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Abstract 

Crop yield density tends to be spatially correlated because nearby areas share similar 

climate and agronomic characteristics. Many crop insurance studies have pointed out that 

the spatial yield correlation should be considered to provide more precise premium rating. 

Bayesian Kriging for spatial smoothing offers a promising way to use such spatial 

correlation when estimating crop yield densities. This article contributes to agricultural 

economics literature by providing a spatial smoothing method based on a climate space, 

which is composed of climatological measures. We compare the spatial smoothing from 

the climate space and a general physical space (longitude-latitude space) to evaluate the 

performance of each method. We use loss ratio of crop insurance to test the performance 

for county level yearly corn yield data from six U.S. states. Spatial smoothing from 

climate space dominates the results from the physical space in out-of-sample prediction 

and mitigates regional inequalities in crop insurance loss ratios. The climate space 

notably outperforms the physical space in Colorado that has varying climate due to its 

varying topography. 

 

Key words: Bayesian hierarchical structure, Bayesian spatial smoothing, Bayesian 

Kriging, climate space, crop insurance, crop yield similarity, physical space, spatial 

correlation. 

 

 



 

Introduction 

Yields of a given crop tend to be spatially correlated due to agronomical and 

climatological similarity of nearby areas. A risk inherent in crop yield, therefore, can also 

be spatially correlated due to such spatial correlation in crop yields. As a result, shortfalls 

of crop yield in a particular region, such as a county or district, usually tend to be 

correlated with shortfalls of yield in the neighboring regions. Previous literature (Annan 

et al. 2014; Du et al. 2015; Goodwin 2015; Ker, Tolhurst, and Liu 2015; Woodard 2016) 

has discussed this issue and pointed out that considering spatial correlation could more 

accurately measure downside yield risk and thus reduce adverse selection in crop 

insurance. 

Several statistical methods have been suggested in agricultural economics 

literature to reflect the spatial correlation in estimating crop yield density. For example, 

Goodwin and Ker (1998) use pooled observations from surrounding counties. Ozaki et al. 

(2008) use a spatial weighting matrix in an attempt to consider spatial correlation in crop 

yield. They impose uniform weights on parameter estimates from surrounding counties 

but impose zero weights beyond the surrounding counties. Ozaki and Silva (2009) 

propose a skewed normal multivariate conditional yield distribution for spatial smoothing. 

However, similar to Ozaki et al. (2008), they do not consider correlation beyond 

surrounding counties. Current area-based crop insurance programs are rated with a model 

suggested by Harri et al. (2011). To reflect the spatial correlation, the model imposes a 

district level restriction on the county level parameters. Other studies consider spatial 

correlation using Bayesian Model Averaging (BMA). Ker, Tolhurst, and Liu (2015) 



estimate a posterior density for each county using observations of each county and then 

take Bayesian averaging of its own posterior density and densities from other counties. 

Woodard (2016) employs BMA to get a weighted average of county and district level 

parameters. More recently, Park, Brorsen, and Harri (2016) suggest Bayesian Kriging as a 

method for spatial smoothing. Their Bayesian Kriging approach produces spatially 

smoothed parameter estimates that vary smoothly over space. Their weight for smoothing 

is determined by a physical distance in longitude-latitude space (i.e., physical space).  

In addition to the Bayesian Kriging method for spatial smoothing under the 

traditional way of using physical space, we offer an alternative spatial smoothing under a 

space with climatological coordinates, which is a climate space. The climate space uses 

temperature and precipitation as coordinates rather than latitude and longitude. We use an 

average number of days in months (July and August) with maximum temperature greater 

than or equal to 90℉ (DT90) and a total average precipitation amount (𝑚𝑚) for the 

months from May to August (TPCP) as the two axes. In this application, our focus is on 

how the distribution of crop yield varies over two different types of spaces (physical and 

climate space). We then compare the performances of the estimates from these two spaces 

using a loss ratio under a crop insurance program. 

The primary goal of the article is to suggest a new method for actuarially accurate 

crop insurance rating considering the spatial correlation of the crop yield densities. We 

extend the Bayesian Kriging spatial smoothing method to use climate space instead of 

physical distance. We are not aware of any literature in agricultural economics that uses 

spatial smoothing based on climate space. We evaluate and compare the performances of 

the spatial smoothing from physical space and from climate space.  



We choose corn as a crop for evaluating the performance of each model. We 

utilize annual county level yield data from the National Agricultural Statistics Service 

(NASS) for Iowa, Illinois, Nebraska, Minnesota, Indiana, and Colorado from 1955 to 

2014. We find that climate space performs better or at least similar to physical space in 

every state in the dataset. Specifically, in Colorado and Nebraska, climate space 

substantially mitigates regional inequalities of loss ratio for crop yield densities.  

