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Abstract 

This paper presents and evaluates a novel cost-revealing extension to the Becker-DeGroot-

Marschak (BDM) mechanism, termed the Random Quantity Mechanism (RQM), and reports on 

the first field implementation of the RQM in a payments for environmental services (PES) 

setting.  I examine the performance of the RQM in a laboratory experiment with induced costs, 

and utilize the RQM in a field setting to estimate the willingness to accept payment for 

agroforestry tree planting, an impure public good that has private benefits and positive 

externalities, by smallholder farmers in Zambia.  The RQM in principle allows for the non-

parametric estimation of individual cost curves and supply, and identification of the distribution 

of cost types and functional forms.  It provides exogenous variation in contract terms that enables, 

with a sufficiently large sample size, exploration of the effect of opportunity costs and 

performance incentives on contract outcomes.  I present the determinants of willingness to accept 

(WTA) payments for tree planting, construct supply curves derived from WTA, and report on 

performance under the contract.  The results show that the RQM is incentive compatible, that 

decision-making within the mechanism is efficient, and that it holds potential as a field research 

tool for estimating WTA across intensive margins, and, with sufficiently large sample size, 

exploring the impact of WTA and incentive premiums on contract performance. 
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1. Introduction 

The procurement of goods and services for which markets are absent or functioning poorly can 

be achieved by price-setting mechanisms such as auctions.  When private costs of provision are 

heterogeneous and information asymmetries exist between the principle and the agent, such 

mechanisms can reveal limited information on the distribution of reservation prices or 

willingness to accept payments for goods or services.  In this paper, using an economic 

laboratory experiment, I empirically evaluate the performance of a novel cost-revealing 

extension to the Becker-DeGroot-Marschak (BDM) mechanism, termed the Random Quantity 

Mechanism (RQM).  Similar to the BDM, the RQM provides quasi-experimental variation in 

treatment, precise estimates of minimum willingness to accept, random variation in contract 

terms (conditional on satisfying minimum WTA), and allows for direct non-parametric 

estimation of supply and cost structures.  When implemented in a field setting, these features in 

principle can enable the estimation of heterogeneous treatment effects, and may help to isolate 

the impact of incentives and selection on contract performance.  

Smallholder farmers, forest communities and other land managers in developing nations have the 

potential to make a significant contribution toward combating climate through changes in land-

use management such as agroforestry and reforestation.  In Zambia, where the field study is set, 

the potential for reforestation and afforestation is high.  According to Zomer et al. (2008) there is 

the potential in Zambia to sequester over a billion tons of CO2 equivalent on the 74,000 square 

kilometers of land eligible for carbon offsets.  Revenue from terrestrial carbon offsets sold 

through compliance and voluntary carbon markets, and other such ‘payments for environmental 

services’ (PES), can help to unlock this potential by providing subsidies for improved land 

management practices.  Landholders, however, may have heterogeneous opportunity costs that 

are difficult for policy makers and conservation agents to observe.  These information 

asymmetries will decrease the cost-effectiveness of PES initiatives.  Approaches to revealing the 

information that private agents have about their own costs can increase the effectiveness of 

resources earmarked for public goods such as climate change mitigation from land-use, and 

inform international climate policy on Land-Use, Land-Use Change and Forestry (LULUCF) and 

REDD+. 

Knowledge of landholders’ private costs also helps to address concerns over the additionality of 

incentives for the provision of environmental goods.  The term additionality is used, particularly 

in climate change policy discussions, to denote the extent to which there is a direct causal 
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relationship between incentive payments and the land-use activities that result in carbon offsets.  

If these activities would have been undertaken without the incentive payment, they are deemed 

non-additional.   This binary definition is too crude a measure for environmental services that are 

incremental, and can be provided across a range of different levels.  This is the case for terrestrial 

offsets, where landholders often have a choice over, for example, the quantity of agricultural 

land on which to practice low-till, or the number of trees to plant in a reforestation program.   

The issues of information asymmetries (adverse selection) and additionality present incentive 

design and contracting challenges for conservation agents who are tasked with maximizing 

environmental benefits from a fixed budget.  Three broad approaches to help limit information 

asymmetries and improve the efficiency of PES designs are available: collect information on 

landholder characteristics that are expected to be correlated with landholders’ private costs; use 

procurement auctions to allocate contracts; offer screening contracts that are tailored to the 

distribution of private costs (Ferraro, 2008).   

The first option is relatively simple where high-quality data is readily available, however in 

contexts where information on landholder characteristics is difficult to obtain, such as in 

developing nations, this approach can be costly.  Moreover, this approach is very reliant on the 

strength of correlations between observable characteristics and private costs.  Particularly in 

cases where market failures are present, observable characteristics may be a poor measure of the 

true shadow cost of compliance further limiting the effectiveness of this method.  Procurement 

auctions are market based allocation mechanisms that have been used extensively in 

environmental policy.  The third option requires the conservation agent to gain a better 

understanding of the general functional form and distribution of landholder opportunity costs.  

With this information the conservation agent can limit adverse selection by creating an optimal 

menu of contracts designed for the different cost types of the target population.  This serves to 

alleviate concerns over additionality, as contracts are designed so that a landholder would never 

be better of with a contract designed for another cost type, and improves the efficiency of PES.  

To be effective in sorting farmer types screening contracts necessarily incur deadweight loss. 

This paper presents estimates of smallholder willingness to accept (WTA) payment for the 

provision of environmental goods (tree planting) based on a quasi-experiment implemented in 

Zambia.  The RQM enables estimation of WTA across a range of quantities for each participant, 

and thus reveal individual cost curves for the provision of these goods.  Information on the 

function forms of cost curves and their distribution revealed by the RQM can be used to design 
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screening contracts (Guiterras, 2011).  I also present evidence from the field on the marginal 

effect on contract outcomes from incentive payments above the minimum participation 

constraints using random variation in the contract terms.  This research also makes a practical 

methodological contribution to PES and similar settings by demonstrating a field application of 

the RQM.   

The paper is organized as follows.  Section two develops theoretical predictions and properties of 

the RQM in its standard form, and for a variation used in the field.  Section three presents the 

induced-cost laboratory experiment and section four presents the field RQM study on tree 

planting with smallholder farmers.  Section five concludes with a discussion of the main results. 

2. Random Quantity Mechanism theory  

In this section I describe the RQM in detail and develop theoretical predictions of quantity offer 

behavior within this mechanism, and describe a modified version used in the field study. The 

RQM is incentive compatible within the expected utility framework adopted here, and capable of 

eliciting point estimates of the private cost of production or service provision.  The analysis is 

restricted to expected utility as the BDM, the value-revealing counterpart to the RQM, is not 

always incentive compatible outside of this framework (see Horowitz 2006, Karni and Safra 

1987).  

Standard form (fixed production determined by draw) 

The RQM works as follows: an individual is offered a transfer (total payment) for supplying a 

good or service, and asked to respond with the maximum quantity of the good or service that she 

is willing to supply for that transfer amount.  A random quantity is then drawn from a 

predetermined distribution that encompasses possible quantity offer values.  If the drawn 

quantity is less than or equal to the quantity the individual offered to supply, then she receives a 

contract with terms specified by the transfer and drawn quantity. Otherwise, no contract is 

awarded and her profits are zero.  If she is awarded a contract, she must produce no less than the 

drawn quantity in order to be eligible for the fixed transfer payment.  In this case, her profit is the 

transfer less the costs of producing the drawn quantity.  

Under the maintained assumption that total private costs are weakly increasing in quantity, the 

intuition behind the incentive compatibility of this mechanism is straightforward.  The dominant 

strategy for the individual, faced with uncertainty in the quantity required by the contract, is to 
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state the maximum quantity for which their total private costs are no greater than the transfer2.  

Or equivalently, when costs are non-decreasing, to state the maximum quantity that would result 

in a non-negative profit should that quantity be drawn.  This strategy maximizes her chances of 

receiving a contract that would meet or exceed her total costs of production, and excludes the 

possibility of receiving a contract in which the transfer is smaller than her costs.   

More formally, let: 

T  = the transfer (total payment) offered under the contract; 

 Q  = the quantity offered for the contract transfer; 

 R  = the random quantity draw, required by the contract; 

 F()  = the quantity distribution from which R is drawn; 

 Yo  = initial income; 

 C(Q)  = the private cost of producing Q units; 

U(Y) = utility, a function of money income including the net value of the 

contract; 

If R ≤ Q  then the individual receives a contract at (R, T) and her utility  

is U(Yo + T – C(R)) ≥ U(Yo + T – C(Q)) under the assumption that C’(Q) ≥ 0 and U’(Y)>0.  In an 

expected utility framework, the optimal quantity offer solves: 

max
𝑄

∫ 𝑈(𝑌0 + 𝑇 − 𝐶(𝑥))𝑑𝐹(𝑥) + 𝑈(
𝑄

0

𝑌0)(1 − 𝐹(𝑄))  

The first term describes expected payoff for random quantities R less than or equal to the offer Q, 

and the second term describes the expected payoff for a randomly drawn quantity greater than 

the offer (Q).  In our experimental setting, a predetermined value will limit the maximum offer 

that participants may submit.   

First order conditions define the optimal offer Q*, which satisfies: 

𝑈(𝑌0 + 𝑇 − 𝐶(𝑄∗)) − 𝑈(𝑌) =  0 

                                                 
2 In the case that total payment equals total private cost for a specific quantity, q, the optimal solution is not unique 

as q and q-1 result in the same expected payoff. 
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𝑇 =  𝐶(𝑄∗) 

The optimal offer is where total costs equal the contract transfer. 

In a discrete production setting, where units of the good are not infinitely divisible, individuals 

maximize expected utility by offering Q* such that C(Q*) ≤ T  and C(Q*+1) >T.  In the 

continuous output scenario, the RQM provides accurate point estimates of private costs (the 

minimum WTA payment for producing the offered quantity), while in the discrete case it 

provides a bounded estimate of private costs.  This bounded estimate is defined as the difference 

between the transfer and the true cost of the offered quantity and is at maximum the marginal 

cost of the unit Q*+1.  

