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Abstract 

We develop an empirical approach for estimating co-pollutant reductions and associated health benefits 

resulting from climate change mitigation policies whose primary goal is to reduce CO2 emissions in the 

energy generation sector. Unlike previous studies in the field of co-benefit estimation, we do not rely on 

engineering-based linear programming models to assess the effects of a climate change policy with 

regards to co-pollutant reductions. Instead, we use historical data from US power plants to empirically 

estimate the effects of compliance with such a policy. Our results indicate that a 1% decrease in electricity 

output from coal power plants in the U.S. reduces SO2 emissions by 0.5% and NOx emissions by 0.8%. In 

natural gas plants, a 1% reduction in electricity output reduces NOx by 0.7%. Decreasing heat rate by 1% 

in coal plants reduces NOx emissions by 1.2%. We use our marginal estimates to calculate total reductions 

of co-pollutants from the Clean Power Plan, allowing us to compare our estimates to the EPA’s predictions. 

We find total NOx reductions of 285,000 tons and SO2 reductions of 263,000 tons. Neither figure is 

statistically different from EPA’s estimates, a fact that validates our empirical approach.  We provide 

estimates of the resulting health effects using an integrated assessment model, which suggest that the 

EPA could be potentially underestimating the health benefits from NOx reductions.  Overall, our results 

suggest that there is value in using an empirical approach to project the environmental impacts of EPA 

interventions, rather than relying exclusively on engineering-based analyses.   

1. Introduction 
In recent years, climate change policies have been receiving increasing attention (Ostrom 2009). The Paris 

Agreement, entered into force in November 4th 2016, sets ambitious goals for the control of greenhouse 

gas (GHG) emissions and has been ratified by 146 countries, including the United States. Important 

landmark climate change regulations include the European Union Emissions Trading System (established 

in 2005) as well as China’s recently enacted economy-wide cap and trade system. In the US, a group of 

prominent conservatives recently put forward a proposal for a carbon tax that would distribute dividends 

directly to consumers.  

While climate policies, like these, all aim to reduce GHGs (e.g., CO2), they also provide substantial co-

benefits. Regulations that reduce CO2 emissions in the energy generation sector also reduce emissions of 

co-pollutants like sulfur dioxide (SO2) and nitrous oxide (NOX), among others. These local pollutants have 

significant effects on mortality and morbidity.  

In this paper we demonstrate a simple empirical approach for estimating the co-pollutant emissions 

reductions from a carbon policy in the electricity sector. Unlike the standard approach in the literature, 

which relies on complex linear programming models to calculate the reductions in co-pollutant emissions, 

we use historical data from US power plants to estimate the co-pollutant emissions reductions that would 

result from a policy to reduce CO2 emissions in the electricity sector. In addition, we examine the health 

impacts of our estimated reductions in co-pollutants.  

We use the Clean Power Plan (CPP) to motivate, develop and validate our empirical approach. The Clean 

Power Plan sets CO2 emissions reductions targets for each state’s power plant sector, while allowing each 

state to develop its own plan for achieving the reductions. Overall, EPA projects that the CPP will reduce 
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CO2 emissions from power plants in 2030 by 32% from 2005 levels, and by 19% relative to baseline levels 

in 2030.  

We focus on the CPP for two reasons. First, power plants have two main mechanisms for reducing CO2 

emissions: (1) Reduce electricity produced in coal-fired power plants, either by reducing demand for 

electricity or by shifting output to less carbon-intensive energy sources, natural gas and renewables; (2) 

increase the efficiency of the generation process in coal-burning plants (i.e. reduce the plant’s heat rate). 

The limited number of options for CO2 mitigation is what makes our data-driven approach for estimating 

co-pollutant reductions feasible. So long as a carbon policy (like the CPP or a carbon tax) does not provide 

direct incentives for the reduction of co-pollutant emissions, we can use the historical variation in 

electricity output and heat rate to estimate the marginal reductions in SO2 and NOX emissions that would 

occur as power plants adjust their output and efficiency levels in response to a carbon regulation like the 

CPP. Second, focusing on the CPP allows us to assess our approach by comparing our estimates of co-

pollutant emissions reductions with those provided by the EPA.  

Although President Trump has ordered the EPA to review or rescind the rule, we believe that using the 

CPP as a framework for illustrating our approach is still useful. In this context, one can think of our 

estimates as providing a measure of one part of the cost of rescinding this policy, which could be 

substantial. The EPA estimates that the health benefits from reducing co-pollutant emissions via the CPP 

would be roughly as large, and perhaps more than twice as large as the climate change benefits of 

reducing CO2 emissions (EPA 2015a).  That is the main reason we focus on these co-pollutants - because 

of their important health effects.  Moreover, while the effect of a carbon policy on the total amount of 

CO2 emitted is relatively predictable (we would expect CO2 emissions to approach the levels mandated by 

the CPP), the effect on co-pollutants is much less clear. In addition, we found little empirical evidence for 

how co-pollutant emissions respond to changes in CO2 emissions.  

Our analysis proceeds in two steps. Using historical data from power plants, we regress co-pollutant 

emissions on the two primary mechanisms for reducing CO2 emissions – electricity output and heat rate 

(efficiency of production) -- in coal- and natural gas-fired power plants.  Second, assuming that power 

plants improve efficiency and reduce output as predicted by the EPA’s CPP documentation, we examine 

how much this would reduce emissions, using our estimated elasticities for output and efficiency.   

To conduct our empirical analysis, we construct a panel dataset of US power plants, using information 

from the Emissions and Generation Resource Integrated Database (eGRID) (EPA 2015c).  eGRID is a 

database of US electricity producers, reporting annual output and emissions of various pollutants (CO2, 

NOx, SO2, etc.). Using these data, we first assess the validity of our model by estimating the impact of the 

two mechanisms - changes in electricity output and heat rate improvements - on CO2 emissions. We find 

that a 1% decrease in electricity output decreases CO2 emissions by 1%, while decreasing heat rate (i.e. 

improving efficiency) by 1% in coal plants reduces CO2 emissions by 0.9%.1 We then use the EPA’s 

projections of how much coal and gas plants will reduce electricity output, and how much coal plants will 

reduce heat rate, along with our estimates of the effects of these mechanisms to estimate how much CO2 

                                                             
1 Reducing heatrate is not an important mechanism for reducing CO2 emissions in natural gas plants.  
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emissions will fall. The reductions in CO2 emissions that we estimate are within 1.6% of the EPA projections 

of a 413 million ton reduction of CO2 in 2030.  

Having demonstrated the validity of our approach, we examine the impact of the two mechanisms 

(electricity output and heat rate reduction) on two criteria co-pollutants, SO2 and NOx. We find that a 1% 

decrease in electricity output in coal plants decreases NOx emissions by 0.8% and SO2 emissions by 0.5%, 

while the same output reduction in gas plants reduces NOx emissions by 0.7%. Decreasing heat rate by 1% 

in coal plants reduces NOx emissions by 1.2% (in our preferred specification, heat rate does not have a 

statistically significant effect on SO2 emissions). Again, we use the EPA’s projected reductions in output 

and heat rate to compare our estimates with the EPA’s estimated changes in SO2 and NOx emissions 

resulting from the CPP. Our results are in line with EPA’s projections regarding SO2 and NOx reductions. 