 In the following section, we discuss a theoretical framework for Bayesian 

hierarchical structure of our Bayesian Kriging method. In the empirical application 

section, we explain the dataset used for empirical estimation and describe two different 

types of smoothing spaces. We then introduce premium calculating procedures for 

evaluating the performance of the models from the different smoothing spaces. The last 

section has conclusions. 

 

Theoretical Framework 

We use a Kriging method for spatial smoothing. Kriging is a geostatistical spatial 

interpolation method that has been actively employed in a broad variety of disciplines. 

The method assumes that spatial correlation (i.e., density similarity) varies smoothly and 

decreases with the distance between locations. Note that regardless of which space 

(physical or climate) is used for the spatial smoothing, the estimation procedure is 

identical. 

 

Overview of the Bayesian hierarchical structure 

The Kriging method here is estimated under a Bayesian hierarchical structure. A 



Bayesian hierarchical model can be specified when Bayesian modeling structure can be 

written in multiple levels (i.e., hierarchies). In a Bayesian hierarchical framework, 

therefore, a prior distribution of the general Bayesian model can also be structured as 

additional prior parameters, called hyper-priors.  

We consider two types of specifications for the process layer: a Gaussian spatial 

process type (GP) and an auto-regressive type with Gaussian spatial process
1
 (AR). GP 

only considers spatial correlation of the crop yield distribution based on the Gaussian 

spatial process whereas AR takes into consideration both spatial and temporal correlation 

(spatio-temporal) using the Gaussian spatial process and the auto-regressive process. 

Both GP and AR can be represented in the Bayesian hierarchical structure with three 

layers: likelihood layer, process layer, and prior layer. In the likelihood layer of the 

hierarchy, the crop yield distribution for each county is assumed to follow a normal 

distribution. Second, the process layer models the spatial and temporal structure for 

parameters of the crop yield distribution. In this layer, we only model the hierarchical 

structure of mean parameter 𝜇 of the crop yield distribution
2
. The process layer has both 

deterministic and stochastic effects. The deterministic part of the process at each county 

is determined by a set of explanatory variables of the county and the stochastic part will 

operate the spatial and temporal smoothing process. The third layer of the hierarchy 

consists of the prior density for the coefficients of the explanatory variables and Kriging 

parameters to conduct spatial smoothing, which are called hyper priors. The hierarchy we 

use can be structured as,  

(1) 

          𝑝 (          
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where 𝑝 , 𝑝 , and 𝑝  are the density associated with each layer of the hierarchy, 

likelihood layer, process layer, and prior layer, respectively,   is a matrix of crop yields 

that spans all counties (𝑛 = 1 …  𝑁  and all years (𝑡 = 1 …  𝑇),    is a vector of the 

mean parameters of the likelihood function at year 𝑡 that contains all counties, where 

  = [𝜇   …  𝜇𝑁 ]′ , and   is a vector of hyper parameters, where 
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By Bayes’ theorem, the joint posterior distribution of the model is  
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Therefore, the joint posterior density of the model 𝑝(          is proportional to the 

multiplication of the three layers of the hierarchy, which will be specified in the 

following subsections. 

 

Likelihood layer 

A likelihood function of the crop yield distribution forms the first layer of the model. 

Both GP and AR assume that the crop yield of each county follows a normal distribution. 

Then, the first layer of the model, the likelihood layer is 
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where    denotes a vector of crop yield at year 𝑡  that spans all counties,   =

[𝑦   …  𝑦𝑁 ]′,    is a vector of the mean parameter at year 𝑡 that includes all counties, 



and   is a vector of hyper parameters,  = [𝛽  …  𝛽𝐾 𝜔 𝜃 𝜌 𝜎 ]′. 

 

Process layer 

In the second layer of the hierarchy, we model the spatial process of mean parameters 𝜇 

for each GP and AR accounts for spatial / spatial and temporal correlations relevant to 

crop yield distribution. Since we assume a Gaussian spatial process, mean parameters of 

all counties are assumed to be multivariate normally distributed
3
. Spatial and temporal 

smoothing for the parameter    is conducted from the stochastic part of the process via 

Gaussian spatial process and first order autoregressive, AR(1), process. The level of 

spatial dependence is measured from a spatial covariance matrix with Kriging parameters, 

which captures the detailed spatial structure for the mean parameters   .  

First, the Gaussian spatial process (GP) allows spatial correlation of crop yield. 

