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Quantifying the Health Effect of Information on Pollution Levels in Chile 
 

Abstract 
 

In response to the detrimental health impacts of short-term exposure to high levels of 
pollution, several policies have been designed to address this concern.  One such policy 
implemented by the Government of Chile that institutes temporary measures to reduce 
negative impacts of high levels of air pollution in the short run through both emissions 
restrictions and public information campaigns.  The includes public announcement of 
days for which pollution is projected to exceed threshold levels on the day prior to such 
an ‘Episode’.  In this paper we separately identify the mortality reducing effects of 
Episode announcements that are purely information-driven from those that are 
attributable to improved air quality using propensity score matching and a difference-in-
difference approach.   Our results suggest that Episode announcements are associated 
with reduced mortality for all individuals (with at least two thirds of these deaths 
attributable to the elderly) and that the main driver of this result is an increase in 
avoidance behaviors. 
 
1.  Introduction 
	
Various studies establish a link between short-term exposure to high levels of air 
pollution and detrimental impacts on human health (Currie et al. 2009; Neidell 2009; 
Graff Zivin and Neidell 2012; Schlenker and Walker 2016).  Aside from the impact of 
exposure on health, short-term spikes in pollution may also be costly if individuals 
undertake behavioral changes to avoid such exposure (Graff Zivin and Neidell 2013).   
Several studies assess the effectiveness of short-term policy measures set by local 
governments to limit pollution exposure on days that exceed set pollution limits and a 
few attempt to disentangle the health and information channels of the effects they identify 
(Cutter and Neidell 2009; Graff Zivin and Neidell 2009; Mullins and Bharadwaj 2014).   
Particularly, Mullins and Bharadwaj (2014) find that a policy implemented by the 
Government of Chile that institutes temporary measures to reduce negative impacts of 
high levels of air pollution in the short run is effective at improving air quality in the 
short run.  This policy, called the Plan de Prevención y Descntaminación Atmosférica 
(translated as the Plan to Prevent and Reduce Air Pollution (PPDA)), includes public 
announcement of days for which pollution is projected to exceed threshold levels on the 
day prior to such an “Episode”.  The term ‘Episode’ is used to include three event labels, 
“Alerts”, “Pre-Emergencies” and “Emergencies”, announced separately and distinguished 
to signal increasing levels of pollution threshold exceedance, respectively. On the day of 
an Episode, the government imposes several restrictions to reduce pollution levels (see 
Table 1 for detailed restrictions associated with each Episode level).   

While the Government of Chile constructed and began to implement policies to 
that identified and announced pollution Episodes to address growing concerns of 
pollution in the early 1990s, the PPDA was published in 1997 after which the policy was 
strictly adhered.  The Alert, Pre-Emergency and Emergency Episodes were designed to 
be announced if daily PM10 concentrations are predicted to exceed 195 µg/m3, 240 µg/m3 
and 320 µg/m3, respectively.  To put these thresholds in context, the World Health 
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Organization’s (WHO) guideline for daily mean PM10 is 50 µg/m3 (WHO 2011).  
However, it is evident from Figure 1 that, despite the reduction in annual mean PM10 
levels in Santiago after the implementation of the PPDA in 1997, mean PM10 
concentrations exceeded 50 µg/m3  in every year between 1989 and 2008.  Prior to the 
establishment of the PPDA in 1997, Episodes announcements were generally inconsistent 
compared to the period after 1997.  Between 1989 and 1997, PM10 levels exceeded 240 
µg/m3 on 148 days; however less than 60 of these days announced as Episodes.  
Comparatively, nearly 100% of days deemed Episodes between 1997 and 2008 were 
announced (see Figure 2).  Since policy defining Episode announcement prior to the 
implementation of the PPDA was generally ineffective, Mullins and Bharadwaj (2014) 
find days in the post-PPDA period when Episodes were announced that are similar to 
days in the pre-PPDA period when Episodes should have been announced but were not 
and exploit this difference to identify the effect of an announcement on PM10 and 
mortality outcomes.  According to Mullins and Bharadwaj’s (2014) results, the PPDA is 
successful at reducing both PM10 concentrations and deaths, particularly among the 
elderly, in days following an Episode announcement in the Santiago Metropolitan 
Region.  The impacts on mortality, however, capture the net effect of the policy, and they 
are not able to separately identify the benefits of the improved air quality and avoidance 
behaviors undertaken in response to pollution information. 