Using our preferred specification, we estimate a 263,000 ton (20.1%) reduction for SO2 emissions relative 

to the 2030 baseline, while the EPA estimates a 280,000 ton (21.3%) reduction. For NOx, our preferred 

estimates suggest a 285,000 ton (22%) reduction relative to the 2030 baseline, while EPA predicts a 

278,000 ton (21.5%) reduction. The EPA also provides estimates of the monetary benefit from these avoid 

emissions. This monetary benefit is primarily derived from avoided mortality and morbidity due to 

pollution. To further compare our results to the EPA’s we use an integrated assessment model. We find 

that while the EPA is accurately capturing the health benefits from avoided SO2, it is likely understating 

the value of NOx emission reductions. Furthermore, the EPA’s estimates do not account for the substantial 

uncertainties in this modeling framework, which we find to be important. 

Although we obtain very similar results to those provided by EPA in terms of overall co-pollutant 

reductions, our data-driven approach offers several important benefits. First, our approach provides a 

much cheaper, simpler and more transparent way of estimating co-pollutant reductions, compared to the 

complexity of linear programming models, like the Integrated Planning Model (IPM) which is the software 

used by the EPA to model the impacts of the CPP. Each simulation of the IPM requires an extensive set of 

input parameters as well as the use of a commercial grade solver (EPA 2010). The models we run are only 

estimating co-pollutant elasticities. As a result, they are simple and easy to replicate, with publicly-

available data. In addition, while the linear programming models generate point estimates for the 

projected reductions in emissions, our approach allows us to calculate standard errors and produce 

confidence intervals for our estimates. In doing so, we are able to incorporate some of the uncertainty 

around the co-pollutant reductions. Moreover, our approach is very flexible, allowing us to easily consider 

a variety of robustness checks. For example, we estimate co-pollutant elasticities using data only from 

those power plants that have above average carbon intensity (i.e. tons of CO2 emitted per kWh of 

electricity produced), and we estimate elasticities for both the full sample, and using only data from the 

later years in our sample. Similarly, we consider a series of different scenarios for how the CO2 reductions 

will be distributed to estimate the resulting co-pollutant health benefits.  

The rest of the paper proceeds as follows. Section 2 provides some background on linear programming 

models, the standard approach for projecting the impacts of environmental regulations such as the CPP, 

and discusses research using these models to assess the impact of CPP and other electricity-sector 

regulations. Section 3 presents the eGRID data used in the paper, while Section 4 describes the empirical 

strategy we follow. In section 5 we present our results on the co-pollutant estimates using three different 
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model specifications. In Section 6 we estimate the monetized health benefits from reducing co-pollutant 

emissions. The final section offers some concluding thoughts about our approach and the implications of 

our findings.   

2. Related Research  
Linear programming (LP) models have been widely used to forecast the effects of environmental policies 

on pollutant emissions and subsequent health effects (EPA 2015a; EPA 2011; EPA 2015b; EIA 2015; 

Burtraw et al. 1998; Chestnut and Mills 2005; Smith et al. 2012; Beasley et al. 2013). A non-exhaustive list 

of such models includes the National Energy Modeling System (NEMS), maintained by the Energy 

Information Agency (EIA), the Market Allocation (MARKAL) model developed by the International Energy 

Agency’s (IEA) Energy Technology System Analysis Program (ETSAP), the Integrated Planning Model (IPM) 

developed by the EPA with support from ICF Consulting Inc. and the Haiku model developed by Resources 

for the Future (RFF). While there are significant differences among those models, there is a common 

underlying structure in the way they operate. They all model a wide range of energy related sectors (i.e. 

energy generation, fuel production, transportation, etc.) with varying levels of detail and aim to minimize 

an objective cost function subject to a series of constraints. The objective function minimizes the net 

present value cost of investing and operating the energy sectors. Constraints include operational 

limitations (e.g., capacity at which power plants operate, fuel efficiency of light-duty vehicles, etc.), 

demand-related constraints (e.g., consumer demand for energy use) as well as policy-related constraints 

such as those imposed by the CPP.  

We examine the IPM in more detail, because it is the LP model the EPA used to generate its projections 

for the CPP.  The IPM is a multi-region, dynamic, deterministic LP model of the entire US energy sector. 

Under the assumption of perfect foresight, the model yields a least-cost solution that meets energy 

demands given a series of constraints. Power plants with similar characteristics are aggregated to 

construct what IPM calls the “model plant”. For example, the 15,023 generating units in the US are 

aggregated into 4,738 model plants within the IPM. For each plant, the IPM considers a series of input 

values such as type of fuel used, heat rate, local pollutant control devices, and capacity factors, whose 

values are determined based on engineering estimates. Based on that information, the model provides 

emission rates for a variety of pollutants including CO2, SO2, NOx, HCI and mercury (EPA 2010). The model 

projects changes in emissions from changes made to the projected input levels. The changes in emissions 

are perfectly determined by changes in the inputs used in the electricity generating process. In contrast, 

in our approach, we econometrically estimate the relationship between emissions and the two CO2 

abatement mechanisms, output reduction and heat rate reduction using data from power plants, and 

then use those estimated elasticities to project emissions reductions based on the EPA’s projections for 

how much facilities will reduce output and heat rate in response to the CPP. We do not view this approach 

as a substitute to existing LP models. Rather we believe that our work contributes a complementary 

approach to projecting the impacts of regulations that induce changes in plant behavior.   

The LP models discussed above (including the IPM) have long been used in in the literature to assess the 

ancillary benefits of climate change policies. Bell et al. (2008) conduct a comprehensive review of that 

research and discuss a series of papers that take that approach (Aunan et al. 2004; Cifuentes et al. 2001; 
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Dessus and O’Connor 2003). In addition, examples of environmental policies affecting power plants that 

have been evaluated using LP models include the US Acid Rain Program (Burtraw et al. 1998; Chestnut 

and Mills 2005) and the Mercury and Air Toxics Standards Rule (Smith et al. 2012; Beasley et al. 2013).  

Some of the most recent work on co-benefits estimation using LP models includes work by Burtraw et al. 

(2015), Driscoll et al. (2015), Levy et al. (2016) and Rudokas et al. (2015). Driscoll et al. (2015) use EPA’s 

IPM to derive emissions estimates from 2,417 fossil fueled power plants in the US. Those projected 

emissions are then used to estimate public health co-benefits. Driscoll et al. (2015) is one of the few papers 

that develop alternative scenarios of CO2 emissions reductions that closely follow the targets set by the 

CPP and estimate the co-benefits from reductions in ozone and particular matter. Their results suggest 

that carbon regulations can provide immediate health benefits whose magnitude and spatial distribution 

depends largely on the way the standards are designed. Burtraw et al. (2015) consider an expanded set 

of policy designs for carbon reductions by allowing for a tradable performance standard that affects 

different groups of power generators. They report results that allow trading between: 1) coal-fired power 

plants, 2) fossil fuel plants, and 3) all electric generators. The authors use the Haiku electricity market 

model to estimate emissions and compliance costs under the different policy scenarios. They find that 

under different rates of flexibility of the policy design (e.g., allowing for trading among a greater set of 

generating units) emissions rates and marginal abatement costs do not move in the same direction. 

