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ECONOMIES OF SIZE IN THE ONTARIO HOG INDUSTRY

Compliance of sectoml policies to higher-order policies (e.g., GATT, CUSTA, and NAFTA) have

recently intensified competitive pressures in Canadian and international hog/pork markets. The hog sector

is particularly important in Ontario, where it accounted for approximately 20% of farm receipts between

1986-1990. Over 25% of those receipts came from exports. The ability of Ontario hog production to

grow and remain competitive on international markets is in part dependent on average herd size, which

grew to 241 market hogs in 1986 from 77 market hogs in 1971. Despite significant increases in herd size,

the Ontario hog industry has not kept pace with farm size increases in the rest of Canada. In 1971,

Ontario hog herds were 17% larger than herds in the rest of Canada. By 1986, Ontario herds were 10%

smaller than those in the rest of Canada.

Economies of size and scale have become significant issues as the Ontario hog industry faces

intense competition both domestically and internationally. Increasing efficiency through exploiting

economies of size is seen as one way that Ontario hog producers can effectively compete on the domestic

and international markets. Currently, there is a lack of information on size economies in Ontario hog

production. This lack of information combined with the fact that some policies implicitly limit farm size

indicates that there is a need for empirical research to determine the returns to size and scale in Ontario

hog production (Gilson and Saint Louis).

The choice of method used for determining returns to size and scale has a significant influence

on the level of confidence one has with one's results. Most researchers use parametric regression to

estimate an average functional, such as a cost function, and then determine returns to size based upon the

estimate of a local approximation to the true joint data generating process (DGP). However, the level of

confidence that one can attribute to the regression estimates of the local approximation is somewhat

unknown. Moreover, several studies have reported that estimation results are not robust to choice of
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functional form (e.g.,Chalfant; Howard and Shumway). An attractive alternative to parametric regression

is nonpammetric regression, which provides a consistent estimation of the joint DGP.

Nonparametric regression has its roots in electrical engineering. The procedure was developed

in response to the inability to accurately estimate complicated functions using parametric regression

techniques. Nonpammetric regression has desirable properties that hold under relatively mild assumptions

regarding the underlying distribution. Parametric estimation of functionals assumes that the parametric

form is known, that the conditional variance of the dependent variable (y) given the independent

variable(s) (x) is known, and usually, that the joint density distribution of y given x is normal.

Unfortunately, in a parametric framework these assumptions cannot be tested, but if the assumptions are

violated the results may be biased and incorrect. Moreover, the true rejection probability in hypothesis

testing can be underestimated by the biased results (Ullah). In 'contrast, nonparametric regression only

assumes smoothness and differentiability of the underlying function, enabling the data to speak for itself.

The benefits of nonpammetric curve estimation have been well documented (Hancoh and Rothschild,

Muller, and Varian).

Elle objective of this study is to provide accurate quantitative information about size and scale
economies in order to assist Ontario hog producers to successfully compete in the domestic and

international markets. In satisfying this primary objective, three specific research objectives must be met:

i) to determine if the operations from three separable production technologies (feeder pig production,

farrow-to-finish, and feeder pig finishing) conform to one cost relationship; ii) to determine the level of

production where size economies are fully exploited and what percentage of Ontario hog producers operate

at that level; and iii) compare the results derived from non-parametric regression to those derived from

parametric regression using a second-order Taylor series approximation.

This paper is organized as follows. First, the theory of returns to size and scale is discussed,

including definitions and a brief review of previous studies. The parametric and nonpammetric models
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employed in this study follows, together with a description of the data. Results from both models are

presented in the final section prior to the conclusions.

RETURNS TO SIZE AND SCALE

Economies of scale is defined as the proportional change in output resulting from a proportional

change in all inputs. It is commonly reported as the elasticity of scale 0, which can be mathematically

noted as

= dlnj(Xx)IdlnX,

where y = f(X) is a well-behaved (regular, monotone, and convex) production function, and is a scalar.