With this paper we seek to separate the identification of the morbidity and 
mortality reducing effects of Episode announcement that are purely information-driven 
from those that are attributable to improved air quality.  Using weather, pollution 
mortality, and hospitalization data in Chile, we investigate avoidance behaviors in 
response to the PPDA policy to quantify the value of the information.  To identify an 
effect, we use propensity score matching and a difference-in-difference approach, similar 
to Mullins and Bharadwaj (2014).  With propensity score matching we match periods 
following an Episode announcement to periods with similar pollution patterns that did not 
follow an announcement. Because the pollution conditions are (by construction) similar 
between matched periods, differences in response to health outcomes following an 
Episode (or match non-Episode period) can be attributed directly to the informational 
content of the Episode announcement and the resulting avoidance behaviors undertaken 
by the population in response to the provided information.  

Our results extend the Mullins and Bharadwaj (2014) findings by providing new 
and integral information in the assessment of the overall effectiveness of the PPDA.  To 
understand the short-term effectiveness of PPDA Episodes requires the disentanglement 
of the concentration-reducing and information-provision channels of impact. As air 
quality improvement and avoidance behaviors impose different costs on the economy and 
society, the correct attribution of the benefits of the Episodes is critical for the future 
management of the negative effects of air quality in Santiago. Additionally, our results 
are important for informing the implementation of short-term approaches for addressing 
spikes in air pollution in other major urban centers. Given the growing prevalence of 
extreme air pollution events in metro areas from Europe to Latin America and Asia, such 
a focused understanding of the Chilean success story is more important than ever.  
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2.  Data and Methodology   
 
2.1 Data Description  
 
To identify the effects of episode announcements on mortality we combine observations 
on PM10 concentrations, weather, Episode announcements and mortality at the daily level 
from 1989 to 2008.  The PM10 concentration data comes from Chile’s Ministry of the 
Environment, which maintains data collected by the MACAM 1 and MACAM 2 monitor 
networks on PM10 concentrations prior to 1997 and after1997, respectively.  The 
MACAM 2 network currently includes nine monitors spread across Santiago, specifically 
located to observe concentrations at both hotspot and typical pollution levels (Gramsch et 
al. 2006).  However, only three sites were monitored consistently across our period of 
study; therefore, we use PM10 data from only these sites: Parque O'Higgins, La Paz (or 
Independencia) and Las Condes.  We use the average daily mean PM10 concentration 
across all stations.   

Since weather conditions are likely to be correlated with pollution levels and 
mortality, we include various weather controls in our analysis.  We obtained hourly 
weather data from the Summary of the Day data series from the U.S. National Climatic 
Data Center (NCDC), and use daily mean wind, precipitation and temperature 
observations as controls.  We also include information on Episode announcements with 
the PM10 and weather data.  The Santiago Metropolitan Region’s Ministry of Health 
provided the dates of each episode and corresponding pollution levels.  

Finally, we use aggregate daily mortality data and merge it with the PM10 
concentration, weather and Episode data. The mortality data are from the Chilean 
Ministry of Health’s Department of Statistics and Health information.  Data on deaths is 
available starting in 1992 while data on cause-of-death begins in 1994.  The cause-of-
death data includes information on date of death, age at death, and International 
Classification of Diseases (ICD) codes for primary and secondary causes of death.  Table 
2 details the means of variables used in our analysis for the pre-PPDA and post-PPDA 
periods. 
 