However, all of the policy scenarios they examine provide positive net benefits. Rudokas et al. (2015) use 

the MARKAL model to estimate changes in SO2, NOx and CO2 based on six climate change mitigation 

scenarios. The authors consider a series of policies that affect sectors other than electricity (e.g., the 

transportation and biofuel sectors). The majority of their scenarios include CO2 targets that are less 

stringent than those of the CPP. Their low carbon tax scenario shows decreases in both SO2 and NOx while 

their more stringent high carbon tax scenario predicts NOx increases by the electricity sector.         

While our work is very closely connected to the literature projecting regulatory impacts using LP models 

(discussed above), we also see a linkage with the literature of retrospective studies that estimate the ex 

post effects of regulations and compare them with ex ante projections (for an overview of retrospective 

studies see Kopits et al. 2014).  Work in that literature includes several case studies estimating regulatory 

compliance costs, which the authors then compare with ex ante projections of these costs.  These case 

studies examine a variety of EPA regulations including the Cluster Rule and the MACT 2 Rule (Morgan, 

Pasurka, and Shadbegian 2014), regulations on the use of methyl bromide (Wolverton 2014), limits on 

arsenic in drinking water (Morgan and Simon 2014), and the 1998 Locomotion Emissions Standards (Kopits 

2014).  

Similarly, the Resources for the Future (RFF) Regulatory Performance Initiative focuses on estimating the 

effects of different EPA regulations and comparing these estimates with ex ante projections. Research 

under this Initiative has looked at a wide variety of regulations including the Air Toxics Program, the 

Endangered Species Act, and the Clean Water Act (Taylor, Spurlock, and Yang 2015; Fraas and Egorenkov 

2015).  Although these papers exploit ex post data, which are not available for the CPP, they are similar in 

spirit to ours, as they focus on assessing ex ante projections of regulatory impact. We take a similar 

approach, but rather than using ex post data, we use historical data to empirically derive projections of 

the impact of the CPP, and compare our projections with those derived using EPA’s IPM model.   
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3. Data 
We obtain data from eGRID, for the following ten years: 1998-2000, 2004-2005, 2007, 2009-2010, 2012 

and 20142 (EPA 2015c). eGRID reports annual electricity output as well as emissions of various pollutants 

(CO2, NOx, SO2, etc.) at the plant level for utility and non-utility steam units with a capacity of at least 25 

megawatts (EPA 2008). EPA uses two separate approaches to gather the emissions data reported in 

eGRID. For the majority of facilities, the emissions data are not observed, but instead are imputed based 

on electricity output. However, for the remaining facilities, the emissions data come from direct 

observations that are reported to EPA's Emissions Tracking System/Continuous Emissions Monitoring 

(ETS/CEM). Because our approach is based on estimating the relationship between electricity output and 

emissions, the observations with imputed (as opposed to observed) emissions data are not useful. 

Therefore, we only use data from plants whose emissions are observed directly (not imputed) in our 

analysis.  

 

Out of the 8,903 power plants in the e-Grid dataset, 1,511 report observed emissions to ETS/CEM in at 

least one year.  Importantly, these plants also tend to be the largest, producing the majority of electricity.  

Table 1 presents the annual net generation for the two sets of plants and shows that even though we are 

only using 17% of the total number of power plants in our sample, we are still capturing the majority of 

electricity produced, particularly in more recent years.  

  

For each of these plants, eGRID provides data on our variables of interest: emissions of CO2, SO2, and NOx, 

electricity generation and the heat rate for coal plants. In addition, eGRID also provides boiler-level data 

on pollution-control devices for all plants (the list of devices is found in Appendix 1). Using the information 

on pollution control, we construct two variables that roughly capture the plant’s use of pollution control 

devices, for SO2 and for NOx emissions. Specifically, for each plant we measure the proportion of boilers 

that are equipped with at least one pollution control device for SO2 and for NOx, respectively.  

 

For our analysis, we restrict attention to coal and natural gas power plants. We only include coal plants 

that produce at least 99% of their electricity from coal, and the same for natural gas plants (at least 99% 

of output is from natural gas). We exclude the relatively small number of plants that use a mix of fuels, 

because in those cases we cannot attribute the emissions by fuel type; eGRID does not report emissions 

by fuel type. We also exclude the handful of plants that produce electricity using renewable energy 

sources (33 plant-year observations), because they emit trivial amounts of SO2 and NOx, and we exclude 

oil-burning plants because they are very small, too small to noticeably affect our results.   

 

In order to be able to compare our empirical estimates with EPA’s projections we need to use data only 

from those plants that will be producing electricity in 2030, since that is the last year of compliance with 

the CPP. Therefore, we drop all observations from plants that closed during the time period of our sample 

                                                             
2 We did not use eGRID data from 1996 and 1997 because for those years, the heat rate information was not 
available. Data for intervening years (i.e. 2001-2003, 2006, 2008 and 2011) are not available through eGRID. 
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and from plants that are projected to close in future years (i.e. before 2030)3. As a result, we drop 748 

observations from 119 coal plants, and 636 observations from 109 gas plants. 

 

After excluding a small number of observations with missing data, we end up with a sample of 859 plants 

comprising 5,250 plant-year observations: 1594 observations from 212 coal plants, and 3,656 

observations from 647 natural gas plants.  

 

Table 2 provides summary statistics for the coal and natural gas plants in our sample. The average coal 

plant in our sample is more than five times larger than the average gas plant in terms of electricity 

generation, and it emits more than twelve times as much CO2. While the difference in CO2 emissions is 

large, when we compare emissions of local pollutants we observe truly enormous differences between 

coal and natural gas plants.  Coal plants emit more than 50 times more NOx than natural gas plants, and 

more than 5000 times more SO2.  These differences underlie the CPP’s effort to shift from coal to natural 

gas.  

  

Figure 1 shows how total net generation from coal and gas plants in our sample has changed over time. 

Because coal plants are so much larger than natural gas plants, coal is responsible for the majority of net 

generation, even though there are more natural gas plants. However, over the past several years 

generation from natural gas has increased markedly following the innovations in hydraulic fracturing and 

horizontal drilling technology as well as discoveries of new natural gas fields. At the same time, coal-fired 

generation grew very slowly until 2007, and has been gradually declining since (with a small upturn in 

2014).   

 

Figure 2 shows the trends in emissions over time for the plants in our sample. CO2 emissions have 

remained fairly stable, increasing slightly over the time period of our sample.  Emissions of SO2 and NOx 

have been declining over time, due primarily to the increasing adoption of pollution control devices 

(especially in coal plants).   

 

One of the limitations of our work is that eGRID does not include data on emissions of particulate matter 

(PM). However, according to the EPA, directly emitted PM2.5 produces less than 10% of the monetized 

health benefits derived from co-pollutants across the different emissions reductions scenarios. The 

majority of the health benefits result from co-pollutant reductions, which serve as precursors for the 

formation of PM2.5. Therefore, we do not believe that this omission poses a serious challenge to the 

implications of our analysis.   