The GP is specified as, 

(4) 
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where    is a vector of mean parameter for crop yield distribution at year 𝑡 that contains 

all counties,   = [𝜇   …  𝜇𝑁 ]′,    deterministic part of the mean structure,    is a 𝑇 

by 𝐾 matrix of explanatory variables that determine the mean structure at time 𝑡 such 

as historical moving average yield level of each county and trend variable,   is a 𝐾 by 



1 vector of coefficients of explanatory variables   = [𝛽  …  𝛽𝐾]′ ,    is the spatial 

random effects,  =  [𝜂  …  𝜂𝑁]′ that is assumed to follow a multivariate Gaussian 

process with exponential type spatial covariance matrix,  = 𝜌       , which is a 

function of Euclidean distance (𝐷𝑖𝑗) between counties 𝑖 and 𝑗, sill parameter 𝜌, and 

range parameter 𝜃, and    is a non-spatial error component. In empirical part, we obtain 

the parameter estimates under the two different types of spatial smoothing structure: 

traditional physical space and climate space. Therefore, the distance 𝐷𝑖𝑗 between two 

counties in the spatial covariance matrix will be differently measured in accordance with 

which spatial space is used. 

The second type of specification is an auto-regressive model with Gaussian 

spatial process (AR). The AR is defined as, 

(5) 
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where      is a vector of lagged mean parameter for crop yield distribution at 

year 𝑡  1 that contains all counties,   = [𝜇     …  𝜇𝑁   ]′, 𝜔 denotes the temporal 

correlation parameter under the first order auto regressive process that is assumed to be in 

the interval,  1 < 𝜔 < 1, and all other parameters are identical to the GP model. 

Obviously, for 𝜔 = 0, AR is exactly the same as the GP model.   

The AR addresses temporal correlation of the crop yield together with its spatial 

correlation. Some factors that affect crop yield realizations (i.e., climate) tend to be 



correlated, both spatially and temporally, and thus adjacent counties would experiences 

spatial correlations of crop yields over multiple periods of time. The AR specification 

reflects these spatio-temporal aspects of the crop yield densities. 

From the process for the mean parameters, the vector of the parameter    given 

the parameters  𝜔 𝜃  𝜌, and 𝜎  follows 

(6)       𝛽 𝜔 𝜃 𝜌 𝜎          (           

Then the process layer densities for GP and AR model can be specified as equation (7) 

and (8), respectively,  
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where    is a vector of the deterministic part of the mean process at time 𝑡 defined by 

equations (4) and (5), and   = [𝛽 𝜔 𝜃 𝜌 𝜎 ]′ is a vector of hyper-parameters,   is 

spatial covariance parameter, where  = 𝜌       . Since we are in the Bayesian 

framework, the parameters of the crop yield process are treated as random variables. 

Therefore, we impose independent priors for the hyper parameters (𝛽 𝜔 𝜃  𝜌, 𝜎 ) in the 

following prior layer.  

 

Prior layer 

The third layer of the hierarchy has the priors for the hyper-parameters  , which are 

parameters for explanatory variables, Kriging parameters, and variance parameter in the 

process layer. Since the model assumes the parameters in the prior layer are independent, 



a multiplication of each prior for the hyper parameters forms the prior layer. For 

convenience, we group the hyper parameters into three different types depending on their 

role in the process layer: coefficient, variance, and Kriging parameters. First, all 

coefficient parameters in the process layer 𝛽  …  𝛽𝑘 and 𝜔 are given normal priors. We 

impose 𝑁(0 104  priors for each of the coefficient parameters. For the variance 

parameter 𝜎 , we impose general inverse gamma priors 𝐼 (0 1 0 1  same as Ozaki et 

al. (2008). However, imposing priors for the Kriging parameters (𝜌 𝜃), which describe 

the spatial structure of the Gaussian spatial process, is more problematic than the other 

priors. There is a large Bayesian statistics literature (Berger, DeOivelira, and Sanso 2001; 

Banerjee, Carlin, and Gelfand 2004; Cooley, Nychka, and Naveau 2007) regarding 

consistency of proper priors for the Kriging parameters that argues improper priors for 

such parameters may induce significant improper posteriors. Some statistics literature 

(Banerjee, Carlin, and Gelfand 2004; Sahu, Gelfand, and Holland 2006; Cooley, Nychka, 

and Naveau 2007) suggest an empirical Bayes method in which the Kriging priors are 

estimated from the empirical data to avoid improper priors. In this regards, we use the 

empirical information to find the priors of the Kriging parameters. Since the sill 

parameter 𝜌 determines the maximum level of the variogram, which is a function 

describing the degree of spatial correlation of a stochastic spatial process, an empirical 

variogram is a general way to collect prior information about the sill parameter. Therefore, 

we first estimate the mean parameter of each county using maximum likelihood. Then 

using the estimated MLE parameters for each county, we fit the empirical variogram.
4
 

The results of the empirical variogram are used to impose inverse gamma prior for the sill 

parameter 𝜌 since the value of sill parameter determines maximum of variogram. Two 



parameters of the inverse gamma prior are obtained from maximum likelihood by using 

the empirical variogram values.  

The next step is to find the prior distributions for the range parameter 𝜃. We use 

prior empirical distance information of the empirical data to impose prior for the range 

parameter since the range parameter 𝜃 determines maximum distance of the spatial 

effect. Two parameters of gamma prior for the range parameter 𝜃 are imposed based on 

the previous empirical distance information and maximum likelihood estimation. 