2.2 Methodology    
 
Our empirical strategy to identify the effect of Episode announcements on avoidance 
behavior is to compare mortality outcomes on the days after an Episode announcement to 
days after which no Episode announcement occurred.  To this we match days 
immediately leading up to, the day of, and the day after an Episode announcement to 
days with observationally similar PM10 concentrations occurring prior to the 
implementation of the PPDA using propensity score matching. Then we use a difference-
in-differences (DID) model to compare the difference in mortality outcomes in the days 
following an Episode to days following a matched non-Episode to identify the effect of 
information.  Because the pollution conditions are (by construction) similar between 
matched periods, differences in response to health outcomes following an Episode (or 
match non-Episode period) can be attributed directly to the informational content of the 
Episode announcement and the resulting avoidance behaviors undertaken by the 
population in response to the provided information.   
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 While there are number of occasions for which Episode announcements occur on 
consecutive days, we restrict our sample to include only Episodes that occurred without 
another Episode announcement within five days before or after to avoid potential 
confounding factors associated with consecutive Episode announcements. The 
Government of Chile announced ninety-one episodes during the post-PPDA period; 
however, with the restriction of stand-alone Episodes, our sample includes 35 of these 
Episodes.  Graff Zivin and Neidell’s (2009) results indicate that for consecutive Episode 
announcements, observed behavioral responses are typical most prevalent only on the 
first day of announcement, which suggests that using only stand-alone Episodes would 
capture the strongest effect of avoidance behavior on Episode announcement.   
  Since Episodes prior to the implementation of the PPDA in 1997 were largely 
inconsistent and ineffective, there are likely to be few close matches of Episode days 
between these periods. Additionally, matching Episode announcements in the pre-PPDA 
period to Episode announcements in the post-PPDA period would identify the differential 
effect of Episodes in both periods instead of the overall impact of Episode 
announcements. Therefore, to establish an appropriate counterfactual to Episodes 
announced in the post-PPDA period, we match PM10 concentrations on days immediately 
before, the day of and days immediately after an Episode announcement in the post-
PPDA period to observationally similar days (but not Episode announcements) in the pre-
PPDA period.  While we cannot find exact matches between the pre- and post-PPDA 
period, propensity score matching allows us to identify similar matches (Rosenbaum and 
Rubin 1983).  We estimate a Logit model to predict the probability that an Episode is 
announced on any given day based on PM10 concentrations five days before, the day of 
and five days after an Episode.  The specify the following model: 
 

1 	𝑦$ = 𝛼 + 𝛽) ∗ 𝑃𝑀10$.) +
/

)01

𝜑3 ∗ 𝑃𝑀10$43 + 𝑫𝑶𝑾′$𝛿 +𝒎𝒐𝒏𝒕𝒉′$

/

30?

𝜃 + 𝜀$		 

 
In this model 𝑦$ is an indicator that equals one if an Episode was announced on day t in 
the post-PPDA period, 𝑃𝑀10$.) is the daily mean PM10 concentration j days before day t 
and 𝑃𝑀10$43 is the daily mean PM10 concentration k days after day t.  𝑫𝑶𝑾$ and 
𝒎𝒐𝒏𝒕𝒉$ are day-of-week and month-level fixed effects, respectively.  We include the 
day-of-week fixed effects to account for potential dependence of Episode announcement 
based on the day-of-week while monthly fixed effects are included to capture seasonal 
variation in weather patterns and potentially Episode announcements.   𝛼, 𝛽), 𝜑3, 𝛿	and 𝜃 
are estimated coefficients and 𝜀$ is the error term. 
 Using the coefficients estimated by the Logit model, we plug the observed values 
for each pre- and post-PPDA episode into the model to obtain the predicted value of 𝑦$, 
which is the propensity score for day t.  We use the Nearest Neighbor approach to 
identify the five closet matches of days in the post-PPDA period to days in the pre-PPDA 
period.  Including multiple matches reduces variance; however, larger values of n-
Nearest neighbors can reduce the quality of the matches.  To further ensure quality of 
matches, we include only matches with a common support, which results in dropping one 
post-PPDA Episode, and our final sample for the difference-in-difference regressions 
includes 32 post-PPDA events (Heckman, LaLonde and Smith 1999).  Table 3 compares 
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the mean PM10 concentrations in the five days before, day of, and five days after an 
Episode (the matching criteria) in the control (Episode days) and treatment groups 
(matched non-Episode days).  Table 3, along with Figure 3, provides supports that our 
matches do have observationally similar PM10 concentrations across the compared days. 
 Finally, we implement the DID regressions to compare the difference in mortality 
outcomes in the five days following an Episode to the five days following a matched non-
Episode to identify the effect of information.  The DID approach allows us to 
appropriately compare mortality outcomes in the treatment and control groups by 
controlling for systematic differences between the groups.  This strategy first differences 
the mortality outcomes for days before and after an Episode (treatment group) or non-
Episode (control group).  Then the difference between these two groups gives the effect 
of an Episode announcement on mortality outcomes.  To further control for systemic 
differences between the treatment and control groups we include weights from the 
matching procedure in the DID regressions (Hirano and Imbens 2001; Imbens 2004).  We 
run the DID regressions on six different sample, where each sample captures the effect on 
mortality on different days following an Episode up to five days, for which each sample 
includes one day before an Episode (t=-1) and one day of or after (t = 0, 1, 2, 3, 4, or 5).  
For instance, the first regression captures the difference in mortality between the day of 
an Episode and the day prior.  The second regression examines the difference in mortality 
between the day after an Episode and the day prior, and so on.  The sixth regression 
represents the difference in mortality between five days after an Episode and the day 
prior.  Additionally, we examine ten different mortality outcomes: all ages for all causes 
of death, all ages for deaths caused by respiratory illnesses, all ages for deaths caused by 
circulatory illnesses, all ages for deaths caused by cancer, all ages for deaths caused by 
accidents, and all of the above but for a subsample of the population over 64.  Therefore, 
we estimate 60 regressions in total.  Using ordinary least squares, the DID specification 
for the six samples and 10 different mortality outcomes is:  
   