  

4. Empirical Analysis 
Our primary goal is to assess how much each of the two primary mechanisms for reducing CO2 emissions 

from electricity generation– increasing the efficiency of coal-fired plants by reducing the heat rate, and 

reducing output from coal plants, by reducing demand and/or by shifting output to renewable energy and 

                                                             
3 We obtain data on plant closures and projected closures from the EIA-860 data. 
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natural gas plants – affect emissions of SO2, and NOx. To do so, we estimate a series of panel-data 

regressions. We estimate separate models for coal and gas-fired plants, as the effect of each mechanism 

will vary with the type of plant.  Our baseline models have the following structure: 

Ln(Emissionspit) = B1*ln(Outputit) + B2*ln(Heat rateit) + B3*Pollution controlsit + ci + B4*(Yeart*ci) + wst + epit, 

(Coal plants) 

Ln(Emissionspit) = 1*ln(Outputit) + 2*Pollution controlsit + gi + A3*(Yeart*gi) + vst + uit, (Natural gas plants) 

where Emissionspit indicates the annual emissions of pollutant p, by facility i, in year t.  We only include 

heat rate in the coal plant regressions, because according to the EPA, gas plants cannot substantially 

reduce CO2 emissions through heat rate reductions (EPA 2015a). The coefficient on output will identify 

two sub-mechanisms: reducing demand for electricity, and shifting output from higher-carbon coal, to 

lower-carbon gas and zero-carbon renewables. In the case of switching from coal to gas, the net effect 

will depend on the difference in the output coefficient in the coal and gas models. In contrast, in the case 

of switching from coal to renewables, the coefficient on output in the coal model captures the full 

reduction of emissions, because renewables do not emit substantial amounts of SO2 and NOx.  

In some models we include a dummy variable indicating whether or not the facility has adopted any of 

the pollution controls devices listed in Appendix 1. In all models, we include plant fixed effects to control 

for unobserved differences in abatement technology and efficiency across facilities, state-year fixed 

effects to control for unobserved variation in economic conditions, regulatory stringency, and other state-

level factors, and plant-specific time trends to control for plant-specific changes in technology. We cluster 

our standard errors at the state level to account for any correlation over time and across plants within a 

state. Finally, because we are interested in aggregate emissions, we weight observations by the plant’s 

output level.  

While these fixed effects eliminate a substantial amount of the potential endogeneity bias, we recognize 

that output, heat rate, and emissions are chosen simultaneously, and it is not possible to perfectly identify 

a causal relationship in our model. In particular, it seems plausible that as plants discover cleaner 

processes and technologies, they would increase output, reduce heat rate, and reduce emissions. As a 

result, the coefficients on output and heat rate would be inflated by the underlying effect of these 

innovations. However, we do not believe that this is a big problem empirically, because our results change 

very little when we omit plant fixed effects from our model. The plant fixed effects, along with the plant-

specific time trends, should purge the large majority of these kinds of effects (more efficient plants 

produce more, at lower heat rate, and with lower emissions). Moreover, we control for some of these 

technologies with our control device dummy variables. We believe that any remaining time-varying 

sources of endogeneity should have very little impact.  

5. Results 
We estimate elasticities of emissions with respect to output and heat rate in three different specifications. 

Using the emissions elasticities, we calculate the overall projected emissions reductions relative to EPA’s 

2030 baseline projections in order to compare our estimated emissions reductions with those of the EPA.  
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For each pollutant (CO2, SO2 and NOx) we run: 1) a baseline model that includes our full sample (i.e., the 

ten years for which we have data between 1998-2014); 2) a model that includes newer data only (2007-

2014); and 3) a model that includes plants with carbon intensity above the median level in 2014. We will 

refer to these specifications as “baseline”, “recent data” and “dirtier plants” in the remainder of the paper. 

We highlight our recent data model as the preferred specification because, reflecting changes in 

regulations and technology, these data are more predictive of how power plants will behave in the future. 

The dirtier plants specification address the concern that emissions reductions will not be randomly 

distributed across plants. In particular, if states implement emissions trading markets or impose a carbon 

tax, we would expect plants that emit more CO2 per unit of output to have a stronger incentive to reduce 

CO2 emissions.4  

5.1 CO2 emissions 

We first estimate a model on CO2 emissions. Although we focus on the impact of the CPP on emissions of 

SO2 and NOx, we can validate our approach by comparing our projected CO2 emissions reductions with 

those reported by EPA. We can do this in two ways: 1) by comparing our estimated marginal effect of an 

additional MWh on CO2 emissions with the established emissions factors, such as those reported by the 

EIA (EIA 2016), and 2) by comparing our overall estimated reductions in CO2 emissions with the EPA’s 

estimates. If our model produces marginal effects similar to these reported by the EIA and overall 

reductions similar to those reported by the EPA, then this would suggest that our approach is valid.  

The results, in Table 3, indicate that for coal-fired facilities, the elasticity of CO2 emissions with respect to 

output is about one (0.995) in our preferred specification using more recent data; when a coal plant 

increases output by one percent, CO2 emissions rise by 0.995%. Similarly, the heat rate elasticity is a bit 

less than one (0.934). The results for gas plants indicate that the elasticity of CO2 emissions with respect 

to output is smaller; when a natural gas facility increases output by one percent, CO2 emissions increase 

by about 0.934 percent in the recent data model (recall that we do not include heat rate in the gas plant 

regressions, because increasing efficiency is only a mechanism for coal plants to reduce CO2 emissions). 

Output elasticities are very similar across all three models (i.e. baseline, recent data and dirtier plants) for 

both coal and gas plants.  

As a rough check on the validity of our approach, we compare our estimated marginal effects of output 

with those of the EIA.  According to the EIA, one MWh of electricity produced by burning coal emits a little 

more than one ton of CO2 (EIA 2016).5 By comparison, one MWh of electricity produced by burning natural 

gas emits about 0.6 tons of CO2. Thus, if our model produces marginal effects similar to these reported by 

EIA, then this would suggest that our approach is valid.  

To calculate the marginal effect of a MWh of electricity produced in a coal-fired plant at the average value 

of CO2 emissions/output for coal plants, we multiply our estimated elasticity of output (0.995) by the 

average value of CO2 emissions/output (1.09 tons of CO2/MWh) for coal-fired plants in 2014 (the most 

                                                             
4 Because output reduction is the primary means of reducing CO2 emissions, this will be least costly for the most 
CO2-intensive plants.  
5 The exact amount depends on the type of coal burned (i.e. bituminous coal, subbituminous coal, lignite). The EIA 
estimates range from 1.035-1.085 tons of CO2/MWh from coal and 0.61 tons of CO2/MWh from natural gas 
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recent year for which eGRID data are available). This yields a marginal effect of 1.085 tons of CO2 for an 

additional MWh of electricity produced by burning coal. Using the same approach for gas plants, we again 

calculate the marginal effect by multiplying our estimated elasticity of output (0.934) by the average value 

of CO2/output (0.468 tons of CO2/MWh) in 2014, which yields a marginal effect of 0.437 tons of CO2 for 

an additional MWh of electricity produced with natural gas. Our marginal effect is consistent with the 

EIA’s carbon emission factor for coal, a bit less so for natural gas. Regardless, these results provide 

evidence for the validity of our approach, particularly for the coal-fired plants. Importantly, as will become 

apparent below, the CPP’s effect on emissions of CO2 and local pollutants is driven almost exclusively by 

reductions in coal generation.  