With the priors as above, the third layer in equation (2) can be expressed as 

(9) 𝑝 (  =  𝑝(𝛽𝑘 𝑝(𝜔 𝑝(𝜌 )𝑝(𝜃 )𝑝(𝜎
    

 

 

Joint posterior distribution 

We now have densities for each hierarchy, 𝑝 (         , 𝑝 (       , and 𝑝 (   from 

the previous sections. The joint posterior distributions for our model can be obtained by 

multiplying these three layers. The logarithm of the joint posterior distributions of the GP 

is  

(10) 
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Likewise, the logarithm of the joint posterior distributions of the AR is    
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Empirical Application 

Our study uses county-level yearly corn yield data from NASS. The data contains 1955-

2014 annual yields (bushels per acre) for Iowa, Illinois, Nebraska, Minnesota, Indiana, 

and 1963-2009 for Colorado. Counties with missing observations are discarded. 

Therefore, the final dataset includes 99 counties for Iowa, 77 for Illinois and Nebraska, 

68 for Minnesota, 75 for Indiana, and 18 counties for Colorado. 

The states of Iowa, Illinois, and Nebraska have been the first, second and third 

largest corn producers in the United States. In 2015, Iowa produced around 2.5 billion 

bushels of corn, Illinois produced 2.01 billion bushels of corn, and Nebraska produced 

1.7 billion bushels of corn (2015 state agriculture overview, NASS). Minnesota and 

Indiana are fourth and fifth largest corn producer in the United States, respectively. 

Colorado is the fourteenth largest corn producer in the United States. Colorado is located 

where the Great Plains of North America connects with the Rocky Mountains. Colorado 

is included because it has more varying climatic conditions than the other states.  

 A coordinate of the physical space consists of longitude and latitude of each 

county and thus the spatial smoothing from the physical space uses Euclidean distance 

between the locations on the physical space (i.e., physical distance). On the other hand, a 

coordinate of each point in the climate space is given by its climatological quantities. 

Therefore, spatial smoothing based on climate space uses the Euclidean distance between 

the locations on the climate space, which reflects climatological similarity between the 

locations
5
. From this climate space, we construct the spatial structure that relates the 



parameters of the crop yield density to the climate characteristics of the locations.  

 Several empirical studies have tried to determine the relationship between 

climate factors and crop yields. Schlenker and Roberts (2009) estimate the impact of 

climate change on agricultural output using panel data. They find that temperature above 

a threshold level has a negative impact on crop yields since it increases heat exposure and 

water stress. They use temperature and precipitation as the main climate variables for 

their research. Other related studies (Hendricks and Peterson 2012; Lobell et al. 2013; 

Dell, Jones, and Olken 2014) employ temperature and precipitation as explanatory 

variables. In accordance with the previous literature, we choose temperature and 

precipitation of each location as the climate coordinates.  

The data for the climate space are collected from the Global Historical 

Climatology Network Database (GHCND) under the National Oceanic and Atmospheric 

Administration (NOAA). GHCND includes 18 meteorological variables including 

temperature (monthly means, extremes, and number of days that exceed a threshold), 

precipitation (total, mean, extremes), and snowfall, snow depth, and some other elements 

for each weather station. The climatological quantities for our climate space are a set of 

collected data over an extended period of time. Therefore, an average number of days in 

months (July and August) with maximum temperature greater than or equal to 90℉ 

(DT90) and an average precipitation amount (𝑚𝑚) for the months from May to August 

(TPCP) from 1955 to 2014 are used as the climate coordinates. We take an average of the 

climate quantities from the counties with multiple weather stations. Counties with no 

weather stations (5 counties in all dataset) are discarded from our dataset. 

In the climate space, counties with similar climate features are grouped together 



even when their locations are physically distant. Colorado has diverse geographical 

features, including mountainous terrain, vast plains, desert canyons, and mesas. For that 

reason, we expect that Colorado has diverse climate conditions as well so that county 

locations in Colorado on the two different spaces are substantially different. Figure 1 

translates county locations in Colorado from the physical space (longitude/latitude) to the 

climate space (DT90/TPCP). The x-axis of the climate space is DT90 and the y-axis is 

TPCP. In contrast to Colorado, counties in corn-belt states such as Iowa tend to be 

grouped together in the climate space as well as in the physical space. The reason may be 

that the counties in Iowa have similar geographical features and thus nearly located 

counties have similar climate characteristics as well. Therefore, we expect that distances 

among the counties in Iowa on the physical space and the climate space are closely 

related. 

To verify the difference between these two states, we calculate correlations 

between the distances from two different spaces
6
. As with our expectation for the two 

states, the correlations between two types of distances are 0.47 in Iowa and -0.09 in 

Colorado. This fact may result in considerable differences in the spatial smoothing 

estimation from the two different spaces, and yield more substantial difference in 

Colorado than in Iowa.  