To study global economies of scale requires expansion paths linear from the origin. The restriction of

expansion paths linear from the origin can be relaxed to linear expansion paths to study local economies

of scale (Chambers).

Economies of size is defined by the proportional change in output resulting from a proportional

change in costs. Mathematically, the size elasticity is

= dlnyldlnc,

Where y is output and c is total cost. The relationship between economies of size and scale is such that

the elasticity of size is the envelope of the elasticity of scale in the single output case. Therefore, the two

are only equivalent with respect to changes in output, if and only if a ray production technology exists

(McClelland, Wetztein, and Musser). Economies of scale is related to the production technology only and

does not require economic efficiency, while economies of size does require that the firm be operating on

the long-run average cost curve.

Economies of size and scale consider only one output. A more realistic approach is to generalize

the economies of size and scale to a multiproduct case.
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Product specific size economies are defined as the proportional change in one 'product given a

proportional change in cost, holding the other products constant. Mathematically, the incremental cost of

producing product i is

1C 1(Y) = C(Y) - C(1"),

where yi uray,yer. Define product specific economies of size for product i, then

Oi = AICi/MCi = (ICi(Y)/yi)/aC(Y)/ayi.

If Oi > 1 (0 = 1, 0 < 1) then size economies exist (size economies are fully exploited, size diseconomies

exist), with respect to product i. Multiproduct size economies as defined can not be generalized to the

entire product set; i.e., IC, = 0, where J is the entire product set. Measuring multiproduct size economies

over the entire product set requires analyzing cost with respect to a scaled unit vector of products.

Mathematically,

If 0 < 1 ( 0 =1, 0

= E dInC(Y)Idlnyi,

< 1) then increasing (constant, decreasing) returns to scale exist. In effect,

the measure 0 is identifying multiproduct size economies. However, previous literature has termed

this measure "multiproduct scale economies" (Baumol et al, Moschini 1990).



5

PREVIOUS RESEARCH

Numerous studies employing a variety of techniques and methods have been undertaken to obtain

information on size and scale economies for various industries and sectors. In general, four methods are

commonly cited: descriptive analysis, economic engineering, average function analysis, and frontier

function analysis (Garcia and Sonica). Descriptive analysis includes comparison of average output by

different firm size categories and firm survivorship as an indicator of the smallest size at which a firm

may exploit economies of size. Economic engineering or the synthetic firm approach determines returns

to size from different combinations of inputs/outputs. These two methods are rarely reported in the

literature.

Most researchers chose either an average functional approach or a frontier function approach to

model economies of size and scale. Average function analysis can be defined as fitting a function through

a series of observations. The researcher can chose among production, profit, and cost functions. The

production function usually has insufficient variation in the endogenous variables to obtain robust results

and tends to have a relatively high level of measurement error associated with inputs such as human

resources and management. The profit function is expressed in variables that are commonly exogenous

and it is easier to estimate than a production function, but neither the production function nor the profit

function allows measure of economies of size to be derived directly. Thus, a parametric estimation of a

cost function is generally the preferred technique. There is generally sufficient variation in the endogenous

variables to obtain robust results, the variables are relatively free of measurement error, and both

economies of size and scale can be derived directly from the estimated cost function.

The frontier approach establishes a benchmark level of output which a firm can produce given a

certain combination of inputs and technical factors. Deviations from that level of output can be due to

relative inefficiency (one-sided deviations from a deterministically estimated frontier function) or due to

random factors (two-sided deviations from a stochastically estimated function).
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Selected studies are reported in Table 1, along with the methods employed, industry examined,

and basic results. The studies reported that size and scale economies exist for the majority of industries

analyzed. However, the results may be contingent on the method of analysis (e.g., Moschini, 1988;

Weersinlc, Turvey and Godah). Hence, the choice of method for determining returns to size and scale may

determine results.