As our principal validity check, we use our estimated marginal effects, along with EPA projections of 

changes in generation and heat rate, to assess how much emissions will change if states achieve the CPP-

mandated CO2 emissions reductions targets (i.e., by reducing output and heat rate as projected by EPA).  

To do so, we examine the impact of the three mechanisms and then add up the effects. We begin by 

assessing the impact of the first mechanism: increasing the efficiency of coal-fired plants by reducing heat 

rate.  

To project the heat rate reduction, the EPA assumed the following heat-rate improvements for the three 
major interconnections (EPA 2015a): 

 Western Interconnection: 2.1 %. 

 Eastern Interconnection: 4.3 %. 

 Electric Reliability Council of Texas (ERCOT): 2.3 %. 

In our sample, the vast majority (81%) of coal plants are in the Eastern Interconnection, and account for 

about 77% of output each year. Therefore, we simply take an output-weighted average of the three heat 

rate reduction estimates, which yields a 3.8 percent average reduction in heat rate.  However, the EPA 

projects that only about 51% of coal capacity in 2030 will actually reduce its heat rate.  We incorporate 

this estimate in the following formula in order to calculate the CO2 emissions reductions attributed to heat 

rate: 

𝛥(𝐶𝑂2𝐻𝑒𝑎𝑡 𝑅𝑎𝑡𝑒) = 𝐶 ∗ 𝑏𝐻𝑅 ∗ 𝛥(𝐻𝑒𝑎𝑡 𝑅𝑎𝑡𝑒) ∗ 𝐶𝑂2𝑏𝑎𝑠𝑒 (1) 

where: 

𝛥(𝐶𝑂2𝐻𝑒𝑎𝑡 𝑅𝑎𝑡𝑒) is the CO2 reduction attributed to heat rate improvements 

C is the capacity of coal plants (i.e. 51%) that the EPA expects will reduce their heat rate in 2030  

𝑏𝐻𝑅 is the estimated heat rate elasticity from Table 3 (Recent data model) 

𝛥(𝐻𝑒𝑎𝑡 𝑅𝑎𝑡𝑒) is the weighted average reduction in heat rate (3.8%) discussed above 
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𝐶𝑂2𝑏𝑎𝑠𝑒 is the CO2 baseline emissions in 2030 according to EPA’s projection (2.227 billion tons of CO2) 

Equation (1) yields a reduction of 40 million tons of CO2 emissions in 2030 relative to the baseline level of 

projected emissions in the more recent data specification.  In other words, our results indicate that coal 

plants will reduce CO2 emissions by 40 million tons in 2030, relative to the projected baseline, by reducing 

their heat rate (increasing their efficiency of production).  

Next, we examine the effects of changes in output in both coal and gas plants.  

To assess the magnitude of output’s effect on emissions, we need to use EPA estimates for reductions in 

output in coal and gas plants, along with our estimated marginal effects for output in coal and gas plants. 

The EPA projects that electricity output in coal plants will fall by 322 million MWh in 2030, relative to the 

base case (EPA 2015a)6. At the same time, it projects that electricity output in gas plants will fall by 69 

million MWh7. Note, that despite shifting output from coal to gas plants, output in gas plants (existing and 

new) is projected to fall due to increased demand-side efficiencies.  

Equation (2) summarizes the calculation of CO2 emissions reductions due to output reduction in coal and 

gas plants: 

𝛥 (𝐶𝑂2𝑜𝑢𝑡𝑝𝑢𝑡) = 𝛥(𝑄𝑔𝑎𝑠) ∗ 𝑏𝑄𝑔𝑎𝑠 ∗ 𝐶𝑂2𝐺𝑎𝑠2014 + 𝛥(𝑄𝑐𝑜𝑎𝑙) ∗ 𝑏𝑄𝑐𝑜𝑎𝑙 ∗ 𝐶𝑂2𝐶𝑜𝑎𝑙2014 (2) 

where: 

𝛥(𝐶𝑂2𝑂𝑢𝑡𝑝𝑢𝑡) is the CO2 reduction attributed to electricity output reduction from coal and gas plants 

𝛥(𝑄𝑔𝑎𝑠) and 𝛥(𝑄𝑐𝑜𝑎𝑙) capture the electricity output reduction in gas and coal plants respectively, in 2030 

(69 million MWh for gas plants and 322 million MWh for coal plants) based on EPA’s projections. 

𝑏𝑄𝑔𝑎𝑠 
 and 𝑏𝑄𝑐𝑜𝑎𝑙 

  are the estimated output elasticities of gas and coal plants from Table 3 (Recent data 

model) 

𝐶𝑂2𝐺𝑎𝑠 2014 and 𝐶𝑂2𝐶𝑜𝑎𝑙 2014 capture the average ton of CO2 per MWh for gas and coal plants 

respectively in our sample for 2014 (0.468 for gas plants and 1.09 for coal plants). 

Finally, equation (3) illustrates the formula for the calculation of the overall CO2 reductions: 

𝛥(𝐶𝑂2𝑜𝑣𝑒𝑟𝑎𝑙𝑙) = 𝛥 (𝐶𝑂2𝐺𝑎𝑠 𝑜𝑢𝑡𝑝𝑢𝑡) + 𝛥 (𝐶𝑂2𝐶𝑜𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡) +  𝛥(𝐶𝑂2𝐻𝑒𝑎𝑡 𝑅𝑎𝑡𝑒) (3) 

Table 4 shows the results for the overall CO2 reductions for the three model specifications. The point 

estimate of our preferred specification (recent data) indicates a 420 million ton reduction of CO2, which 

is a 18.9% reduction relative to the 2030 baseline.  By comparison, the EPA projects total reductions of 

413 million tons of CO2 emissions (18.5% reduction).  Thus, our approach yields an estimated reduction in 

                                                             
6 Using the projections based on the mass-based approach.  
7 Including generation from existing and new plants.  
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CO2 emissions about 1.7% higher than EPA’s. As expected our dirtier plants specification yields a higher 

point estimate of 431 million tons (19% reduction). An additional contribution of our model is that we are 

able to calculate confidence intervals for the point estimates of CO2 reductions. Those confidence 

intervals, presented in column 4 of Table 4 are calculated using the estimated standard errors of the 

output and heat rate elasticities in Table 3. Both the Recent data and Dirtier plants confidence intervals 

of Table 4 include EPA’s 413 million ton estimate. As a result, even though our point estimates for the CO2 

reductions are higher than EPA’s there are not statistically significantly different.  

The level of precision of our newer data specification, evaluated versus EPA’s estimates, provides strong 

evidence that our approach can be used to estimate the emissions impacts of the CPP.  Taken together, 

the results in Tables 3 and 4 provide strong support for the external validity of our data-driven approach.  