These results are reliant on a number of assumptions.  As Horowitz (2006) and others have 

pointed out, if the independence axiom of von Neumann-Morgenstern preferences is violated 

then individuals may not maximize expected utility and the RQM will no longer be incentive 

compatible.  The participant must also believe that her responses will not affect future contract 

terms.  If this does not hold then she may tend to understate her quantity offers, thereby 

overstating her minimum WTA, in order to increase future transfers or lower the quantity values 

available for the random draw.  

Providing each individual with a menu of contract transfers, instead of a single transfer, can 

extend the RQM.  For each transfer, the individual responds with the maximum quantity she is 

willing to produce.  A random transfer is then drawn from the menu of transfers, and a random 

quantity is drawn for that transfer, as before.  This random selection of the transfer is explained 

to participants.  Since there is only one contract transfer chosen from the menu, and it is selected 

randomly, incentive compatibility is theoretically maintained under this generalization.  This 

approach provides the opportunity to select transfer values to reveal multiple point estimates 

along the individual’s cost curve.  This feature is of relevance in field applications of the RQM 

as it allows the researcher to identify, under some theoretical assumptions, the distribution of 

cost curve types when applied to a representative sample of the population of interest. 

Although the multi-unit RQM is incentive-compatible in theory, it is an empirical question 

whether it has this property in practice.  The laboratory experiment reported on in this paper tests 

the incentive compatibility of the multi-unit RQM in a pure induced-cost setting.  The results 

demonstrate that the RQM is incentive-compatible and cost revealing in this setting. 
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Partial fulfillment form (unit price and maximum quantity determined by draw) 

The optimal quantity offer is a function of the structure of the contract.  In the standard form 

(above) the landholder must produce at least the full quantity drawn in order to be eligible for the 

transfer payment.  There is no pro-rated payment for partial fulfillment of the contract.  If instead 

I allow a pro-rated transfer payment for partial fulfillment of the required contract quantity 

(determined by the drawn quantity) then the dominant quantity offer strategy for the landholder 

may deviate from C(Q*) = T.  Intuitively, we expect that expanding the individual’s choice set 

will (weakly) increase their expected utility.   

In the partial fulfillment form, the agent is faced with an additional decision dimension – how 

much to produce given the terms of the contract– which leads to a dual optimization problem a) 

profit maximization, in which she must determine optimal supply, q*, for possible transfers and 

quantity draws (together defining marginal revenue) and b) utility maximization, by determining 

the optimal offer, Q*, for any given transfer and quantity draw by using the optimal profit 

function resulting from (a).  In the analysis that follows I continue to maintain the assumptions 

that C(q)>0, C’(q)>0 and C’’(q)>0.   

Under this scenario, the utility derived from a contract is as follows: 

𝑈 (𝑌0 +
𝑇

𝑅
𝑞 − 𝐶(𝑞)) where q ≤ R 

The key distinction here is that instead of production (q) being equal to the quantity draw, 

production is now only limited above by the randomly drawn quantity (R) required by the 

contract, conditional on 𝑄 ≥ 𝑅. 

The optimal supply (q*) for a given T and R solves the profit maximization problem: 

max
𝑞

𝜋: 𝑇
𝑅⁄ 𝑞 − 𝐶(𝑞) 

subject to: 𝑞 ≤ 𝑅 to satisfy 𝑇 𝑅⁄  𝑞 ≤ 𝑇 

First order conditions define the optimal q* for a given T and R, satisfying: 

𝑇
𝑅⁄ ≥ 𝐶′(𝑞∗)                (1) 
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With equality if 𝑞∗ < 𝑅 (or q* = R in one special case elaborated on below), and inequality when 

optimal supply is greater than the draw so actual supply is constrained at R (𝑖. 𝑒. 𝑞𝑅
∗ = 𝑅)3. This 

results in optimal profit 𝜋∗(𝑇, 𝑅, 𝑞∗|𝑄) as a function of T, which is exogenous, and R, which 

exogenous and bounded above by the offer (Q), the choice over which requires a utility 

optimization problem.   

The optimal profit resulting from first maximization problem, 𝜋∗(T, R, q*), is an input in the 

utility maximization problem, in which the optimal offer (Q*) under an expected utility 

framework solves: 

max
𝑄

∫ 𝑈(𝑌0 +  𝜋∗)𝑑𝐹(𝑥) + 𝑈(
𝑄

0

𝑌0)(1 − 𝐹(𝑄)) 

The first order condition defines the optimal Q* for a given T, satisfying: 

𝑈(𝑌0 + 𝜋∗) − 𝑈(𝑌) =  0 

and therefore;  𝜋∗(𝑄∗) =  0      (2) 

Optimality conditions (1) and (2) result in either a) T/R = C’(q*) at R = Q*, or b) T/R > C’(qR*) 

and qR* < q* such that T/R qR* = T and therefore qR* = R.  Given the maintained assumption 

that the cost function is convex, it is possible to show that 𝑑𝜋∗ 𝑑𝑅⁄  ≤ 0, with a strict inequality 

holding when the cost function is strictly convex (unless there are no fixed costs, in which case 

min(𝜋∗)=0).  This means that optimal profit for any drawn quantity R, where R < Q, is larger (or 

no smaller where there are no fixed costs) than optimal profit for R = Q, and optimal profit for R 

> Q is smaller (no larger, without fixed costs) than at Q.  This property along with the optimality 

conditions (1) and (2) are sufficient to define the optimal Q* and q* for a given cost function 

C(q).   

In the following I derive optimal offers Q*(T, R, C(q)) and supply q*(T, R) for strictly convex 

cost functions with and without fixed costs.  As 𝑑𝜋∗ 𝑑𝑅⁄  ≤ 0 it is sufficient to examine the case 

where R = Q* (the ‘worst case’ quantity draw in terms of realized profit) in demonstrating 

optimality.  

 

                                                 
3 I use qR* to denote the supply when the drawn quantity, R, is binding (i.e. qR* = R), and q* 

(without a subscript) to denote supply that is not constrained by the draw.   
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a) Properties of the RQM for a convex cost function with fixed costs (see figure 1). 

Proposition one: Q* is defined by T = C(Q*) and qR* =R in the region where T ≤Tm  

where Tm is defined by  Tm – C’(Qm)Qm = 0, and Tm = C(Qm)  

For the critical case of R = Q* (and all R < Q*) the unconstrained optimal supply would equate 

marginal revenue with marginal cost, T/R = C’(q*), but for T < Tm marginal costs are strictly 

smaller than marginal revenue for all R ≤ Q* and given C’’(q) > 0 we know that supply is 

constrained by the draw (q* > R) and therefore qR* = R.  Hence, when T < Tm we have qR* = R 

for all R ≤ Q* and 𝜋∗(𝑄∗) =  0 at R = Q* given that Q* is defined by T = C(Q*) in the 

proposition. 

If Q* is not the optimal offer, then there is a Q** ≠ Q* such that expected utility is greater at 

Q** than Q*.  If Q* < Q** ≤ Qm then C(Q**) > T, and profit is negative when R=Q** thus 

contradicting (2).  Similarly, if Q** < Q* ≤ Qm then C(Q**) < T and this also contradicts 

optimality condition (2).  Condition (1) shows that q* > qT* as marginal revenue is greater than 

marginal costs for all T < Tm, so R = q* and when R = Q** profit, given as T/R q* - C(q*), is 

equal to (T/Q**)Q** - C(Q**) < 0.   

Therefore by contradiction proposition one holds and T = C(Q*) for T < Tm. 

Proposition 1 shows that, when there are fixed costs of production, the optimal quantity offers in 

the range of transfers T < Tm are equivalent to the optimal offers within the standard RQM, and 

offers in this range are cost revealing.  

Proposition two: Q* is defined by T – C’(Qm)Q* = 0 for all T > Tm where Tm and Qm are 

defined by Tm – C’(Qm)Qm = 0, and Tm = C(Qm) 

T – C’(Qm)Q = 0 is a ray from the origin with a slope equal to marginal cost at quantity equal to 

Qm, which is the quantity at which point marginal costs first begin to exceed average costs, and 

(equivalently) where average cost is at a minimum.  Any offer Q* as defined above satisfies (1) 

at the critical point (when the draw, R , is equal to Q*) only where T/R = C’(q*) and that q* is 

single valued at Qm, for all T > Tm and R = Q* as a direct result of the definition of Q*.  When R 

= Q* profit is maximal at zero for q* = Qm 

If Q* is not the optimal offer, then there is a Q** ≠ Q* such that expected utility is greater at 

Q** than at Q*.  If Q* < Q** (for example, Q3 in Figure 1) then for R = Q** there is no level of 
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production for which profit is positive or zero, as T/R = MR < MC at all q, therefore Q* < Q** 

does not satisfy condition (2) of the dual optimization problem.  If instead Q** < Q* (e.g. Q1 or 

Q2 in figure 1) then for R = Q** it follows that MR = T/Q** > T/Qm and also that MR  = C’(q**) 

> C’(q*) = C’(Qm).  Hence, q** > q*  and since C’’(.) > 0 we know that the cost of production of 

all but the last unit of q** is less than the MR, which is T/Q**, so profit is positive and therefore 

does not satisfy condition (2).   

Therefore by contradiction proposition two holds and the optimal offer is defined by T – 

C’(Qm)Q* = 0 for all T > Tm 

 

Supply function 

The supply function in this cost scenario is given by the following: 

𝑞∗ =  {

 𝑅                                                      𝑖𝑓 𝑇 ≤  𝑇𝑚  𝑎𝑛𝑑 𝑅 ≤ 𝑄∗ 

𝑅                       𝑖𝑓 𝑇 >  𝑇𝑚; 𝑇 𝑅⁄  ≥ 𝐶′(𝑅); 𝑎𝑛𝑑  𝑅 ≤ 𝑄∗

𝐶′−1(𝑇 𝑅)             𝑖𝑓 𝑇 >  𝑇𝑚; 𝑇 𝑅⁄  ≤ 𝐶′(𝑅); 𝑎𝑛𝑑⁄  𝑅 ≤ 𝑄∗

 

 

b) Properties of the RQM for a convex cost function without fixed costs (see figure 2). 

Proposition three: Q* is defined by T – C’(0)Q* ≥ 0 for all T, and q* ≥ 0 with equality 

only when R >= T/C’(0).   