METHODS

Most researchers have tended to employ either a frontier function or a parametrically estimated

average functional approach to determine returns to size and scale. Recall that economies of size and

scale is of interest to Ontario hog producers as part of a larger competitiveness question. The problem

is not one of relative efficiency for a firm within the provincial boundaries, but one of a firm competing

on an international market. The frontier approach is a relative measure that looks inward, while the

average functional approach can be viewed as an absolute measure of economies of size. Therefore, the

average functional approach was employed in this study. The cost function was the functional chosen for

the reasons outlined above.

Additionally, one must choose between parametric and nonparametric estimation. Most

researchers employ parametric regression to estimate an average functional and then determine returns to

size and scale from the regression estimates. Parametric regression requires specification of a functional

form that adequately approximates the joint data generating process (DGP). However, the adequacy of

the approximation can not be tested given that the DGP is generally unknown. A number of local

approximations (e.g., second-order Taylor, Fourier) have been employed, but results are generally not

robust to functional form (e.g., Chalfant, Howard and Shumway, Vasavada and Baffes), and the adequacy

of the empirically estimated approximations is unknown. Hence, the level of confidence that may be
•

attributed to the accuracy of the results is questionable. Nonparametric regression provides consistent

estimation of the joint DGP and hence yields robust results (Ullah). Therefore, nonparametric regression
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will be employed. However, given the numerous studies that employed parametric regression to obtain

estimates of economies of size and scale, a local second-order Taylor approximation will be specified and

estimated in order to compare the results from the two methods.

Parametric Model

Given a well-behaved production function Y = gX), where Y is a lxN vector of outputs and X

a 1xM vector of inputs, a corresponding cost function exists

C = H(Y,W)

where C is cost of producing Y, and W is a 1xM vector of input prices. Expanding In H(Y,W) in a

second-order Taylor series around the means, allowing coefficients to represent derivatives, and taking a

Box-Cox transformation on the set of outputs, one can obtain a Hybrid Tmnslog function (Shumway):

inc = Po + E P, [(yi'-- 1) / A] E 1 inwi+
1
* E a[(yil- 1) I 1]*[(y-- 1) 1 + 2-* E E OjnInwinwn (1)
im 2 j n

* Csu DIA 1) I Al* Inwi + e

Full information about the cost function can be obtained from the cost shares

sj(qw) alnC
alnwi

= E Oininwn E (pp, - 1)ps.]
(2)

The Hybrid Translog cost function together with the cost share equations are estimated as a

system. However, given that the cost shares sum to one for every observation, the error terms sum to zero
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for every observation and the fully estimated system would be singular. Thus, one of the cost shares is

dropped from the system and the parameters for that equation are obtained from the remaining cost shares

or directly from the cost function. The estimated cost function is constrained to be consistent with the

underlying theory, i.e., symmetry and homogeneity hold. Linear homogeneity in the cost function and

Eulees Theorem impose the adding-up conditions of

Symmetry of the cost function requires that

E Y./ = 1;
E ain = 0; and
E Py = 0.

a = anip and

of,' =6,'f

Imposing symmetry and linear homogeneity of the cost function makes the requirement that the cost shares

be homogeneous of degree zero in input prices redundant.

Nonparametric Regression

As with the parametric case, the cost model is

C = M(Y,W)

where the variables are as before, and M(Y,W) = E(CIY,W) is an unspecified regression function. Assume

there are k independent and identically distributed observations on C, Y, and W from a continuous

M+N+1 variate distribution with density 0 ( v,i,•••,.,v m, ,wa,•••,Wn). If EICI < co, then



f[C*e(C,Y,W)]
E(CPCIV) = AMCM  dC

01(MY)
(3)
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where 0 (C,VV) is the joint density of C given Y and W, and Ø (y,w) is the density of (Y,W)

marginal to 0 (C,VV) . This procedure provides a value for estimated cost C. The regression

coefficients necessary to obtain average and marginal incremental cost of outputs, termed response

functions, are defined as the changes in C with respect to changes in a regressor, e.g., for

P(Y) = am(Mi)/alri. (4)

Since l3(y) is a varying response coefficient, it may be valued at the mean of xi, [B(E(yj))], or the

expected value E(13(yi)) may be taken to retrieve a fixed response coefficient.