 

Posterior predictive distribution 

As suggested by Ozaki et al. (2008), we compute premium rates from posterior predictive 

values. The posterior predictive distribution 𝑝( ∗     is obtained by integrating over the 

parameters with respect to the joint posterior distributions, 



(12) 𝑝( ∗    =   ∫ ∫ 𝑝 ( 
∗      𝑝 ( 

∗       𝑝(            

  

  

where 𝑝 ( 
∗       is the density of the likelihood layer, 𝑝 ( 

∗       is the density of 

the process layer, 𝑝(         is the posterior density of the model obtained from 

Markov Chain Monte Carlo (MCMC) procedure
7
,  ∗ and  ∗ are vector of posterior 

predicted mean parameters and crop yields, respectively. Note that  ∗  and  ∗  can 

denote either or both of a new location (county) and a new time point (year). Conceptual 

steps for prediction are as follows. First, vectors of random samples   and   are drawn 

from the posterior density 𝑝(        . Then the Bayesian spatial smoothing (Kriging) 

for  ∗  is applied from the process layer 𝑝 ( 
∗        by updating conditional 

distribution for  ∗ given the current values of     in each iteration of the MCMC 

algorithm. Finally, the vector of predicted yields  ∗ is drawn from the likelihood layer 

density 𝑝 ( 
∗      . 

 One important advantage of using the Kriging method is to get densities of 

counties with insufficient historical observations (i.e., missing observation) or even no 

observations. Since Kriging identifies a spatial structure for explaining a variation of 

densities across space, we can predict densities of locations with no historical 

observations using the Kriging parameters and posterior predictive formula in equation 

(12)
8
. 

The prediction quality of the model is evaluated by calculating the Predictive 

Model Choice Criteria (PMCC) suggested by Gelfand and Ghosh (1998), which is 

defined as, 



(13)     = ∑ [(  
∗      ′(  
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where   
∗ denotes a vector of predicted yield level at year 𝑡, and    is a vector of 

actual yields at year 𝑡. The first term of the PMCC represents the goodness of fit of the 

model, and the second term represents a penalty of model complexity. Several 

specifications for deterministic parts of GP and AR are tested as potential candidates for 

the empirical analysis. A model with lower PMCC is chosen as the preferred model. We 

test multiple different specifications for the process layer structure with a moving average 

term for historical yields (from last five years to ten years), simple linear trend, and 

quadratic linear trend. Among these alternatives, the model including five years of 

moving average and simple linear trend minimizes PMCC and thus is selected as our 

main model. The main model for the GP can be expressed according to the following 

structure for the process layer, 

(14)   = 𝛽  𝛽  ̅  𝛽         

and for the AR model,  

(15)   = 𝜔     𝛽  𝛽  ̅  𝛽         

where  ̅  is a vector of current five years average of yields,  ̅ =  [ �̅�  …  �̅�𝑁]′, and   is 

a vector of trend variable  =  [ 𝑡  …  𝑡𝑁]′. 

Several R-packages provide MCMC algorithms for Bayesian Kriging estimation. We 

mainly use spTimer, spBayes, and SpatialExtremes packages. These packages are used to 

estimate posterior distributions, posterior predictive distributions, and PMCC of the 

models. We run 20,000 iterations for MCMC chains and burn-in the first 5,000 



observations to avoid an autocorrelation problem of the posterior values. We check for all 

parameters the graphical diagnostics of convergence using trace plots and autocorrelation 

plots. All posterior densities achieve fast convergence with no significant autocorrelation. 

To save space, Table 1 presents only the averages and standard deviations of the posterior 

parameter values for the four states in the dataset. Two leading states in the corn-belt area, 

Iowa and Illinois, show similar posterior parameter values. Both states have very small 

levels of temporal correlation parameter ω (0.01 for Iowa and 0.02 for Illinois) and thus 

the parameter of the current five year average yields (𝛽 ) and trend parameter (𝛽 ) differ 

little between the GP and the AR. In contrast, we find a notable level of temporal 

correlations (𝜔) in Nebraska and Colorado (0.37 for Nebraska and 0.57 for Colorado). 

The results indicate that the two leading states in the corn-belt area (Iowa and Illinois) 

have a more steadily increasing trend than Nebraska and Colorado. 

 

Out of sample performance 

Providing actuarially sound premiums is an essential task to RMA. Crop producers will 

turn down insurance contracts when the premiums are overrated and may result in an 

adverse selection problem. Likewise, underrated premiums may induce insurance losses 

to agencies. The premium rate of crop insurance represents expected payouts as a 

proportion of total liability. The premium rate can be structured as 

(16) 𝑝  𝑚𝑖 =  
 (𝑦𝑖 <  �̂�𝑖 ( �̂�𝑖   [(𝑦𝑖 𝑦𝑖 <  �̂�𝑖 ] 

 �̂�𝑖
 

where   is the coverage level, 0 <  < 1, �̂�𝑖 is an expected crop yield at county 𝑖. 