2 		𝑌E$ = 𝛼 + 𝜂 ∗ 𝐸E + 𝜔 ∗ 𝑃$ + 𝜌 ∗ 𝑃$ ∗ 𝐸E + 𝛽) ∗ 𝑃𝑀10E.) + 𝑿′𝒊.𝒋𝛾) +N

)01
𝜑3 ∗ 𝑃𝑀10$ + 𝑿′𝒕𝜏3 +$

30.1 𝑫𝑶𝑾′E𝛿 +𝒎𝒐𝒏𝒕𝒉′E$ 𝜃 + 𝜀E$   
 
In this model i indicates the date of an Episode (in treatment group) or matched “non-
Episode” (in control group), which we will continue to refer to each occurrence as a 
“pollution event”, and t is the distance of the sample observation from the associated 
pollution event i, where t can take the values -1, 0, 1, 2, 3, 4 or 5.  𝑌E$ is a mortality 
outcome for day t relative to a pollution event i. 𝐸E is an indicator that equals one if the 
observed day is associated with an Episode that occurred in the Post-PPDA period, and 
zero if the observed day is a day before or after a non-Episode in the pre-PPDA period.  
𝑃$ is an indicator that equals one if the observed day occurred on or after a pollution 
event 𝑡 ≥ 0 , and zero if the observed day is before a pollution event (t < 0).  𝑃$ ∗ 𝐸E  is 
an interaction term representing the effect of mortality on the day of or days following an 
Episode, and is the coefficient of interest in each regression.  The term, 𝛽) ∗N

)01
𝑃𝑀10E.) + 𝑿′𝒊.𝒋𝛾) + 𝜑3 ∗ 𝑃𝑀10$ + 𝑿′𝒕𝜏3$

30.1 , indicates inclusion of PM10 
concentration and weather values for the five days preceding event i and then PM10 
concentration and weather values for the days after event i up to the contemporaneous 
value for each regression.  As in the Logit model, 𝑫𝑶𝑾E and 𝒎𝒐𝒏𝒕𝒉E are day-of-week 
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and month-level fixed effects, respectively.  𝛼, 𝜂, 𝜔, 𝜌, 𝛽), 𝛾), 𝜑3, 𝜏3, 𝛿	and 𝜃 are 
estimated coefficients and 𝜀E$ is the error term. 
 
3. Results and Discussion 
 
Tables 4 and 5 summarize the main results from the difference-in-difference regressions.  
Each cell in Table 4 and 5 represent a coefficient (the coefficient of interest from 
Equation 4, 𝜌) from a different regression.  Table 4 includes results from the regressions 
on deaths for all ages while Table 5 includes mortality outcomes for a subpopulation of 
individuals over 64, which potentially represents a more health-sensitive group to 
pollution spikes.  In the first columns of Tables 4 and 5, the coefficients are statistically 
significant and negative, suggesting that Episode announcements are associated with 
reduced mortality for all individuals, and at least two thirds of these deaths are 
attributable to the elderly.   

That deaths are significantly lower in treatment group (Episodes were announced 
in response to pollution spikes) compared to control (Episodes were not announced in 
response to pollution spikes), suggests people are experiencing less pollutant exposure.  
In the treatment and control group people are being exposed to same PM10 levels after an 
episode and on matched days (by construction of matched days).  Since deaths are 
reduced in the treatment group, this suggests people are staying inside in response to the 
episode information and getting near-zero PM10 exposure as opposed to some PM10 
exposure.  Average PM10 levels after an episode and on matched days appear to be 
between 90-100 µg/m3 (see Figure 3).  As the WHO guideline for PM10 is 50 µg/m3 
(WHO 2011), going outside after an episode could still be harmful, and we might not see 
significant reductions in death even due to episodes if individuals are not engaging in 
avoidance behavior.   

