 

only extends the recently introduced approached of Perry et al. (2016), who rely heavily on field-

scale – panel data – but also opens up possibilities for utilizing other aggregate, e.g., county-

level, data reported by USDA.  

One of potential policy implications of this study is that even though agronomic studies 

strongly support the use of CNT and CCR simultaneously, promoting the use of CR might not be 

an effective approach to increase the use of CNT and subsequently accelerate amount of carbon 

sequestered.  

An important question remains unanswered relates to the effect of natural conditions on 

the use of CNT and CCR.  Future research could investigate the variability of CNT and CCR 

adoption by taking into consideration of heterogeneity of natural conditions (e.g., soil types, 

variability of weather). Our framework could be potentially extended to by treating the transition 

matrices as a functions of natural resources and economic conditions, thus allowing for testing 

for the complementarity between the use of CCR and CNT at farm/field level.  
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