5.2 Co-pollutant emissions reductions 

Having established the validity of our approach, we now turn to the main focus of our paper: the effects 

on SO2 and NOx emissions.  Table 5 presents the output and heat rate elasticities for SO2 and NOx for coal 

and gas plants. As discussed earlier, we do not include heat rate in our gas plant models, because it is not 

a mechanism for reducing emissions in these plants. In addition, SO2-pollution control devices were not 

used in any of the natural gas plants in our sample. 

Column 1 of Table 5 indicates that the elasticity of SO2 emissions with respect to output is about 0.506 for 

the recent data specification in coal plants. This implies that a 1% reduction in output from a coal plant 

will reduce SO2 emissions by 0.51%. We also find that having SO2-pollution control technology in all boilers 

of a given plant reduces SO2 emissions by about 68 percent8. When we restrict our sample to the dirtier 

plants, a 1% output reduction decreases SO2 emissions by 0.73%. This is primarily due to the fact that the 

dirtier plant specification includes older plants that prior to 2007 had higher SO2 intensities.  

In the second column of Table 5 we look at SO2 emissions in gas plants. The elasticity for output there is 

0.98 for the recent data specification. The output elasticities for SO2 in gas plants are very similar across 

all three model specifications. This is likely because gas plants emit a trivial amount of SO2 (as indicated in 

Table 2). The differences in output elasticities of SO2 across coal plants are larger.  

Column 3 presents the output and heat rate elasticities for NOx in coal plants. In the recent data 

specification the elasticity is 0.83 compared to 1.17 for the dirtier plants model. In addition improving 

heat rate decreases the amount of NOx emissions in coal plants (although that effect is not significant in 

the dirtier plants model). The effect of NOx pollution control devices is not statistically significant in either 

type of plant. 

The estimation of the elasticities in Table 5 is the main contribution of our work. These are output and 

heat rate elasticities that are empirically derived and can be used to predict the impacts of carbon 

abatement policies on the emissions of co-pollutants. Unlike the case of CO2, there are no well-established 

elasticities for these co-pollutants in the literature. Therefore, we compare our projected overall co-

                                                             
8 Given a coefficient, B, the effect of a change from 0-1 in a variable when the left-hand side variable is logged is 
computed as exp(B)-1.  
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pollutant reductions with those of the EPA, following a similar process as the one described in section 5.1. 

Equation (4) illustrates the emissions reductions formula for the case of heat rate: 

𝛥(𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝐻𝑒𝑎𝑡 𝑅𝑎𝑡𝑒) = 𝐶 ∗ 𝑏𝐻𝑅 ∗ 𝛥(𝐻𝑒𝑎𝑡 𝑅𝑎𝑡𝑒) ∗ 𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑏𝑎𝑠𝑒 (4) 

Where: 

𝛥(𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝐻𝑒𝑎𝑡 𝑅𝑎𝑡𝑒) is the change in NOx or SO2 emissions attributed to heat rate improvements 

C is the capacity of coal plants (i.e. 51%) that the EPA expects will reduce their heat rate in 2030  

𝑏𝐻𝑅 is the estimated heat rate elasticity from Table 5 (Recent data model) 

𝛥(𝐻𝑒𝑎𝑡 𝑅𝑎𝑡𝑒) is the weighted average reduction in heat rate (i.e. 3.8%) discussed in section 5.1 

𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑏𝑎𝑠𝑒 is the SO2 or NOx baseline emissions in 2030 based on EPA’s projection (1.314 million  tons 

of SO2 and 1.293 million tons for NOx) 

Next, we estimate the effect of output reductions in co-pollutant emissions, again using a similar approach 

as that described in section 5.1, namely:  

𝛥(𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑜𝑢𝑡𝑝𝑢𝑡) = 𝛥(𝑄𝑔𝑎𝑠) ∗ 𝑏𝑄𝑔𝑎𝑠 ∗ 𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝐺𝑎𝑠2014 + 𝛥(𝑄𝑐𝑜𝑎𝑙) ∗ 𝑏𝑄𝑐𝑜𝑎𝑙 ∗ 𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝐶𝑜𝑎𝑙2014 

(5) 

where: 

𝛥(𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝑂𝑢𝑡𝑝𝑢𝑡) is the co-pollutant reduction attributed to electricity output reduction from coal and 

gas plants 

𝛥(𝑄𝑔𝑎𝑠) and 𝛥(𝑄𝑐𝑜𝑎𝑙) capture the electricity output reduction in gas and coal plants respectively in 2030 

(69 million MWh for gas plants and 322 million MWh for coal plants) based on EPA’s projections 

𝑏𝑄𝑔𝑎𝑠 
 and 𝑏𝑄𝑐𝑜𝑎𝑙 

  are the estimated output elasticities of gas and coal plants from Table 5 (Recent data 

model) 

𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝐺𝑎𝑠 2014 and 𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡𝐶𝑜𝑎𝑙 2014 capture the average ton of co-pollutant emissions in tons per 

MWh for gas and coal plants respectively in our sample for 2014 (0.004 and 0.091 for SO2 and NOX 

respectively in gas plants; 1.616 and 0.94 for SO2 and NOx respectively in coal plants). 

The combined effects of the change in heat rate and output (calculated using equations 4 and 5) are 

illustrated in Table 6. We find that the CPP should result in a 263 thousand ton (20%) reduction in SO2 

emissions in 2030 relative to base case emissions (1.314 million tons) based on the recent data model. By 

comparison, the EPA estimates that SO2 emissions will be reduced by 280,000 tons (21%), relative to the 

2030 baseline.  For NOx, our recent data specification estimates indicate a 285 thousand ton (22%) 

reduction relative to the 2030 base case emissions (1.293 million tons). This estimate is very close to EPA’s 
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prediction of 278 thousand tons of NOx reductions. As expected our dirtier plants specification indicates 

higher co-pollutant reductions, consistent with the higher output elasticities estimated in Table 5.  

Overall, our co-pollutant reduction estimates are not statistically significantly different from EPA’s as 

indicated by the confidence intervals presented in column 4 of Table 6. This validates our strategy for 

estimating co-pollutant elasticities and allows us to explore different scenarios of co-pollutant reductions. 

We use the results presented in this section to determine the monetized value of health benefits from 

different policy scenarios.  

6. Health effects 
Having estimated the co-pollutant elasticities for SO2 and NOx, the next step is to examine how the CPP 

will affect human health. To do this, we need to calculate the amount by which electricity output must be 

reduced in order to generate the projected reduction in CO2 emissions. Because we are concerned that 

the marginal effect of emissions on health is not constant, we will examine only the impact of a 1% 

reduction in CO2 emissions (and therefore, the amount by which electricity output must be reduced to 

achieve this 1% reduction) rather than the health impact of reducing CO2 by the full amount projected by 

the CPP (413 million tons). To estimate the reduction in output that will result from a 1% reduction in CO2 

(i.e. 1% of the total amount 413 million tons) we apply the coefficient from Table 3. Because that 

coefficient (0.995) pertains to the reduction of CO2 from a 1% reduction in output, we calculate its 

reciprocal (i.e. 1/.995). We then use our output elasticities on SO2 and NOx to estimate the reductions in 

SO2 and NOx emissions from reductions in output attributed to a 1% reduction in CO2. We cannot simply 

use our projected total reductions in SO2 and NOx emissions from above because we need to distribute 

these reductions in output and emissions at the plant level. That is, we do not assume that utilities will 

apply these reductions in output uniformly across plants. Rather, we assume that utilities will strategically 

shutdown facilities and/or reduce output at facilities. We consider four alternative schemes by which 

utilities might choose to implement these reductions.  