This is similar to the case of proposition two, above, in that the optimal offers follow a ray from 

the origin that is tangential to the cost curve at the point of lowest average cost.  In the case of 

fixed costs, this point of tangency occurs at some Tm > 0, while here (no fixed costs) this point of 

tangency is at the origin. The point of departure from proposition two is that here there are no 

fixed costs so 𝜋∗ = 0 at q = 0 and therefore the producer is no worse off from quantity offers 

greater than those on the ray as they can always produce nothing without penalty if the drawn 

quantity exceeds the value defined by the ray (i.e. Q* ≥ R > T/C’(0)). 

If Q* is not the optimal offer then there is some Q** < Q* = T/C’(0)   (i.e. the minimum Q* that 

satisfies the proposition above) such that expected utility at Q** is higher than at Q* (e.g. see Q2 

in Figure 2).  If Q** < Q* then T/R > C’(0) at R = Q** < Q* and there exists a q** > 0 such that 
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T/R  = C’(q**) as C’’(q) > 0.  At q** average costs are smaller than marginal costs, C(q**)/q** 

< C’(q**) as the cost function is convex and C(0) = 0, while AR=MR = C’(q**) for all q** units, 

hence 𝜋∗ = (𝐴𝑅 − 𝐴𝐶)𝑞∗∗  > 0 and this does not satisfy condition (2).   

If Q** >  T/C’(0) were not an optimal offer then it would not maximize expected utility for a 

given T.  Any positive production at Q**  would incur negative profits for any drawn quantity 

given by Q** ≥ R > T/C’(0) because T/R < C(q**)/q** when q** > 0 as a direct result of our 

assumptions on the cost function (C(0) = 0, C’(q) > 0, C’’(q) > 0).  However, when Q** ≥ R > 

T/C’(0),  q=0 is always feasible and satisfies conditions (1) and (2) so any Q** > T/C’(0) is an 

optimal quantity offer under the maintained assumptions on cost structures. 

Therefore by contradiction proposition three holds. 

Supply Function 

The supply function in this cost scenario is given by the following: 

𝑞∗ = {𝐶′−1
(𝑇 𝑅)             𝑖𝑓 𝑇 >  𝑇𝑚; 𝑇 𝑅⁄  ≤ 𝐶′(𝑅); 𝑎𝑛𝑑⁄  𝑅 ≤ 𝑄∗

0                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

 

 

 

 

 

 

Figure 1. RQM Offers with fixed costs of production 
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Figure 2. RQM Offers without fixed costs of production. 
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The dual optimization necessary to determine the dominant strategy when transfer payments are 

pro-rated by partial fulfillment potentially imposes a significant cognitive burden on the decision 

maker.  Under both versions of contract design the RQM is reliant on respondents having good 

knowledge about their private costs, or at least better information than the principle (otherwise 

there is no information asymmetry present, just uncertainty).  Without knowing the ‘true’ 

underlying functional form of landholders in this field experiment it is not possible to test which 

decision strategy landholders are using, and this could be an area of future research. 

 

3. Laboratory experiment 

3.1 Setting and Data 

This experiment is designed to provide a test of the reliability and incentive compatibility of the 

RQM mechanism, using an induced value framework in a controlled laboratory setting.  

Experimental sessions were conducted in the Laboratory for Experimental Economics and 

Decision Research (LEEDR) at Cornell University, Ithaca.  The subjects (N=21), recruited from 

the student population at Cornell, were 21 years old on average and 38% were female.  Subjects 

sat at individual cubicles each with a computer display and keyboard, and received written and 

verbal instructions.  Subjects were permitted to ask questions of the experiment administrator, 

but were not allowed to communicate with each other.  A session lasted approximately 45 

minutes, with average earnings of $34 and the guaranteed minimum earnings level ($5) was not 

binding for any participant. 

Each session implemented five sets of induced total costs for five fictional firms that produce a 

single fictional good in discrete quantities.  Production at the firms was limited to between 1 and 

10 units inclusive, and total cost schedules unique to each firm listed the total costs of production 

for all possible output levels (e.g. Firm G in Table 1).  The total cost schedule for each firm was 

generated by a power function of the general form 𝑇𝐶 = 𝑎 + 𝑏𝑄𝑑 , where TC is total cost, a is 

fixed cost, and b and d are parameters defining variable costs.  Firms’ total cost curves are shown 

in Figure 3.  

Table 1: Example of firm cost schedule 
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Figure 3: Firm total induced cost curves 

 

Notes: Parameters {a, b, d} for each firm are as follows {Firm G: 4.8, 0.25, 1.6; Firm H: 3.6, 0.1, 2.2; Firm I: 5.5, 

0.35, 1.1; Firm J: 3.2, 0.15, 2.1; Firm K: 5.4, 0.2, 1.55}. 

 

Subjects were provided with a sequence of three contracts with varying transfer values specific 

for each of the five firms.  Possible transfers for each firm were randomly selected in advance 

from the unit-cost ranges within each firm-specific total cost schedule; nine for firms {G, H, I, 

K} and three for firm J.  The values of the possible transfers are summarized in Table 2.   

The transfer presented to each subject for a specific firm-contract pair was randomly selected 

from the three possible values listed below, apart from firm J in which the payment in each 

contract was fixed.  For example, a subject would be presented with a random selection from 

{$7.40, $8.28, $10.14} as a total payment for contract 2 in Firm G.  The order of firms presented 

to each subject was randomized, as was the order of contracts for each firm, so as to avoid 

possible order effects.  
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Table 2. Summary of possible transfer values 

 

In each round, subjects were provided the firm’s Total Cost Schedule and were presented with a 

transfer value randomly selected from the set of values within each firm-contract pair listed in 

Table 2.  A prompt on the same screen asked subjects to submit the maximum number of units 

they would be willing to produce for that payment based on the information provided in the 

firm’s total cost.  After being offered a single opportunity to change their offer in each round, 

they would progress to the next offer round and a new contract.  All three contracts for a firm 

were completed before subjects were presented with a new firm. 

Once all 15 offer rounds were completed, market clearing was undertaken for the five firms.  A 

single contract from each firm was implemented by drawing a single ball (without replacement) 

from the set {1, 2, 3}.  As in the offer rounds, the sequence of firm presentation for each market 

clearing was random, so that each contract draw would apply across the range of firms according 

to the firm randomly selected for each subject.  This random presentation was not necessary for 

mechanism function, however it reduced the variance of the total cost of the experiment given 

that a limited number of sessions were implemented.  

Following the contract draw, the quantity required for the transfer was randomly determined by 

having a volunteer draw from a bag of marked balls.  If the drawn quantity was less than or equal 

to the subject’s offered quantity for that total contract payment the contract would be awarded.  

For awarded contracts, subjects would receive the difference between the total contract payment 

and the (induced) cost of producing the drawn quantity, otherwise they would receive zero 

compensation.  Note that for sub-optimal offers, the costs of production could be higher than the 

total contract payment and the difference would be subtracted from the subject’s cumulative 

profits. 

Contract	# Optimal	Offer Firm	G Firm	H Firm	I Firm	J Firm	K
Q1 $5.46 $3.76 $6.14 $5.82
Q2 $6.13 $4.60 $6.26 $6.42
Q3 $6.31 $5.58 $6.92 $4.77 $6.81

Q4 $7.40 $6.16 $7.42 $7.57

Q5 $8.28 $7.09 $7.76 $9.65 $8.41

Q6 $10.14 $9.23 $8.02 $9.16
Q7 $11.64 $12.56 $8.68 $12.85 $10.10
Q8 $12.06 $16.15 $9.39 $10.82
Q9 $14.63 $18.61 $9.61 $12.41

1

2

3
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No further feedback on performance – directly linking decisions to payoff outcomes – was 

provided to subjects after the practice round, and market clearing occurred following the 

completion of the full set of 15 offer rounds.  Irwin et. al. (1998) found that steep payoff 

schedules improve decision-making when subjects must search for the optimal bid, but they 

found no evidence that payoff schedule shape had any effect on optimizing behavior when 

subjects were able to compute the optimal bid from the initial information provided.  The RQM 

is a similar decision task to the BDM, and therefore expected to be similarly cognitively 

transparent. The experimental instructions combined with the practice round were expected to be 

sufficient for subjects to compute the optimal strategy, and this is supported by the experimental 

results.  The expected payoff structure for Firm G is provided in Figure 4. 

Figure 4:  Expected value payoff functions for each total contract payment 

 

 

3.2 Results 

RQM offers in relation to optimal offers 
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The distribution of real-minus-optimal (“Real–Optimal”) offers is shown in Figure 5, pooled 

across subjects and production decisions, and in Figure 6, pooled across production offers for 

each subject.  Differences of zero indicate that the real offer was optimal.  Of the 300 offer 

decisions pooled across individuals, 66.7% were strictly optimal.  The histograms in Figure 6 

show the difference in each subject’s real offer and the optimal offer for each transfer value, 

pooled across offer rounds.  The patterns suggest that there is a divergence in subject cognition 

or decision strategies.  Random bidding strategies in this experiment will result in real-optimal 

offer values evenly distributed between negative eight and nine4.  This is due to the high degree 

of uniformity of optimal offers5 resulting from the experimental design. It therefore seems likely 

that those subjects with relatively few optimal offers who also did not have an even distribution 

of real minus optimal offers were not employing random offer strategies.  It can be seen in 

Figure 7 that the distribution of real offers was skewed to the right or left of the set of possible 

offers for those individuals with fewer optimal offers. This is evident in subjects 1, 7, 10 and 

others to a lesser degree. 