 The premium rates can be estimated using the posterior predictive distributions 

and the premium rate formula equation (16). The posterior predictive distribution for each 



county can be obtained from the formula in equation (12). We then calculate the 90 

percent coverage premium rates from equation (16). The expected yield �̂�𝑖 in county 𝑖 

is to be the posterior mean of the predictive distribution for each county. The premium 

rates differ across the alternative model specification and use of the spatial smoothing 

spaces. For example, each state has premium rates from AR and GP model estimated 

under both the physical and the climate space. Table 2 presents each state’s average 

premium rates across counties from 2000 to 2014. One interesting result is that Colorado 

shows notable difference in average premium rates between using the physical space and 

the climate space compared to the other states. Figure 2 and 3 illustrate estimated 

premium rates of Iowa and Colorado from the two types of spaces, respectively. The left 

map presents the premiums from the physical space, and the right map presents the 

premiums from climate space. In accordance with our expectation, premium estimates in 

Iowa from the two spaces show no substantial difference, which reflects Iowa having 

similar spatial structure both climate and physical distance. In contrast to Iowa, premiums 

in Colorado show meaningful differences in spatial structure. Specifically, we find that 

premiums of western region counties (Delta, Mesa, and Montrose) and southern region 

counties (Baca and Otero) are increased when we use climate space. 

 We use a loss ratio under the corresponding crop insurance program as a tool for 

evaluating out of sample performance of the models under the two different smoothing 

spaces. The loss ratio is given by 

(17)  𝑜    𝑡𝑖𝑜𝑖 = 
∑    [ �̂�𝑖  𝑦𝑖  0] 

   

∑ 𝑝  𝑚𝑖 �̂�𝑖 
 
   

  

where   is coverage level, �̂�𝑖  is a predicted yield of county 𝑖 at year 𝑡, 𝑦𝑖  is an 

actual yield for county 𝑖 at year 𝑡, and 𝑝  𝑚𝑖  is the premium rate of county 𝑖 at year 



𝑡, which is obtained from equation (16). 

The premium gains and indemnity losses from equation (17) are calculated using 

actual yields and estimated premiums of each county from 2000 to 2014. Average, 

variance, maximum, and minimum loss ratio across counties for the six states are 

presented in Table 3. The loss ratio of fairly rated crop insurance should equal one. Thus, 

a model with average loss ratio close to one and with a small variance across counties 

(i.e., regional equality) might be a preferred model. Our results demonstrate that 

considering the temporal correlation of crop yield (AR model) results in notable 

improvement in measuring the premiums in every state in our dataset. The average loss 

ratios from the AR model are close to one and have smaller variance in every state 

compared to the GP model.  

Climate space performs better or equal to physical space in every state in our 

dataset. In Colorado and Nebraska, the climate space conspicuously provides greater 

performance in out of sample prediction. Both of the average loss ratios from the climate 

space are closer to one than the physical space in Colorado (4.75 and 4.17) and Nebraska 

(1.97 and 1.67), which indicates the premiums from the climate space are more fairly 

rated than the physical space. Perhaps most significant is the finding that climate space 

smoothing resolves the serious regional inequality problem in Colorado. Our results also 

show that climate space has a smaller variation of loss ratio across counties. The 

reduction in the variance of the loss ratio of Colorado is from 36.31 to 18.80 and 

Nebraska is from 12.34 to 7.46. Specifically, for counties in Colorado with a high loss 

ratio under physical space, such as Adams and Washington counties, the loss ratio 

becomes closer to one under climate space smoothing. Our results demonstrate that 



climate space smoothing more pertinently describes spatial structure of the crop yield 

density compared to the physical space smoothing especially for a state like Colorado 

where the climate is diverse. In case of Colorado, a closeness of physical distance 

between locations would not be a successful factor to explain crop yield similarity across 

space. 

 

Conclusion 

Federal crop insurance programs have been solidified by the Agricultural Act of 2014. In 

this regard, providing accurate premiums for insurance contracts has become again the 

utmost important role of RMA. However, the current RMA model does not fully attempt 

to use historical data from other areas in estimating the premium for an area of interest. 

Therefore, the current model has problems both in reflecting spatial correlation and 

retaining enough observations to properly estimate the premiums. The Bayesian Kriging 

model proposed here suggests a promising way to solve such problems. 

There are only a few examples of Bayesian Kriging models in the agricultural 

economics literature, and this article is the first to use climate space smoothing. Our 

results show that crop yield similarity across locations tends to be more affected by 

climate similarity than locational closeness. By conducting climate space smoothing, we 

can provide a better way to measure the crop yield densities especially for a 

geographically diverse region such as Colorado. Future research could consider 

additional measures of similarity such as soil type and slope of agricultural land. 