 
1. Reduce emissions at dirtiest plants (“Dirty 1”): In this approach, we assume that utilities shut 

down and/or reduce output at the coal plants9 with the highest CO2 emissions/output ratio. They 
shutdown coal plants until they meet the CPP-mandated, mass-based state CO2 emissions 
reduction target.   

2. Reduce emissions at oldest plants (“Old”): In this approach, we assume that utilities shut down 
and/or reduce output at the oldest coal plants. Again, they shutdown coal plants until they meet 
the CPP-mandated, mass-based state CO2 emissions reduction target.   

3. Reduce emissions at plants with the lowest capacity utilization rate (“Capacity Utilization”): In this 
approach, we assume that utilities shut down and/or reduce output at the coal plants with the 
lowest capacity utilization rate.  

4. Reduce emissions at plants in counties with the largest marginal damages (“Marginal Damages”): 
In this approach, we assume that utilities shut down and/or reduce output at the coal plants 

                                                             
9 In all four schemes, we assume that utilities will achieve all emissions reductions by reducing output at coal 
facilities. In a small number of states, shutting down all coal plants does not achieve compliance with the CPP. In 
those cases, we assume that utilities satisfy the remaining reductions by reducing output at natural gas plants, 
using the same scheme.   
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located in counties with the largest marginal damages. Marginal damage data come from the 
EASUIR model (Heo 2015). 

 
In all four of the above schemes, we use the coefficients from our preferred specification (using data only 
from 2007-14). As a robustness check, we re-run the first scheme, in which we assume that utilities reduce 
output at the most CO2-intensive facilities, but we use the coefficients from our analysis of the dirtier 
(more CO2-intensive) plants. We label this scheme, “Dirty 2”.    
 
The estimated reductions in co-pollutants from the various plants are aggregated at the county level and 
are then used as input in the “Estimating Air pollution Social Impact Using Regression” (EASIUR) model. 
The latter is an integrated assessment model that predicts the marginal damage from an increase in 
pollution at any point in the continental U.S. The marginal damage estimate is based upon the impact of 
ambient PM2.5 on mortality in both nearby and downwind regions. In addition to varying across geographic 
space, predicted marginal damages vary with seasonal patterns in pollution transport, stack emission 
height, and pollutant type (PM2.5, SO2, NOx, and NH3). The EASIUR model was developed by Heo (Heo 
2015).  EASIUR is based upon another chemical transport and integrative assessment model, the 
Comprehensive Air Quality Model with Extensions (CAMx). EASIUR's damage predictions correlate well 
with the results from other integrated assessment models, including both CAMx and AP2.    
 
The results from each of the four alternative schemes, as well as the robustness check, are presented in 
Figure 3. The horizontal dotted lines, represent the inferred health benefits due to SO2 and NOx reductions 
that arise as a result of a 1% reduction in CO2, based on EPA’s projections. For each co-pollutant, there 
are two sets of horizontal dotted lines capturing the two different concentration response ratios the 
agency used in the CPP RIA. Concentration response ratios indicate the relative risk of mortality per 
increase in ambient pollution. The light blue lines use the concentration ratio of Krewski et al. (2009), 
while the dark blue lines use that of Lepeule et al. (2012). For each co-pollutant, health benefits depicted 
in Figure 3 there are two sets of five vertical lines (one set for NOX and one for SO2).  Each vertical line 
captures the health estimates from one of the four alternative schemes discussed above (“Dirty 1”, “Old”, 
“Capacity Utilization”, “Marginal Damages”) as well as the robustness check (“Dirty 2”). For SO2, our health 
benefit estimates from a 1% reduction in CO2, are not statistically significantly different from EPA’s 
inferred $244 million (in 2011 dollars) using the Lepeule et al. (2012) concentration ratio. This suggests 
that, a 1% reduction in CO2 emissions based on EPA’s 2030 projections, will result in co-pollutant 
reductions that will yield health benefits of $244 million. For NOx our estimated health benefits are higher 
than EPA’s inferred estimates of $20 million (again using the Lepeule et al. (2012) ratio). Three of our five 
NOx health estimates are at $65 million indicating that the EPA could potentially be underestimating the 
health benefits from NOx reductions. Our 95% confidence intervals capture uncertainty from the elasticity 
estimates, value of statistical life, concentration response ratios, and the air quality modeling 
computations.   
 

7. Conclusions 
In August 2015, President Obama announced the final version of the Clean Power Plan, which established 

state limits on CO2 emissions by power plants.  The CPP sets state-specific targets for CO2 emissions 

reductions, with the EPA providing states the flexibility to determine the best way to meet these targets. 

The EPA lists three mechanisms that states can use to achieve the CO2 reductions: (1) reduce demand for 
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electricity; (2) shift the fuel mix from more carbon-intensive energy sources (coal) to less carbon-intensive 

source (natural gas) and zero-carbon fuels (renewables); and (3) reduce the plant’s heat rate. 

In total the EPA projects that US power plants will reduce CO2 emissions by 19% in 2030 relative to baseline 

levels.  While the primary focus of the CPP is reducing CO2 emissions to slow climate change, an important 

element of the plan is that by reducing CO2 emissions, plants will also reduce emissions of SO2 and NOx. 

These local pollutants have been shown to have a variety of negative health effects including increased 

respiratory diseases, increased asthma attacks, and greater mortality, among others. The EPA estimates 

that the health benefits from reducing emissions of these local pollutants are large: roughly as large, or 

larger than the climate change benefits from reducing CO2 emissions, the primary target of the plan.   

The standard approach for assessing the impact of regulations like the CPP on the behavior of power 

plants is to use LP models. In this paper, we consider a different approach to assess the impact of the 

CPP: we use historical data from power plants to estimate how much the CPP will reduce emissions of 

local pollutants, SO2 and NOx. To do so, we use ten years (spanning 1998-2014) of eGRID data on US 

power plants to assess how much the EPA’s building blocks affect emissions of SO2 and NOx. Because our 

approach is a novel one, we first test its validity by estimating the projected reductions in CO2 emissions. 

Our model projects CO2 emissions reductions within 1.7% of EPA projections. Using our estimates, we 

then project how much SO2 and NOx emissions would fall if plants reduce output and increase efficiency 

as projected by the EPA. Our preferred specification suggests that a 1% reduction in electricity output 

from coal plants would results in a 0.8% reduction in NOx and a 0.5% reduction in SO2. A similar output 

reduction in gas plants would result in a 0.7% reduction in NOx. Using those elasticities as well as the 

predicted output reduction from the CPP provided by the EPA, we calculate the total reductions in SO2 

and NOx. In both cases, our results are not statistically different than EPA predictions, a fact that 

validates our empirical approach. Furthermore, we estimate the monetary value of these reductions and 

compare our estimates to the EPA’s. While our estimates acknowledge that there is substantial 

uncertainty, our point estimates for the monetary benefit from SO2 reductions are not statistically 

different than the EPA’s. However, our estimates suggest that the EPA may be underestimating the 

value of NOX reductions as their point estimate lies outside out our 95% confidence interval.  