Figure 5: Distribution of the difference in real and optimal offers 

 

                                                 
4 This range is not symmetrical around zero as the possible offer range was {1,…,10} while the range of optimum 

offers was {1,…,9} 
5 The three total payment values for Firm J generate the only non-uniformity across this distribution. 
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Figure 6:  Distribution of the difference in real and optimal offers, by subject 

 

While it is not possible to determine the motivations or decision strategies applied by individuals, 

there are at least two candidate motivations that could explain offer distributions that are skewed 

right or left.  A subject may believe the goal to be ‘winning contracts’, and in order to maximize 

their chances of achieving this they offer high numbers, resulting in offers skewed to the right of 

the possible range.  Alternatively, she may calculate the net payments resulting from lower 

draws, for a given total contract payment, and believe that by offering a lower draw she is 

therefore ensuring a higher profit.  These approaches could result from one or both of the 

following factors: the initial information and practice round provided may have not been 

sufficient to ensure cognition; reward saliency and payoff dominance were not achieved (Smith 

1982).  Nevertheless, most participants appeared to have understood the information and in the 

field where private costs are very salient this may be less of a concern. 
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Figure 7: Distribution of offer value, by subject 

 

There were 39 unique contract transfers presented across the five firms (see Table 2).  Three of 

these transfers are for Firm J, to which all subjects responded (n=20) 6.  The remaining 36 

transfers come from the sets of nine possible total contract payments for the remaining four firms.  

Each participant responded to a third of these 36 – one randomly selected from each contract-

firm pair listed in Table 2 – resulting in treatment responses ranging between n=3 and n=9.  The 

coefficients of indicator variables for the 39 transfer values regressed on real offers, when 

applied to a pooled dataset across the whole sample, provide estimates of the average real offers 

that can be used for comparisons with the optimal offers for each transfer and firm.  I use robust 

standard errors clustered at the individual level here, and where appropriate elsewhere in the 

analysis, due to the non-independence resulting from the presence of multiple offers from each 

individual.  Additionally, as there is no feedback after the start of the offer rounds, corrections 

for learning are not warranted nor applied in the analysis that follows.  

                                                 
6 One subject was dropped from the analysis, as 13 of their offers were 10 units and the remaining two offers were 7 

and 9. 
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Table 3: Mean quantity offers 

 

Notes:  * Indicates a mean offer that is statistically different than optimal at the 10% confidence level. 

For each of the Firm J estimates, n=20; for each of the estimates for other firms, n varies between 3 and 9 according 

to the specific estimate. 

 

Table 3 summarizes the estimates of mean offers for each unique treatment.  None of the 39 

estimates are statistically different from the optimal offer at the 5% confidence level, however if 

the confidence levels are weakened slightly (10% level) two of the estimates are statistically 

different to the optimal value.  These results suggest that the RQM is incentive compatible and 

approximately cost revealing - which I explore further in the next section. 

To examine individual accuracy the mean absolute difference between optimal offer and real 

offer is plotted in Figure 8 by optimal offer value  pooled across firms and rounds.  We see that, 

for each optimal offer level, mean real offers pooled across treatments were less than one unit 

different than optimal.  This provides further evidence that the RQM is incentive compatible and 

approximately cost revealing.  The next section evaluates the efficiency of the RQM, both from 

an aggregate and individual standpoint. 

Optimal	
Quantity	Offer Firm	G Firm	H Firm	I Firm	J Firm	K

Weighted	
Mean	(G-K)

1 		2.00 1.82 1.43 2.00 1.82
2 		2.43* 2.00 2.50 2.20 2.32
3 2.80 3.00 3.78 3.15 3.38 3.25
4 4.00 4.71 5.29 4.25 4.59
5 5.29 4.71 5.17 5.25 5.17 5.15
6 5.88 5.50 5.29 6.00 5.67

7 7.00 7.33 7.60 6.55 7.11 6.94
8 7.14 7.44 7.14 7.83 7.38
9 		9.5* 9.00 7.88 7.80 8.41
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Figure 8: Mean absolute difference between real and optimal offers 

 

 

Efficiency of decision-making in the RQM 

The expected value of the payoff for offers in each treatment provides us a metric for evaluating 

the efficiency of the RQM.  I examine the aggregate and individual-level efficiency of the RQM 

in terms of expected value of the payoff from real offers compared to the maximum expected 

value of payoff in the treatment.  

Payoff functions in this experiment are quasi-quadratic, and truncated at 1 and 10 due to the set 

of available offer quantities.  As can be seen in Figure 3, the penalty for deviating from the 

theoretically predicted individually optimal offer can be very small for small deviations.  For 

example, offering 8 units in Firm G for a total contract payment of $11.76 results in a reduction 

in the expected value of the payoff of less than $0.01 when compared to the maximum possible 

expected payoff (for the optimal offer of 7).  Though Irwin et al (1998) find that flatter payoff 

structures (and therefore more trivial penalties for sub-optimal bidding) do not make ‘sloppy 

bidding’ more likely in a setting where the mechanism is transparent, such as the BDM, in the 

following evaluation of the efficiency of the RQM I allow for small degree of decision-making 

error in identifying the quantity that results in maximal expected payoffs when defining the 
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optimal offers.  I define this expected payoff error margin as follows.  When examining 

efficiency on the aggregate level, real offers for a given treatment are considered optimal if they 

result in expected payoffs that are different to the maximum expected payoffs by less than 2.5% 

of the range7 of the expected payoffs for that treatment.  Individual decision-making in the 

experiment is considered optimal if the sum of expected payoffs for all offers made by a given 

individual is less than 2.5% below the sum of the maximal expected payoffs for those same 

treatments.   

Applying this efficiency criterion, 79% of the offers (n = 300) in the experiment resulted in 

optimal expected payoffs for their respective treatments.  The percentage of optimal offers by 

firm ranged from 72 – 100%.  This high proportion indicates that decision making in the RQM 

results in expected payoffs very close to the maximum.  Recalling the heterogeneity of individual 

offers shown in Figures 5 and 6 above, it is worthwhile to evaluate the performance of individual 

subjects using our current efficiency metric.  The offers of 17 of the 20 subjects (85%) resulted 

in expected payoffs within 2.5% of the maximum expected payoff for the set of treatments that 

were randomly assigned to them.  The three subjects who did not meet this threshold had 

expected payoff values that were 90%, 70% and 64% of the maximum total expected payoff for 

the treatments they were assigned.  Given the relatively small penalties for small departures from 

the optimal offer in each treatment, the offers from these three subjects were far from optimal 

relative to the remaining subjects in the group. 

Cost revelation and mechanism performance 

The preceding analysis provides strong evidence that the RQM is an individually incentive-

compatible mechanism.  In this section, I extend the analysis to evaluate empirically the 

theoretically demonstrated cost-revealing attribute of the RQM.  This feature is of potential value 

in situations where markets are not functioning efficiently or are absent, such as in the supply of 

environmental services, where price signals are not available or do not reflect true marginal costs.  

The multi-transfer application of the RQM is of particular interest in this context, as it provides 

estimates at a sequence of points along the cost curve and thus allows for estimation of the cost 

structure. 

                                                 
7 The range is the appropriate reference value as it is an accurate measure of the difference between the best and 

worst potential outcome for a given treatment, the latter of which can be negative. 
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The induced cost structures allow us to empirically test the cost-revealing feature directly.  I use 

two approaches that provide statistical measures of this in the analysis that follows.  First, I 

compare parameter estimates based on the real offer data to estimates based on optimal offer 

values for the randomly assigned experimental treatments.  The degree to which these estimates 

match provides an indication of the optimality of decision-making in the RQM.  Second, I 

compare parameter estimates based on the real offer data (as before) to those resulting from 

continuous cost data that has been generated by the induced cost functions.  This approach 

differs from the first as it models the underlying cost curve directly, while in the former approach 

the cost function parameter estimates resulting from optimal offers will always be to the left of 

the true underlying cost curve.  This second approach tests more directly whether the RQM 

reveals the underlying cost structure that drives individual decision-making, and may better 

represent implementations in a field setting where the distribution and form of cost structures are 

the objective of study.  

Induced costs in the experiment were generated by five power functions, one for each firm.  As 

power functions are non-linear in parameters, and not amenable to simple transformations 

resulting in a linear in parameters form, I instead use a quadratic functional form to estimate cost 

curves so as to avail the use of linear methods.  Using a functional form for estimation that is 

different to that which generated the cost structures may be a better representation of real 

applications given that in general the ‘true’ functional form will not be known.  The function to 

be estimated for each firm is given by 

𝑐𝑗 =  𝑏0 + 𝑏1𝑥𝑗 +  𝑏2𝑥𝑗
2 + 𝜐𝑖 + 𝜀𝑖𝑗 

where c is total private costs, x is the quantity offer, errors are distributed 𝜀𝑖𝑗 ~ 𝑛(0, 𝜎𝜀
2), 𝜐𝑖 is a 

subject-specific time invariant error and there are j transfer-quantity observations per individual 

(j=3).  The idiosyncratic error term (𝜀𝑖𝑗 ) in this setting represents not only the subject’s error in 

determining the correct offer8, but cost function specification error, while 𝜐𝑖 is formally fixed in 

the panel fixed effects model used here.  I estimate the fixed-effects model using robust standard 

errors clustered at the individual level to address possible heteroscedasticity and correlation of 

individual-level responses resulting from multiple observations per individual. 

                                                 
8 Possibly exacerbated in non-induced cost settings where respondents may not know their opportunity costs with 

precision. 
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Table 4 lists the parameters of the power function generating the induced cost for each firm, as a 

reference.  Table 5 reports the parameters for each firm of the quadratic model in separate 

regressions using the experimental offers and the optimal offers that are predicted by theory.  

Goodness of fit as measured by R2 is high and two of the three coefficients in our experimental 

models are statistically different from zero in all cases (with the exception of Firm J) suggesting 

a good fit for all models.  The optimal offer model for Firm J is over-specified as there are three 

parameters to be estimated and only three unique data points - the transfer-offer pairs (compared 

to nine for each of the other firms), so while these estimates are included in Table 5 for 

completeness, comparisons to this Firm J optimal offer model are not made in the analysis that 

follows as the estimated coefficients are unreliable.  

Table 4: Induced Cost Power Functions for firms (𝒄 = 𝑳 + 𝒔𝒙𝒎) 

 

The three parameters of the experimental model were jointly tested as equal to their scalar9 

counterpart parameters in the optimal offer regression.  Due to limited degrees of freedom, this 

comparison was undertaken using a fixed effects regression on the experimental data10 without 

robust standard errors clustered at the individual level, though robust standard errors with 

clustering are reported in Table 5.  Given that the standard errors are larger with robust clustered 

errors, and that point estimates do not change, joint tests of significance based on standard errors 

without robustness adjustments or clustering are conservative.  The joint tests show that 

parameters resulting from experimental data are not statistically different than their optimal offer 

counterparts, and based on these data the I cannot reject the hypothesis that these models are 

indistinguishable.  This provides further empirical support to the theoretical results of the RQM 

and suggests that regression estimates across multiple transfer-offer pairs may be able to provide 

information on the structure of private costs.   