The Kriging method could be adopted in any research area that involves spatial 

correlation. A prominent extension of the model, for example, would be for precision 



agriculture. Today the availability of accurate and abundant field monitoring data allows 

developing a crop yield response model that parameters are smoothed by site specific 

agrological characteristics such as soil type, water, etc. This application could provide 

better site specific Variable Rate Application (VRA) fertilizer prescriptions. 

One of great strengths of the Kriging model would be density estimation for the 

counties where historical yield data is limited or there are no observations. Bayesian 

Kriging method defines and describes a spatial structure for a variation of densities across 

space. The method allows a density prediction of any locations (counties) with no 

historical observations by using a posterior predictive distribution. In this regard, the 

method suggests a useful way to produce density measures for counties with no yield 

reported. 

Because we are focusing on introducing and comparing the performance of the 

climate space smoothing method compared to the physical distance smoothing, our model 

treats crop yield density in a simple manner using the normality assumption. Although the 

normality assumption has the advantage of simplifying the MCMC structure and could 

easily include trend variable into our model specification, the assumption still has a 

shortcoming to adjust higher moment characteristics of crop yield density such as 

asymmetric skewness. Therefore, while it may require developing techniques that are not 

yet available in the statistics literature, future research should attempt to relax this 

distributional assumption. 

The Kriging method for climate space smoothing proposed here clearly has the 

potential to offer significant efficiency gains in crop yield density estimation, where 

historical observations is limited and has varying climate conditions. 



Table 1. Average Posterior Parameter Values for Selected States 

State / Smoothing Space Physical Space Climate Space 

Model Structure 
GP 

(S.D) 
AR 

(S.D) 
GP 

(S.D) 
AR 

(S.D) 

Iowa 𝛽  1.01 

(0.02) 

1.02 

(0.03) 

1.01 

(0.02) 

1.02 

(0.03) 

𝛽  1.75 

(0.02) 

1.78 

(0.03) 

1.76 

(0.02) 

1.78 

(0.02) 

𝜔 - 0.01 

(0.00) 

- 0.01 

(0.00) 

𝜌 40.35 

(3.25) 

40.15 

(3.25) 

51.31 

(4.12) 

50.23 

(4.19) 

𝜃 18.23 

(2.65) 

18.42 

(2.95) 

21.83 

(3.65) 

22.43 

(3.11) 

     

Illinois 𝛽  1.03 

(0.03) 

1.01 

(0.03) 

1.02 

(0.02) 

1.01 

(0.02) 

𝛽  1.72 

(0.02) 

1.71 

(0.03) 

1.72 

(0.02) 

1.72 

(0.02) 

𝜔 - 0.02 

(0.00) 

- 0.02 

(0.00) 

𝜌 36.35 

(3.95) 

36.15 

(3.99) 

45.31 

(5.22) 

45.23 

(5.23) 

𝜃 19.38 

(3.26) 

19.22 

(3.15) 

24.13 

(4.82) 

24.15 

(5.11) 

     

Nebraska 𝛽  0.78 

(0.03) 

0.63 

(0.03) 

0.99 

(0.02) 

0.63 

(0.03) 

𝛽  2.07 

(0.02) 

1.34 

(0.02) 

2.13 

(0.02) 

1.34 

(0.02) 

𝜔 
- 

0.37 

(0.01) 
 

0.36 

(0.02) 

𝜌 42.11 

(6.51) 

42.19 

(6.52) 

61.31 

(4.12) 

62.23 

(4.19) 

𝜃 15.12 

(1.11) 

14.21 

(1.12) 

20.69 

(2.18) 

20.66 

(2.26) 

     

Colorado 𝛽  0.30 

(0.02) 

0.14 

(0.02) 

0.30 

(0.02) 

0.15 

(0.02) 

𝛽  1.83 

(0.05) 

0.74 

(0.01) 

1.81 

(0.04) 

0.74 

(0.01) 

𝜔 
- 

0.56 

(0.01) 
- 

0.58 

(0.01) 

 
𝜌 77.25 

(7.42) 

78.10 

(7.44) 

98.31 

(11.12) 

98.44 

(11.19) 

 
𝜃 12.13 

(1.00) 

12.12 

(1.00) 

19.13 

(3.65) 

19.12 

(3.61) 

 

 

  



 Table 2. Average of 90 Percent Coverage Premium Rates across Counties 

State / Smoothing Space Physical Space Climate Space 

Model Structure GP AR GP AR 

Iowa Premium 

Rate (%) 
1.73 1.79 1.57 1.59 

Illinois Premium 

Rate (%) 
1.52 1.54 1.54 1.55 

Nebraska Premium 

Rate (%) 
1.38 1.27 1.28 1.31 

Minnesota Premium 

Rate (%) 
1.59 1.57 1.63 1.59 

Indiana Premium 

Rate (%) 
1.65 1.69 1.64 1.75 

Colorado Premium 

Rate (%) 
1.48 1.62 2.41 2.53 

 