More generally, our results suggest that, in the absence of strong evidence that the effects of mechanisms 

under power plant control have changed markedly, there is value in using an empirical approach to project 

the regulatory impacts of EPA interventions, rather than relying exclusively on engineering-based, 

integrated planning models. 
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Table 1 

Total Annual Generation: Plants with Observed Emissions vs Plants with Imputed Emissions 

 Total Generation (GWh) 

Year Plants with Observed Emissions Plants with Imputed Emissions 

1998 1,623,711 1,954,085 

1999 1,524,171 2,133,085 

2000 1,538,793 2,230,741 

2004 1,972,511 1,949,731 

2005 2,183,049 1,860,369 

2007 2,326,383 1,822,433 

2009 2,293,367 1,644,650 

2010 2,448,960 1,663,162 

2012 2,404,131 1,641,387 

2014 2,636,260 1,443,431 
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Table 2 

Summary Statistics for Coal and Gas Plants 

  Coal Plants Gas Plants 

Variable  units  Mean Std. Dev. Mean Std. Dev. 

Net generation MWh  5,999,173 4,933,600 1,147,536 1,751,053 

CO2 emissions  tons  6,605,849 5,275,422 535,917 785,576 

SO2 emissions  tons  20,151.99 26,383.87 3.77 18.84 

NOx emissions  tons  9,490.04 10,626.69 174.25 609.74 

Heat rate  Btu/kWh  11,015.80 1,276.58 NA NA 

SO2 control 

devices  

% plant 

operating 

hours  

0.54 0.47 0 0 

NOx control 

devices  

% plant 

operating 

hours  

0.91 0.28 0.92 0.38 

N plant-years 1,594  3,656  
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Table 3 

The effect of output and heat rate on CO2 emissions 

 Coal plants Natural Gas Plants 

 

Coefficient 
(elasticity) 

Marginal effect 
per MWh of 

output (in tons) 
Coefficient 
(elasticity) 

Marginal effect 
per MWh of 

output (in tons) 

Baseline model     

Ln_Output 1.006*** 1.097 0.899*** 0.421 

 (0.008)  (0.019)  
Ln_Heat_Rate 0.983***    

 (0.019)    

Number of plant-years     

Recent data model     

Ln_Output 0.995*** 1.085 0.934*** 0.437 

 (0.004)  (0.018)  
Ln_Heat_Rate 0.934***    

 (0.058)    

Number of plant-years     

Dirtier plants model     

Ln_Output 1.028*** 1.121 0.889*** 0.412 

 (0.018)  (0.057)  
Ln_Heat_Rate 0.964***    

 (0.076)    
All models include plant and state-year fixed effects and plant specific time trends. In all models we weight 

each observation by plant output (MWh of electricity produced).  *p<.05 **p<.01. 
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Table 4 

Total reductions of CO2 (in million tons) 

 1 2 3 4 

CO2 reduction due to:  
Coal 

plants 
Gas 

plants Total 95% C.I. 

Baseline model      

Output 353 29    

Heat rate 42.4     

Total 395.4 29 424.4 416 433 

Recent data model      

Output 349 30    

Heat rate 40     

Total 389 30 420 411 429 

Dirtier plants model      

Output 361 28    

Heat rate 42     

Total 403 28 431 408 454 
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Table 5 

The effect of output and heat rate on SO2 and NOx emissions 

 1 2 3 4 

 SO2 NOx 

Baseline model Coal plants 
Natural Gas 

Plants Coal plants 
Natural Gas 

Plants 

Ln_Output 0.766*** 0.934*** 0.943*** 0.617*** 

 (0.141) (0.032) (0.081) (0.040) 

Ln_Heat_Rate 0.443  1.072***  

 (0.269)  (0.299)  
Control devices -1.398***  0.092 -0.066 

 (0.200)  (0.132) (0.047) 

Number of plant-years     

Recent data model     

Ln_Output 0.506** 0.980*** 0.828*** 0.689*** 

 (0.207) (0.035) (0.105) (0.044) 

Ln_Heat_Rate -0.833  1.194***  

 (0.654)  (0.290)  
Control devices -1.129***  0.047 -0.031 

 (0.162)  (0.184) (0.035) 

Number of plant-years     

Dirtier plants model     

Ln_Output 0.728*** 0.957*** 1.168*** 0.866*** 

 (0.198) (0.123) (0.127) (0.062) 

Ln_Heat_Rate 0.731  0.552  

 (0.526)  (0.623)  
Control devices -2.378***  -0.058 0.006 

 (0.357)  (0.109) (0.005) 

All models include plant and state-year fixed effects and plant specific time trends. In all models we weight 

each observation by plant output (MWh of electricity produced). †p<.10 *p<.05 **p<.01. 
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Table 6 

Total reductions of NOx and SO2 (in thousand tons) 

 1 2 3 4  

NOx reduction due to:  
Coal 

plants 
Gas 

plants Total 95% C.I. 
EPA 

projection 

Baseline model       

Output 285 4     

Heat rate 27 N/A     

Total 312 4 316 250 382 278 

Recent data model       

Output 251 4     

Heat rate 30 N/A     

Total 281 4 285 205 365 278 

Dirtier plants model       

Output 393 17     

Heat rate N/S N/A     

Total 393 17 410 319 502 278 

SO2 reduction due to:  
Coal 

plants 
Gas 

plants Total 95% C.I. 
EPA 

projection 

Baseline model      

Output 399 0     

Heat rate N/S N/A     

Total 399 0 399 250 548 280 

Recent data model       

Output 263 0     

Heat rate N/S N/A     

Total 263 0 263 44 483 280 

Dirtier plants model       

Output 430 0     

Heat rate N/S N/A     

Total 430 0 430 187 674 280 
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Figure  1 
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Figure 3 
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Appendix 1 

List of SO2 and NOx control Devices in eGRID Source: EPA (EPA 2008) 

List of SO2 control devices List of NOx control devices 

 Jet bubbling reactor  Advanced overfire air 

 Circulating dry scrubber  Biased firing 

 Dual alkali  Fluidized bed combustor 

 Dry lime flue gas desulfurization unit  Combustion modification/fuel reburning 

 Fluidized bed  Dry low NOx premixed technology 

 Mechanically aided type  Flue gas recirculation 

 Magnesium oxide  Fuel reburning 

 Other  Water injection 

 Packed type  Low excess air 

 Sodium based  Low NOx burner 

 Spray dryer type  Low NOx burner with overfire air 

 Spray type  Low NOx burner technology with close-coupled overfire air 

 Tray type  Low NOx burner technology with separated OFA 

 Venturi type  Low NOx burner technology with close-coupled and separated overfire air 

 Wet lime flue gas desulfurization unit  Low NOx burner technology for cell burners 

 Wet limestone  Ammonia injection 

  Overfire air 

  Slagging 

  Selective catalytic reduction 

  Selective noncatalytic reduction 

  Steam injection 

 

 