                                                 
9 These coefficients are not treated as random variables given that these are simulated data generated from non-

stochastic processes. 
10 Adjustments for robust standard error clustered at the individual level were not appropriate for the optimal offers 

as these data were simulated and non-stochastic. 
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Table 5: Quadratic Form Fixed-Effects Results (Real & Optimal Offers) 

Notes: 

ø Firm J estimation on optimal offer data is over-specified with the quadratic as there are only three independent 
data points and three independent variables.  Estimates and joint test P-value are listed for completeness, but 
have little meaningful interpretation. 
øø Joint test of the parameters from the real offer data compared with the point estimates of coefficients from 
optimal offer panel data.  Robust clustered standard errors were not used in the joint test as this limits the degrees 
of freedom and results in an over-specified test.  Standard errors are smaller when robust clustered errors 
adjustments are not applied, so this test is a conservative measure of significance compared to the robust 
clustered model used in the analysis. 
 

Two other approaches to comparing experimental and theoretically optimal responses, involving 

pooling the two sources of offer data, provide opportunities to cross-validate the results 

presented in Table 5.   I compare coefficients between the two groups by applying a chow-test – 

the null hypothesis that each pair of coefficients between the two groups are jointly equal – using 

a seemingly unrelated regression, as well as by jointly testing the significance of a group 

indicator variable included as a constant and interacted with quadratic terms in a nested 

regression model.  Robust standard errors clustered at the individual level are used in both 

approaches, however neither test can be undertaken using a panel fixed-effects model so fixed 

(time-invariant) effects (𝜐𝑖) each individual are not included.  The results are consistent across 

tests, but not consistent across firms.  Both tests of Firm G suggested that there is a difference in 

at least one of the quadratic coefficients between the two groups (SUR Chow-test: p=0.0029, 

nested F-test: p=0.048), while for each of the other three firms the results were not significant, 

with p-values ranging between 0.14 and 0.23, suggesting that the two cost models are not 

distinguishable.  The small sample size in this experiment could be a factor in either of these 

results. 
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I have demonstrated that the relationship between contract payments and quantity offers based 

on induced costs in the RQM can be modeled using a quadratic function that reasonably maps 

the offers predicted by theory.  I next evaluate if the RQM is cost revealing.  Simulated data 

generated by the induced cost power functions is used to determine coefficient point estimates 

for a quadratic form that models induced cost structure11.  The resulting coefficients enable direct 

comparison with the coefficients estimates of our experimental model.  For reasons outlined 

previously, the preferred model in this experimental setting is the fixed effects panel model using 

the within estimator.  Joint tests that include all of the coefficients of our FE quadratic model 

with robust standard errors clustered at the individual level are not possible as the degrees of 

freedom remaining after estimation are not sufficient for the four necessary restrictions used by 

the joint test.   I therefore do not apply robust-clustered standard error adjustments for the joint 

test.  Given that coefficient estimates are not affected by these adjustments, and that the cluster-

robust standard errors are larger than the unadjusted standard errors, the test results reported 

below are conservative as they are more sensitive to differences in the coefficient between the 

experimental model and induced cost model.  The joint tests for each firm (with the exception of 

Firm J) show that we cannot reject the hypothesis that the parameters of the two models are the 

same (Firm G, p-value=0.3938; Firm H, p-value=0.1437; Firm I, p-value=0.5469; Firm J, p-

value=0.0193; Firm K, p-value=0.6548). 

                                                 
11 Cost data were generated between quantities of 0 and 11 using increments of 0.05 for a total of 221 observations 

for each power function.  The estimated quadratic model fit these data well (R2 >0.99). 
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Figure 9: Fixed effects quadratic model and real cost curve (Firm G)

 

Figure 10: Estimated marginal cost (real offers) versus marginal induced cost
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Figure 9 shows both the estimated model and the induced cost curve power function for Firm G.  

Figure 10 shows the marginal costs derived from the estimated model and the marginal induced 

costs.  The estimated model closely matches the induced cost function as can be seen in the two 

figures, providing further evidence that the multi-unit RQM can be effective at revealing cost 

structures. 

 

4. Field Experiment 

4.1 Setting and data 

Study Setting 

Agroforestry tree planting initiatives have been implemented in Zambia for more than a decade 

(e.g. The Conservation Farming Unit), however smallholder adoption and persistence with these 

practices in many areas has been low even though inputs and training are often fully subsidized.  

At the time that the data were collected12 agroforestry tree planting had been promoted in the 

study area by a number of NGOs as part of a suite of conservation agriculture practices.  

Faidherbia also grows natively in these areas and can be found most commonly on alluvial soils 

near streams and riverbeds, but sparsely elsewhere.  Almost a third of study participants reported 

the presence of Faidherbia in their fields13, while evidence from a related study in 2011 shows 

that only around 10 percent of households had Faidherbia planted on their fields in a neighboring 

district (Jack et al, 2014).   

The study area has a bimodal rainfall pattern characterized by a single wet season followed by a 

dry season in which there is no significant precipitation.  Most agriculture is rain fed in these 

areas, so smallholder farmers are highly dependent on the rainfall patterns for their cropping 

needs.  Successful intercropping propagation of the species requires inputs (seeds and seedling 

bags) and specific techniques including scarification of the seeds and the establishment of a 

raised nursery that requires the construction of a makeshift stand.   

                                                 
12 October/November of 2010 
13 The survey question made no distinction between naturally occurring trees and farmer planted, but field officers 

reported limited intercrop planting of Faidherbia.  Moreover, visual inspection of satellite imagery of the fields that 

participants selected for planting showed few pre-existing trees present. 
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 Study sample  

Landholders (n = 223) in the Mambwe district of Eastern Province, Zambia, were invited to 

participate in information sessions on tree planting in coordination with ongoing activities of a 

new tree planting program run by a local NGO.  Information sessions were conducted at public 

meeting areas within villages at specified times in cohorts ranging from 34 and 53. Sessions 

lasted approximately three hours and included an introduction to the program, an explanation of 

the process through which contract terms were generated (the RQM), presentation of skits that 

provided simulated examples of this process, as well as training on optimum tree planting and 

management practices by experienced local extension staff knowledgeable in these practices.  

 

4.2 Methods 

Experimental procedure 

Each session also included contracting through the Random Quantity Mechanism in which tree 

quantity planting commitments were elicited for a non-varying sequence of five total contract 

transfer payments [20, 40, 70, 100, 140] in ‘000 Zambian Kwacha (approximately 4,700 

ZMK:USD).  The field implementation of the RQM worked as follows:  participants were 

informed of the range of contract transfers before being called one at a time to begin the RQM 

contracting process.  The participant was asked to provide the maximum number of trees they 

would be willing to plant, manage and keep alive for one year for each of the five contract 

transfer values.  After each response, the enumerator confirmed with the landholder the number 

of trees they were willing to offer at that specific price.  Once tree quantity responses were 

provided and confirmed for each of the five contract transfers, the enumerator would review with 

the participant the tree quantity responses for each transfer for final confirmation.   

Following this final confirmation, the landholder was asked to randomly draw one ball out of 

two opaque containers.  The first container held one ball for each of the contract transfers from 

the pre-defined range.  This draw determined the transfer value of the contract.  The second 

container that the respondent drew from contained a ball for each of the tree quantities 

determined from a pre-determined set of positive values [12, 25, 37, 50, 75] not known to 

participants.  This draw determined the quantity required under the contract.  The drawn quantity 
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and transfer are the treatments in this experiment, and the draw procedure used ensures that 

treatments were allocated randomly amongst participants. 

If the tree quantity drawn was less than or equal to the maximum quantity offered by the 

landholder, a contract was offered to the landholder.  In all other cases, a contract was not 

offered.  Once the transfer draw was complete a landholder could no longer change their 

responses, and contracts could not be offered where random transfer/quantity pairs did not meet 

a respondent’s participation constraint, as determined by their responses.  A signed copy of the 

contract was provided to the participant and another provided to the implementing NGO. 

 Implementation and data collection 

Following the contracting session, the landholder was then asked demographic and land-use 

questions in a short survey.  Landholders who were not offered a contract were also asked if they 

would have accepted the contract on the selected terms. Once the survey session was complete, 

respondents were directed to an area with refreshments that was separate from the waiting area 

for those yet to participate in the RQM and survey.  This served to safeguard the integrity of the 

process and limit information from participants being passed on to those waiting to participate.   

Following the completion of all information sessions, the partner NGO established and 

maintained seedling nurseries until the start of the wet season, at which point seedlings were 

distributed to landholders at their homes according to contract terms.  Landholders were again 

informed of the contract terms and had the opportunity to ask questions.   The NGO partner staff 

provided periodic extension support to the farmers through the course of the year.  In order to 

receive the first contract payment, landholders had to transplant the contracted number of 

seedlings in their fields.  Transplanting involves transporting the seedlings to their selected plot 

of land (often a significant distance from their home), preparing the land and planting the 

seedlings.  All contracted landholders met the transplanting target required by the contract at the 

end of the wet season when field visits were made.  At the end of the year an extension staff 

member and an enumerator monitored the number of surviving trees with the landholder in order 

to determine contract performance and payments, which were made once the landholder signed 

to confirm tree survival rates and resulting payment.  The remaining contract transfer payment 

was pro-rated based on the number of trees surviving compared to the number stipulated in the 

contract.  
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4.3. Results 

Contracting within the RQM  

Approximately 60% of the 220 landholders that participated in individual contracting sessions to 

allocate individual-specific contracts specifying the transfer value and number of trees received 

contracts.  Descriptive statistics of the respondents’ characteristics are in Appendix A.  