Additionally, examining the cause of death, respiratory related deaths represent 
about one third of the drop in deaths.  Coefficients on circulatory and cancer related 
deaths are statistically insignificant; however, accidental deaths among the elderly appear 
to increase immediately after an Episode announcement. An increase in accidental 
deaths, particular among the elderly, could be a result of higher levels of public transport 
and street sweeping are provided, leading to increased pedestrian related accidents.  
These types of accidents are much more likely to lead to death than accidents between 
cars, especially in urban environments where traffic speeds generally aren't that high. 
Therefore, an increase in pedestrian accidents does not necessarily contradict that 
individuals are not undertaking avoidance behaviors in response to Episode 
announcements.   
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Appendix  
 

 
Figure 1. Annual Mean PM10 Concentrations in Santigo Adapted from Mullins and 
Bharadwaj (2014) 
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Figure 2.  Warranted Episode Occurrences and Announcements Before and After PPDA 
Implementation from Mullins and Bharadwaj (2014)  
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Figure 3. Comparison of Daily Mean PM10 Levels for Treatment and Control Groups 
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Table 1.  Temporary Plans and Restrictions Implemented According to the PPDA 
Adapted from Mullins and Bharadwaj (2014)  
Episode Level Protocols 
Alert -Use restriction on vehicles w/o catalytic converters: 40% week, 20% weekends 
PM10>195 µg/m3 -No use of uncertified residential wood or biomass heating 
 
Pre-Emergency -Use restriction on vehicles w/o catalytic converters: 60% week, 40% weekends 
PM10>240 µg/m3 -Use restrictions on vehicles with catalytic converters: 20% all days 
 -Operation ban on stationary emissions sources contributing 30% of total 

stationary emissions of particulate matter 
 -Potential suspension of Physical Education classes community sports 
 -More intense traffic and public transportation plans in effect 
 -Stricter enforcement on mobile & stationary sources of air pollution 
 -Increased street sweeping and cleaning activities  
 -Increased Metro service  
 -No use of uncertified residential wood or biomass heating 

 
Pre-Emergency -Use restriction on vehicles w/o catalytic converters: 80% week, 60% weekends 
PM10>330 µg/m3 -Use restrictions on vehicles with catalytic converters: 40% all days 
 -Operation ban on stationary emissions sources contributing 50% of total 

stationary emissions of particulate matter 
 -Potential suspension of Physical Education classes community sports 
 -More intense traffic and public transportation plans in effect 
 -Stricter enforcement on mobile & stationary sources of air pollution 
 -Increased street sweeping and cleaning activities  
 -Increased Metro service  
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Table 2. Comparison of Means Before and After PPDA Implementation for 
Variables Used in Analysis  

  1989-1996 1997-2008 

Daily Mean PM10 (µg/m3) 106.15 69.28 
Daily Temperature (℉) 57.85 58.41 
Daily Wind Speed (knots) 4.72 4.80 
Daily Precipitation (inches) 0.03 0.03 
Daily Deaths 77.15 85.79 
Daily Deaths Over 64 47.70 57.45 
Daily Respiratory Deaths 10.20 9.22 
Daily Respiratory Deaths Over 64 7.90 7.76 
Daily Circulatory Deaths 21.76 23.92 
Daily Circulatory Deaths Over 64 17.23 19.12 
Daily Cancer Deaths 17.21 20.17 
Daily Cancer Deaths Over 64 10.72 13.22 
Daily Accidental Deaths 7.98 5.63 
Daily Accidental Deaths Over 64 1.45 1.19 
Avg. Population 5,496,505 6,342,665 
Avg. Population Over 64 343,922 469,945 
Avg. # Emergency Episodes per Year 0.75 0.17 
Avg. # Pre-Emergency Episodes per Year 6.63 7.42 
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Table 3. Balance Table Comparing Means for Treatment and Control Groups 
      Means   t-test for Equal Means 
    Variable Treated Control Percent Bias t-stat p-value 
Lag 5 PM10 90.511 92.365 -4.4 -0.21 0.833 