  



Table 3. Estimated Loss Ratio under the Physical Space and the Climate Space 

State / Smoothing Space Physical Space Climate Space 

Model Structure GP AR GP AR 

Iowa Mean 0.94 0.94 1.05 1.00 

Variance 1.26 1.30 1.23 0.96 

Max 5.06 4.88 4.26 3.62 

Min 0.00 0.55 0.00 0.56 

Illinois Mean 2.06 2.03 2.03 2.00 

Variance 1.08 1.10 1.07 1.01 

Max 4.28 4.35 4.26 4.32 

Min 0.00 0.00 0.00 0.13 

Nebraska Mean 2.22 1.97 2.36 1.67 

Variance 7.55 4.30 9.54 3.15 

Max 14.39 10.28 12.34 7.46 

Min 0.00 0.00 0.05 0.31 

Minnesota Mean 0.37 0.41 0.36 0.42 

Variance 0.21 0.20 0.18 0.19 

Max 1.67 1.49 1.45 1.47 

Min 0.00 0.00 0.00 0.00 

Indiana Mean 0.86 0.92 0.91 0.98 

Variance 0.58 1.74 0.36 0.12 

Max 5.36 4.89 5.34 4.98 

Min 0.05 0.09 0.06 0.23 

Colorado Mean 6.97 4.75 5.86 4.17 

Variance 59.90 26.01 36.31 18.80 

Max 23.19 15.78 17.65 13.25 

Min 0.17 0.05 0.17 0.35 

 



 

 

  Figure 1. Translation of counties of Colorado in physical space (above) to climate space (below) 
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Figure 2. Premiums of Iowa from physical space (left) and from climate space (right) 

 

 

 

 

 

 

     

Figure 3. Premiums of Colorado from physical space (left) and from climate space (right) 
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1 The Gaussian spatial process is a stochastic process where any finite subcollection of random variable (i.e., 

mean parameter of any county) is multivariate normally distributed. The covariance of those random variables 

between any two locations (i.e., covariance between 𝜇𝑖 and 𝜇𝑗) is determined by a Euclidean distance between 

two locations and spatial covariance matrix . 

2
 To avoid complexity of the Markov Chain Monte Carlo (MCMC) structure, we only assume the hierarchical 

structure for the mean parameter. Therefore, we directly impose general inverse-gamma type prior distribution 

to the variance parameter of the likelihood layer 𝜎 . 

3
 Under the Bayesian framework, we regard the mean parameter 𝜇 as a random variable. When a random 

vector of mean equation,  = (𝜇  … 𝜇𝑁 
  is assumed to follow a Gaussian spatial process, the mean 

parameters of the counties 𝜇  … 𝜇𝑁 are jointly normally distributed. 

4
 We use the empirical variogram to impose proper priors for the sill parameter 𝜌. For MLE estimates of mean 

parameter �̂�𝑖 for county location 𝑖 = 1 …  𝑁,  empirical variogram can be defined as  

  ̂(𝐷𝑖𝑗)   
1

2 
∑ (�̂�𝑖  �̂�𝑗)

 

(𝑖 𝑗   

 

where   is the number of all possible pairs of counties, 𝐷𝑖𝑗  is Euclidean distance between two counties 𝑖 

and 𝑗, �̂�𝑖 and �̂�𝑗 are MLE estimates for the mean parameter of county 𝑖 and 𝑗, respectively. 

5
 In the climate space, locations (counties) that have similar climate features are closely located, even though 

their locations may be distant on the traditional physical space. 

6
 Since our dataset includes 99 counties for Iowa and 18 counties for Colorado, all possible pairs of distances 

among the counties for each state are 4,851 and 153, respectively. We first obtain the distances from two 

different types of space (physical and climate). We then normalize these distances and calculate correlations 

between the two types of distance. 

7
 All models in this article are fitted using a Metropolis-Hastings (MH) within Gibbs sampling algorithm. As 

mentioned in the prior layer section, standard conjugate priors are assumed for all coefficients (normal) and 

variance (inverse gamma) parameters. However, prior densities for the Kriging parameters (sill and range) are 

non-standard. Hence the MH algorithm is employed to draw samples from the Kriging parameters. 

8
 Kriging defines a spatial interpolation function that determines spatial correlation structure across density 

parameters of locations. Therefore, we can generate an interpolated density for any specific point using the 



                                                                                                                                   

Kriging parameters (sill and range) and spatial information of the point (coordinates). In this article, we do not 

aim to produce a specific county’s density with no historical observations. However, Kriging can produce 

densities with no observations by using the posterior predictive distribution in equation (12). 