Mean quantity offers for each transfer value are displayed in Table 6.  Column 3 shows the mean 

across the sample, while columns 2 and 1 provides means for those awarded contracts and those 

not, respectively.  Two mechanistic features of the experiment are evident here, the first is an 

inevitable result of the RQM and the second is an artifact of the experimental design.  In order to 

maintain incentive compatibility, the contract allocation rule of the RQM is that quantity offers 

must be no less than quantity draws for a contract to be awarded; you will never receive a 

contract requiring a higher quantity than you were willing to produce for that transfer.  While the 

quantity and transfer treatments (draws) are randomly assigned, the probability of receiving a 

contract increases with the quantity offer (across the range of predetermined quantity draws)14.  

Moreover, to enable direct comparability of quantity draws across contracts the set of quantity 

treatments was predetermined in the experimental design; a recipient drew a ball from the same 

set of five quantity values irrespective of which transfer value treatment they were assigned.   

These two features can be seen clearly in Table 6.  Firstly, comparing mean offers across any 

transfer value row it is evident that mean offers for those contracted are consistently lower than 

those not allocated a contract (and the population mean is between these two values).  This 

pattern is a natural result of the RQM15.  Secondly, we can see that the proportion of respondents 

allocated a contract increases with increasing transfer values.  This is a result of using a fixed set 

of quantity treatments.  Quantity offers increase with increasing transfers, and therefore the 

probability of drawing a quantity lower than the offer increases also.  While not relevant for 

WTA estimates, these two features become important when investigating outcomes because they 

result in sorting of WTA by treatment dimensions thus confounding identification.   

 

                                                 
14 Recipients are not informed of the predetermined quantity values available in the draw to maintain incentive 

compatibility. 
15 With the exception of two trivial cases in which no one, or everyone, is allocated a contract. 
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Table 6. Mean Quantity Offers 

Transfer 

Not 

Awarded 

contract 

Awarded 

contract 

All RQM 

participants 

(ZMK) (1) (2) (3) 

20,000 14.19 22.50 15.54 

 

[7.12] [8.67] [7.9] 

# obs 31 6 37 

40,000 19.61 45.29 30.53 

 

[6.21] [21.97] [19.63] 

# obs 23 17 40 

70,000 28.13 46.35 39.40 

 

[12.19] [22.03] [20.75] 

# obs 16 26 42 

100,000 31.58 65.34 58.11 

 

[19.87] [30.9] [31.95] 

# obs 7 38 45 

140,000 39.14 73.37 68.04 

 

[26.46] [25.13] [28] 

# obs 7 38 45 

Total 22.40 59.34 44.40 

  [14.66] [29.04] [30.28] 

# obs 89 131 220 

Notes: Mean quantity offers (trees) with standard deviations in brackets followed by # observations. 

The distribution of quantity offers can be seen in Figure 11.  The positive relationship between 

the offer and the transfer value is highly statistically significant.  Including a range of control 

variables changes the scale of the price-specific coefficients minimally, but not the significance 

(see appendix B for regression results).  \ 
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Figure 11: Distribution of tree quantity offers

 

Notes: Marker locations include random noise to increase visibility.  The offers from one respondent are outliers and 

are omitted from this figure.   

 

Survival expectations 

In order to have a rough measure of landholder tree survival expectations, respondents were 

asked how many trees would survive until the next wet season if they planted 20 this season and 

managed them well.  Landholder expectations over survival are important as these can provide 

an indication of whether farmer effort has a causal impact on outcomes.  Low expectations of 

survival might lead to landholders investing no effort into meeting contract terms.  On the other 

hand, high expectations of survival may suggest that a landholder underestimates the true level 

of work required to keep trees alive.  It is unclear ex-ante the likely net effect of expectations in 

this context.  In this study, landholders had reasonably high16 expectations about the survival rate 

of 20 well-managed trees (mean 16, s.d. 4).  Results from a regression on household and 

agricultural characteristics on survival expectations are presented in Table 7.  Significant 

determinants of survival expectations include the respondent being female (-), land that is on an 

                                                 
16 Relative to rates implied by actual survival outcomes. 
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area that is seasonally inundated called a dambo (+), the household supplying casual labor to 

other farmers “ganyu” (-), their membership of comaco - a local conservation organization (+) 

and the number of months in a year that their household did not have enough food to eat (+).  

The directions of these covariates conform broadly to our expectations. 

Table 7 Determinants of Tree Survival Expectations 

 
Notes: Linear regression with robust standard errors.  Dependent variable is the landholder’s expected number of 

surviving trees after one year if they planted 20 and managed them well.  N = 193 due to missing responses from 

some participants. 

  

Determinants of WTA 

To determine the degree to which survival expectations and respondent characteristics determine 

WTA, I regress quantity offers on survival expectations and other characteristics while 

controlling for the transfer values.   Expectations of survival are interesting as they may affect 

effort under the contract, which in turn is likely to influence survival outcomes.  As noted earlier, 

the effect on outcomes of survival expectations is ambiguous ex-ante.  Strong correlations 

between observable characteristics and WTA suggest the possibility of contract targeting based 

on observables.  Effective targeting on observables is also reliant on the predictive ability of 

WTA on outcomes, which is explored further below.   

We see in Table 8 that survival expectations are positively and statistically significantly 

correlated with quantity offers (column 1), and the coefficient is increasing in magnitude with 
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the transfer value.  Including respondent characteristics (column 2) changes the scale of the 

coefficient on survival expectations (and interaction terms) minimally, but it is no longer 

statistically significant.  This is perhaps to be expected given that many of these characteristics 

affect survival expectations as we have seen in Table 7 above. 

Respondent gender and gender of household head have opposite signs and their effect on 

quantity offers is marginally and highly statistically significant respectively.  While many factors 

may influence quantity offer patterns, fulfilling the contract primarily relies on household 

provision of land and labor and therefore we would expect that characteristics related to labor 

and land availability (and value of the outside option) may be influential.  We do not see 

consistent evidence for this in relevant covariates (such as the number of adult household 

members), and the opposite signs on the coefficients for female and female headed are difficult 

to interpret through a labor or land constraint lens.  I speculate that intra-household decision-

making dynamics may be an important underlying cause for the different signs of these two 

coefficients.  Respondents who are not household heads (whether female or male) might be 

inclined to be more conservative in their quantity offers when they are not able to confer with the 

household head, when compared to a respondent who is the head of the household.  Invites to 

participate were targeted at the household head, but the household head status of the respondent 

was not confirmed explicitly at the time of the survey.  These two characteristics combined may 

therefore present an incomplete proxy for household head status (amongst women only), which 

would provide some possible intuition behind the gender parameter estimates.   Other individual 

factors with a statistically significant positive effect on the quantity offer are selling crafts and 

selling food for income generation, and months of the year in which hunger is a problem.   

 



 37 

Table 8 Determinants of quantity offers (inversely proportional to WTA) 

 
Notes: Panel regression with quantity offers as the dependent variable, showing coefficients and robust 
standard errors clustered at the individual level.  Column 1 show direct effects of transfer dummies (omitted 
category is 20,000), survival, and all interactions, while column 2 also includes respondent characteristics. *, **, 
*** denote significance at 10%, 5% and 1%, respectively. 
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Aggregate supply  

The experimental design and RQM allow direct measurement of revealed WTA and enable non-

parametric estimation of individual and aggregate supply curves.  In Figure 12 average prices 

implied by the quantity offer-transfer pairs (five per respondent) are plotted against offers to 

construct an approximate aggregate supply curve17.  Prices (WTA on a per tree basis) in the 

offer-transfer pairs from this sample range from 333 to 20,000 ZMK (approximately USD 0.07 

to 4.25), and supply appears to reach a maximum at approximately 16,500 trees, or an average 75 

trees per respondent.  This apparent maximum threshold is at least partly an artifact of the fixed 

transfer range in this experimental design, though may be related to land constraints also.  

Evidence for the latter is seen in offer patterns for some respondents that appear to flatten out 

towards the upper range of transfer values.   Twenty-five per cent of the sample reported total 

land available of 1 hectare or less, which is enough land to plant 100 trees at the recommended 

spacing.   

Figure 12 Revealed Aggregate Supply

 

 

                                                 
17 This is constructed using discontinuous average costs derived from a discrete set of transfer values. A supply 

curve derived from a continuous range of transfers and offers (or equivalently marginal cost) would fall below the 

curve depicted here (assuming non-negative marginal cost of supply). 
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Figure 13 provides a detail view of the same aggregate supply curve produced by restricting the 

quantity to 10,000 trees or less, as well as the constituent supply curves for each of the five 

transfer values available.  Also depicted is an illustrative budget constraint set at $600 that could, 

for example, represent an NGO’s available funds for tree payments in a selected area.  This 

figure provides a useful demonstration of the benefit derived from eliciting multiple WTA values 

from each individual when modeling supply.  Aggregate supply curves constructed from a single 

transfer value, as shown here, tend to underestimate supply that incorporates changes in 

production along intensive margins (i.e. individual supply response).    The ‘combined’ 

aggregate supply curve indicates that around 850 more trees (31%) could be supplied for $600 

compared to a supply curve constructed from WTA estimates from the 140,000 transfer value18.  

The degree of underestimation will be larger the greater the heterogeneity of opportunity costs 

and the greater the elasticity of individual supply.  Moreover, with a finite population the 

maximum aggregate supply will be a function of the largest contract value that is used.  This can 

be seen in Figure 12, which shows the full range of the combined aggregate supply and each 

contract specific version. 

                                                 
18 2750 trees supplied at a price of $0.21 and total expenditure of $572.92 (due to discrete WTA measures) under 

the 140,000 contract aggregate supply curve, versus 3600 at a price of $0.17 and $600 total expenditure for 

combined aggregate supply. 



 40 

Figure 13 Detail of aggregate supply curves and illustrative budget. 