 4 PM10 85.716 91.017 -12.6 -0.59 0.559 
 3 PM10 128.28 141.83 -30.1 -1.02 0.313 
 2 PM10 128.28 141.83 -30.1 -1.02 0.313 
 1 PM10 129.83 142.33 -28.6 -0.9 0.371 
        

Lead 0 PM10 103.99 111.39 -18.1 -0.77 0.446 
 1 PM10 93.316 99.991 -15 -0.65 0.515 
 2 PM10 87.985 92.22 -8.8 -0.39 0.701 
 3 PM10 89.077 94.34 -11.5 -0.55 0.586 
 4 PM10 91.054 94.977 -8.4 -0.39 0.699 
 5 PM10 91.587 95.269 -8 -0.37 0.711 
        

Observations  32 94    
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Table 4. Effects of Episode Announcements on Deaths for Individuals of All Ages 
  All Ages 

  
Cum. All 
Deaths 

Cum. 
Respirator
y Deaths 

Cum. 
Circulator
y Deaths 

Cum. 
Cancer 
Deaths 

Cum. 
Accidenta
l Deaths 

Difference from Day 
before to Day of 
Episode -6.888* -0.556 1.616 -3.302 0.223 
 (3.67) (1.75) (2.20) (2.19) (1.00) 
Difference from Day -1 
to Day 1 

-
21.324*** -3.004 -3.182 -4.291 -0.129 

 (7.72) (3.18) (3.99) (4.63) (2.52) 
Difference from Day -1 
to Day 2 

-
30.595*** -7.817* -3.668 -3.937 -0.447 

 (11.14) (4.32) (5.79) (5.84) (3.36) 
Difference from Day -1 
to Day 3 -35.582** -13.023** -3.978 -2.563 1.367 
 (14.31) (4.91) (6.41) (8.27) (4.24) 
Difference from Day -1 
to Day 4 -47.485** -16.004** -3.814 -9.017 0.633 
 (19.85) (7.07) (9.80) (10.28) (5.38) 
Difference from Day -1 
to Day 5 -54.830** -18.846* 0.205 

-
14.392 -1.527 

 (24.93) (9.41) (14.71) (12.74) (7.01) 
      
Pre-Episode Daily 
Mean 94.14 12.74 27.44 20.35 4.43 
N 118 96 96 96 96 
Treatment 32 32 32 32 32 
Control 86 64 64 64 64 

*	Significant	at	0.10		
**Significant	at		0.05		
***	Significant	at	0.01	
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Table 5. Effects of Episode Announcements on Deaths for Individuals Aged 64 or Older 
    Deaths Age Over 64 

    
Cum. All 
Deaths 

Cum. 
Respiratory 
Deaths 

Cum. 
Circulatory 
Deaths 

Cum. 
Cancer 
Deaths 

Cum. 
Accidental 
Deaths 

Difference from Day before 
to Day of Episode  -3.339 0.145 1.683 -2.481 0.484 
  (2.79) (1.44) (1.96) (1.82) (0.51) 
Difference from Day -1 to 
Day 1  -14.569** -2.618 -2.579 -2.19 1.181 
  (6.41) (2.64) (3.34) (3.70) (0.92) 
Difference from Day -1 to 
Day 2  -19.231** -7.460** -1.935 -1.303 2.302 
  (8.77) (3.45) (5.03) (4.60) (1.47) 
Difference from Day -1 to 
Day 3  -28.443** -12.147*** -2.249 -0.203 3.802** 
  (12.05) (3.94) (6.27) (7.16) (1.65) 
Difference from Day -1 to 
Day 4  -37.482** -13.951*** -3.389 -6.195 4.409* 
  (16.54) (4.89) (9.17) (7.92) (2.24) 
Difference from Day -1 to 
Day 5  -41.619** -15.737** 0.656 -7.914 3.333 
  (19.73) (7.12) (13.37) (8.33) (3.10) 
       
Pre-Episode Daily Mean  64.49 10.97 22.28 13.31 1.05 
N  118 96 96 96 96 
Treatment  32 32 32 32 32 
Control   86 64 64 64 64 

*	Significant	at	0.10		
**Significant	at		0.05		
***	Significant	at	0.01	
 
 
 
 
 
 
 
 
 
 
	