 

 

 Balance across treatments  

Randomization of contract quantity and transfer terms allocated to each respondent (treatment 

assignment) was undertaken by asking respondents to draw a ball from bags that contained a 

fixed set of quantity and transfer values.  Randomization is important as it helps to avoid bias in 

the treatment allocation.  Before discussing tree survival outcomes across treatments I check that 

the randomization was successful.  Table 9 presents the results of linear regressions of 

respondent characteristics on treatment dummies.  The first and sixth columns show the mean 

and standard errors of the omitted category for the 12 tree quantity draw and transfer draw of 

20,000 ZMK respectively, and coefficient estimates for each of the other treatment categories are 

provided in columns 2 – 5 (quantity draw) and columns 7 - 10  (transfer draw).  Respondent 

characteristics in each treatment are generally well balanced.  No coefficients were statistically 

different from the reference treatment at a level of 0.05, however there were some differences 

that are marginally statistically significant (p < 0.10).  Household size, soil quality, COMACO 
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membership, provision of casual labor and selling food had no statistically significant differences 

between treatments, while each of the other characteristics had marginal differences in one or 

more treatment categories.  These differences are not expected to systematically bias results 

given their marginal significance and, more importantly, the reliability of the randomization 

procedure.  Nevertheless, I include these variables as controls in the multivariate analysis below 

in order to isolate the potential influence of these factors on contract performance outcomes.
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Table 9: Summary statistics and coefficients of quantity draw and transfer draw treatments 

  

Q = 12 
Mean [SD] 

Q = 25 Q = 37 Q = 50 Q = 75 
T = 20,000 
Mean [SD] 

T = 40,000 T = 70,000 
T = 

100,000 
T = 

140,000 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Survival expectations (x/20) 16.171 0.409 -0.222 0.052 -1.534* 15.514 0.153 -0.255 0.694 1.582* 

 
[3.483] [0.753] [0.868] [0.707] [0.888] [4.538] [0.988] [0.936] [0.957] [0.874] 

Household size 2.659 0.32 0.011 0.598 0.488 2.917 0.11 0.158 0.083 -0.388 

 
[1.679] [0.347] [0.336] [0.372] [0.407] [1.500] [0.408] [0.316] [0.394] [0.313] 

Respondent age 36.777 2.003 4.213 1.335 3.005 39.389 0.665 -0.662 1.685 -4.683* 

 
[13.102] [2.592] [2.724] [2.774] [3.060] [12.532] [2.967] [2.970] [2.796] [2.701] 

Respondent gender (female) 0.367 0.133 0.193* 0.022 0.09 0.486 0.039 -0.034 -0.058 -0.064 

 
[0.487] [0.100] [0.099] [0.108] [0.110] [0.507] [0.115] [0.114] [0.107] [0.112] 

Female headed household 0.163 -0.061 0.170* 0.031 0.079 0.222 -0.012 -0.103 -0.004 0.028 

 
[0.373] [0.069] [0.087] [0.085] [0.092] [0.422] [0.097] [0.086] [0.090] [0.096] 

Soil quality (0-2) 1.169 0.014 -0.081 0.002 -0.052 1.081 -0.107 0.232 0.126 0.039 

 
[0.656] [0.137] [0.134] [0.157] [0.150] [0.722] [0.166] [0.147] [0.154] [0.154] 

Membership (comaco) 0.265 0.155 0.035 -0.015 0.163 0.243 0.157 0.162 0.114 0.001 

 
[0.446] [0.095] [0.091] [0.097] [0.106] [0.435] [0.106] [0.105] [0.096] [0.096] 

Membership (dunavant) 0.224 0.016 -0.004 0.026 -0.139* 0.189 -0.039 0.025 0.061 0.033 

 
[0.422] [0.086] [0.085] [0.095] [0.077] [0.397] [0.087] [0.091] [0.088] [0.090] 

Months without adequate 
food 2.396 0.064 0.588* 0.131 0.289 2.432 -0.007 0.311 0.514 -0.045 

 
[1.439] [0.332] [0.325] [0.343] [0.361] [1.676] [0.385] [0.381] [0.357] [0.373] 

Supply casual labor (0-1) 0.265 0.015 0.035 0.04 0.192* 0.297 0.003 0.179 -0.047 -0.031 

 
[0.446] [0.091] [0.091] [0.101] [0.106] [0.463] [0.106] [0.109] [0.096] [0.101] 

Sells food for income (0-1) 0.388 0.072 0.012 -0.054 -0.102 0.378 -0.078 0.074 -0.003 0.022 

 
[0.492] [0.100] [0.099] [0.106] [0.105] [0.492] [0.109] [0.112] [0.104] [0.109] 

# observations 49 50 50 36 35 37 40 42 56 45 

Notes: Columns 1 and 6 show the omitted category for the minimum quantity draw and minimum transfer draws respectively.  Other columns 
 display the coefficients and standard errors from a linear regression of each covariate on the treatment dummies, with robust standard errors. 

 *, **, *** denote significance at 10%, 5% and 1%, respectively. 
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 Determinants of contract performance (tree survival) 

To investigate the degree to which various factors determine respondent performance under the 

contract, I regress tree survival data collected a year later on contract quantity and value, 

respondent offers (WTA), a constructed proportion variable (“premium”) representing the extent 

that contract value exceeds WTA, and survival expectations.  I use a negative binomial (NB) 

model for this analysis as NB does not rely on normally distributed data and is well suited to 

count data such as tree survival.  The NB model is more flexible than the commonly used 

poisson model, and it is appropriate in conditions of over dispersion.  The high incidence of 

zeros in our outcome measure (surviving trees) and a mean outcome substantially lower than the 

variance indicate dispersion is present and hence the NB model is a good choice for these data. 

The experimental design results in treatment pairs spanning the range of possible combinations 

of the quantity draw {12, 25, 37, 50, 75} and transfer values {20000, 40000, 70000, 100000, 

140000}, the latter providing our WTA measure in an inversely proportional relationship.  

Contracts are allocated according to the randomly selected price-quantity pairs, conditional on 

the landholders offer.  The RQM serves to reveal the landholders WTA payment for tree planting 

across a range of quantities, and by design the composition of WTA values are endogenous to 

the random draw results, as discussed earlier.  As is evident in Table 6, mean offers increase with 

increasing transfer values, and mean offers of those awarded contracts increase with increasing 

quantity draws. 

Table 10 presents negative binomial regression results of tree survival on a selection of key 

variables (such as transfer drawn, quantity drawn, quantity offer, survival expectations), and a 

range of control variables across a number of model specifications.  The left panel presents treat 

the treated (TT) while the right panel presents intention to treat (ITT) where non-contracted 

respondents are assumed to have zero surviving trees.  Columns 1-5 and 8-12 provide the same 

sequence of five regression models, the former restricted to respondents who received contracts 

(i.e. TT) and the latter on the full sample (i.e. ITT).  Columns 6 and 7 present results from 

regressions that are only applicable to the contracted subsample.
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Table 10 Determinants of Tree Survival 

Notes: Negative binomial regressions on contracted subpopulation (treat the treated) and full sample (intention to treat).  Survey weighting used to 

correct for unbalanced allocation to transfer draw strata.  One outlier omitted (with 60 surviving trees). *, **, *** denote significance at 10%, 5% and 

1%, respectively. 
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The coefficients on the contract terms (transfer draw and quantity draw treatments) have 

consistently significant impacts on tree survival and of a similar magnitude across 

regression models in both ITT and TT, so are fairly robust to model specification.  The 

number of surviving trees is increasing in the contract transfer value and decreasing in 

quantity stipulated in the contract.  Awarded contracts with the largest transfer result in 

1.2 – 3.4 additional trees surviving one year after planting when compared to contracts 

with the smallest transfer, depending on the model specification.  Contracts in the largest 

quantity treatment result in 2 – 3.9 fewer surviving trees compared to the smallest 

quantity treatment.  The magnitude of the coefficients on the two treatment variables is 

consistently larger in the ITT as compared to TT (e.g. the coefficient on transfer is 0.0796 

in column 7 compared to 0.0514 in column 2) as the former includes the effect of 

treatments on the probability of receiving a contract, as well as the direct effect on 

survival for contracted respondents. 

The first model specification (columns 1 and 6) only includes contract quantity and 

transfer terms (treatments) as a useful comparison point for other model specifications.  

We are interested in, among other things, finding evidence of the effect of WTA on 

survival – controlling for contract terms, do lower cost farmers perform better? The 

offered quantity variable sheds light on this relationship as it provides a direct inversely 

proportional measure of WTA; WTA decreases as offered quantity increases.  A lower 

WTA (i.e. higher offer) indicates lower opportunity costs of managing trees.   

The coefficient on the quantity offer is negative and not significant in TT (column 2) but 

highly significant and positive in ITT (column 6).  The TT result may indicate that WTA 

has little identifiable impact on survival, while the significant ITT coefficient likely 

reflects the allocation rule of the RQM – those with higher offers are more likely to 

receive contracts.  The impact of WTA on outcomes may affect the efficiency of 

screening contracts.  Guiterras et al (2013) further explore the use of screening contracts 

for REDD+ with forest communities using this study context as an example.  Columns 3 

and 8 add survival expectations (expected number of trees surviving after a year if 20 are 

planted and managed well) to the model specification and other household characteristics 

as controls.  Survival expectations have a statistically significant negative effect on 
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survival, and do not markedly change coefficients on existing variables (transfer, quantity 

and offer) or their significance in the treat the treated analysis.  Survival is significant and 

of a similar magnitude in the ITT analysis, however the magnitude and significance of 

the quantity offer parameter has decreased.  As noted earlier, the impact of survival 

expectations is difficult to interpret but expectations could influence survival through 

selection effects (quantity offer, which affects the probability of being contracted, is 

increasing with survival expectations, and the magnitude of this effect increases with 

transfer value), through effort devoted to keeping trees alive, or through a combination of 

these and other factors.  The magnitude of the survival expectation parameter is similar to 

that of either of the treatment parameters (across the experimentally determined ranges) 

so landholder expectations appear to be influential. 

The endogeneity of landholder WTA composition along the two dimensions of treatment 

parameters (quantity and transfer) make identification of the effect of WTA on outcomes 

difficult without a large sample size.  It is not clear whether the lack of statistical 

significance of the quantity offer in column 1 is a result of a small sample size or simply 

indicates no correlative relationship.  As noted, amongst those contracted mean quantity 

draws increase with increasing offers as a direct result of the experimental design.  

Including an interaction between the quantity offer and contract transfer parameters in the 

model (columns 4, 5 and 9, 10) helps to separate the impact on contract performance that 

is driven by correlations with quantity draws resulting from the experimental design from 

the underlying direct impact of WTA on survival, if it exists.  In this model specification 

the direct effect of WTA (Offered quantity) on survival is positive – as WTA decreases 

(lower opportunity costs) the number of surviving trees increases – but is not statistically 

significant in TT, while the interaction terms is negative and also not significant.  In the 

ITT analysis both terms are of the same sign as in TT but larger in magnitude and highly 

significant, likely resulting from the effect of offers on the probability of contract 

allocation.  Including the survival expectations and controls in the model (columns 5 and 

10) does not alter the WTA parameter estimates greatly.     

To examine the possible impact of contract payments that are above minimum WTA on 

tree survival outcomes I construct a variable, ‘Premium’, which seeks to provide a 
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consistent measure of the degree to which average per-tree payments (i.e. tree unit prices) 

exceed average per-tree WTA.  Premium is equal to the proportion of the quantity offer 

that remains after subtracting the quantity draw, and is intended to offer some 

comparability across the range of quantity offers and draws.  To illustrate this, imagine 

two respondents who offer 24 and 74 and who draw quantities 12 and 37 respectively.  

The value of premium for these two individuals is the same, irrespective of their drawn 

transfer.  In column 2’ I regress tree survival on the premium parameter while controlling 

for the transfer value and quantity offer (WTA).  We see that the premium is 1.504 and 

statistically significant.  In column 3’ survival expectations and individual controls are 

included in the specification, resulting in a statistically significant estimate of 1.766 on 

the premium parameter.  Consistent with our expectations this suggests that the degree to 

which average per-tree payments are above average per-tree WTA positively affects 

survival, when controlling for quantity offer (WTA) and the direct effect of the transfer 

value. 

5. Discussion 

The Random Quantity Mechanism, a novel extension of the BDM, has a number of 

features that make it potentially useful in field research applications such as Payment for 

Environmental Services where there are information asymmetries that can limit the 

efficiency of traditional contracting.  It provides quasi-experimental variation in 

treatment (drawn quantity and transfer values), precise estimates of minimum willingness 

to accept, random variation in contract terms (conditional on satisfying minimum WTA), 

and allows for direct non-parametric estimation of supply.  When used in a field setting, 

these features in principle allow for the estimation of heterogeneous treatment effects, 

and can help to isolate the impact of incentives and selection on contract performance.  

In an expected utility framework the mechanism is theoretically incentive compatible; the 

weakly dominant strategy for the participant is to offer the maximum quantity whose cost 

of production is no more than the transfer.  I find in a laboratory setting that 66.7% of 

quantity offers made in response to contract transfer values in an induced cost 

experimental setting were exactly optimal, and the mean absolute difference between 

respondent and optimal offers was less than one.  The expected value of the payoff for 
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respondent offers provides a measure of decision-making efficiency within the RQM.  

Allowing for a small margin of error in finding the optimal expected payoff, 79% of the 

offer decisions pooled across participants were found to be optimal, while the offers of 17 

of the 20 participants had optimal expected payoffs for the contract terms they received.  

The three participants who did not meet the efficiency criterion fell short of the maximum 

expected payoff by 10%, 30%, and 36%.  With the exception of these three respondents, 

the above results suggest the mechanism is incentive compatible.  A larger sample size 

would help to strengthen this analysis and more clearly identify potentially anomalous 

quantity offer decisions. 

Information asymmetries in non-market goods and services, such as climate change 

mitigation by smallholder farmers, often present a barrier for policy makers and other 

agents interested in stimulating supply in order to realize positive externalities or address 

market failures.  I implement the Random Quantity Mechanism in a field setting to 

examine cost structures for the provision of environmental goods and the determinants of 

WTA.  The multi-transfer experimental design allows for non-parametric estimation of 

individual and aggregate supply curves that could be used by policy makers to examine 

the effect of subsidies and similar policy instruments on the provision of non-market 

goods and services, and conservation agents to predict supply for a given budget and 

evaluate cost-effectiveness compared to substitute environmental goods that could be 

used to achieve similar goals (e.g. pollution abatement through other mechanisms). 

The RQM is shown to be feasible to implement in a field setting, and when used in a 

multi-transfer design can provide rich data on minimum WTA across intensive margins 

enabling construction of individual supply curves.  In order to elicit revealed, rather than 

hypothetical, WTA information it is necessary to implement real contracts for goods or 

services in the RQM.  Under these conditions, the RQM reveals minimum WTA while 

also generating (constrained) random variation in the effective average price paid 

(through randomization of quantity draws) and guaranteeing participation constraints are 

met.  While this in principle provides the opportunity to examine the effect of WTA on 

contract performance, controlling for contract terms, and the impact of payments that 

exceed minimum WTA on contract performance, controlling for WTA, the allocation 
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rule that ensures participation constraints are met creates endogeneity in the composition 

of landholders’ WTA along the quantity dimension for those that are contracted.  

Similarly, the composition of landholders’ WTA is endogenous to the transfer dimension 

resulting from the multi-transfer design.  In other words, selection for low-cost farmers in 

contract allocation is increasing in the quantity draw and decreasing in the transfer.  

These features are an inevitable result of the design, and present difficulties when looking 

to examine contract performance and WTA relationships.  When pooling data across the 

two dimensions of treatment in the multi-transfer design, the two features serve to 

confound identification of the effects of WTA, and payments above minimum WTA, on 

contract performance.  Identification of these relationships would be improved with 

larger sample sizes. 

Landholders in our sample offer to supply from 0 to 400 trees for a fixed set of contract 

values ranging from $4.2 to $29.2 (USD).  This provides a direct measure of WTA 

payment for the provision of tree planting.  I find gender to be an important factor in 

landholder’s WTA for tree planting.  Female respondents have higher WTA (coefficient 

on quantity offer is -5.7, p=0.078), and respondents from households headed by women 

have lower WTA (coefficient on offer is 15.0, p=0.008).  This divergent response may 

partly relate to intra-household decision-making patterns, wherein non-household heads 

may be more conservative in their quantity offers when compared to household heads.  

The two gender characteristics that I have data for, above, may together form a proxy for 

household head status (but only amongst women respondents), thus contributing to the 

divergence seen here if decision-making authority is a factor in quantity offers.  I also 

find that food sales (8.23, p=0.015) and craft sales (7.59, p=0.081) as a source of income 

generation affects WTA.  These results highlight the need for consideration of gender 

access and distributional effects for programs that seek to promote tree planting to 

smallholders in Zambia.  

Expectations over tree survival may be important as these can provide an indication as to 

whether farmer effort has a causal impact on outcomes.  Survival expectations have a 

significant negative impact on WTA, and a marginally significant impact when 

controlling for other individual characteristics.  The impact of survival expectations on 
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WTA is increasing in the transfer value, with coefficients on the quantity offer ranging 

from approximately 0.5 to 1.95 for each extra tree expected to survive out of 20 planted. 

Survival expectation are themselves a function of individual characteristics; female 

respondents and those respondents supplying casual piecework had lower expectations of 

survival, while farming seasonally inundated land, membership of a conservation 

organization, and the number of months in which the household faced hunger all had 

positive coefficients. 

The incentive compatibility of the RQM ensures that the quantity offered for each 

transfer value is a direct measure of minimum willingness-to-accept payment for the 

provision of goods or services.  As I show theoretically, when contracts provide pro-rated 

payments for partial contract fulfillment this result only holds in certain circumstances.  I 

use average prices and quantity offer data to construct an aggregate supply curve across 

the sample and an aggregate supply curve based on quantity offers for each transfer value 

independently.  Supply here is based on quantity commitments under a pro-rata contract 

payment scheme, and therefore the accuracy of the constructed supply curve is affected 

by the degree to which the RQM as implemented performs similarly to the standard case 

in which payment is not pro-rated on partial fulfillment.  Our data cannot rule out the 

partial fulfillment RQM behavior nor confirm that quantity offers conform to the standard 

RQM scenario.   

I use a hypothetical NGO budget of $600 for tree planting incentives with the constructed 

supply curves to illustrate a fixed-budget scenario in which I calculate market clearing 

price and quantity, and to highlight one of the advantages of the multi-transfer design.  At 

a per-tree price of 800 ZMK (approximately $0.17) our sample population would offer to 

supply 3,600 trees, and the NGO would spend its entire $600 budget on incentives.  If 

instead the largest transfer value (140,000 ZMK) was the only transfer implemented, the 

resulting aggregate supply curve would have indicated market clearing at a price of 1,000 

ZMK (approximately $0.21) and 2,750 trees, with NGO expenditure at $572.9219. 

                                                 
19 Average prices and quantity offers are not continuous, and for the purposes of supply I consider the 

offers indivisible.  Therefore this is the closest single offer that would satisfy the NGO budget constraint.  
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Tree survival data that was collected one year following contracting is used to explore the 

impact of WTA on contract performance outcomes. Contract quantity and transfer are 

highly statistically significant, and have a negative and positive effect on tree survival 

respectively.  I do not find evidence that WTA significantly affects the number of 

surviving trees, when controlling for contract terms in our sample.  Contract payments 

that are above the minimum WTA20, however, do increase tree survival outcomes, 

controlling for WTA.   Surviving trees increase by 1.5 when the contract quantity, as a 

proportion of the quantity offer, decreases from one to zero.  I also find that expectations 

of tree survival, selling crafts, being a contract cotton farmer, and supplying casual farm 

labor decrease the number of surviving trees statistically significantly (casual labor) or 

marginally significantly, but respondent gender and a female head of household have do 

not have significant effects on survival.  

                                                                                                                                                 
The next increment on the supply curve is 2850 trees at a price of 1,037 ZMK resulting in $623.30 in total 

costs.  This is still well short of the 3,600 trees in the combined aggregate supply. 
20 A proportional measure was constructed to enable consistent comparison across quantity offers and 

draws. 
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APPENDICES 

A: Sample Summary Statistics 
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B: Regression results for quantity offers (‘bid’) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Prices are in ‘000 Zambian Kwacha (4,700:1 USD).  Price = 20 is the omitted case.  Female, ganyu 

(piecework), and sellfood are binary indicators (1=yes). Variable hungryMonths is the sum of months in a 

year that the respondent’s household did not have enough food to eat. 
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