Density Estimation

In order to obtain the coefficients for (4) above, densities must be estimated for (3). There are

several nonparametric regression methods that could be used to estimate the densities for (3) (Muller,

Silverman). Kernel estimation is generally the most intuitive of the methods and is the procedure used

in this study.

Intuitive understanding of the Kernel estimator may be facilitated by looking at the histogram.

The histogram is one of the oldest and simplest density estimators. Basically, a histogram tallies the

number of observations that fall within an interval, termed a "bin". The bins of the histogram are defined

using an origin "x0" and bin width "h" to be [x0+mh, x0+(m+1)11] for integers m. The intervals are closed

at one end and open at the other for definiteness. Thus, the histogram estimator of (x) is
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O(x) = (nh)-1*(# of xi in bin x),

which stratifies a set of n observations into groups or bins of width "h". Probabilities are determined from

the frequency of observations belonging to a particular bin. The histogram is limited as an estimator

because it is discontinuous, hence the derivatives required for equation (4) can not be obtained, and

because results are subject to the choice of bin origin.

A naive estimator that eliminates the decision about bin origin can be obtained by constructing

a histogram where each point is the centre of a sampling interval. By definition, if random variable x has

pdf e , then

ax) = lim (2h)-1*Pr(x-h<X+h).
h-O

For any "h", the estimate of Pr(x-h<X<x+h) can be the proportion of the sample in the interval

[x-h,x+h]. Hence, choosing a small "h", an estimate of (5) is

O(x) = (2hn)-1[# of X in (x-h,x+h)],

A weight function can be defined such that

w(a) = 1 if (x-h) <x1 < (x+h),
w(a) = 0 otherwise,

so that (6) can be

(5)

(6)

O(x) = E w((x-.91h). (7)

This estimator constructs a box of width 2h and height (2nh)-1 on each observation and then sums

to obtain the estimate. However,_the continuity problem remains. The continuity problem in (7) can be

solved by replacing w(a) with a continuous function, such as a Kernel function. A kernel function must

be a continuous function satisfying
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K(x)dx = 1.

Replacing w(a) with K(x) in (7) yields the Kernel density estimator

(x) = (nh)-1 EK((x-x1)1h). (8)

11

Where (7) summed over boxes placed at each observation, the Kernel estimator places bumps at each

observation and sums over the bumps. The kernel function K determines the shape of the bumps and "h",

termed a smoothing parameter, determines their width. One can extend the univariate kernel to the

multivariate kernel by using a d-dimensional kernel function

fRaK(x)dx = 1,

so that (8) becomes

O(x) = (nh d)1 *K[(x-xyh]. (9)

When employing nonparametric kernel regression, three decisions must be made: i) choice of

kernel function, ii) order of kernel, and iii) choice of smoothing parameter. For simplicity a gaussian or

normal function of order two was chosen. The Epanechnikov Kernel has been shown to be the optimum

function for nonparametric regression (Bendetti). However, Rosenblatt later showed that choice of a

suboptimal kernel function results in only a moderate loss in efficiency as indicated by the IMSEI.

Similarly, it has generally been found that the order of kernels do not significantly influence results

(Gasser, Muller, and Mammitzsch).2 Given that only a moderate loss in efficiency results from a

suboptimal kernel function, the criteria of ease of use was used to chose the normal kernel of order two.

The literature does not provide a clear choice on "h", the smoothing parameter.' A too small "h" yields

spurious fine structure in the estimated density, while a too large "h" makes it difficult to detect the true

density. A consistent, unbiased "h" was used in this study:
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hi = sl(n 1/2)

where s21 
= E - 1-1)2/(n-1).

Moreover, to keep from having too much spurious detail in the tails and yet to not obscure detail

in the main area of the distribution, a global smoothing parameter was used, yielding a variable kernel:

05(x) = n-1 E ocifty-imx-xivhdio,

where djk is the distance from x to the Icth nearest data point in the set. Hence, when djk is large, the region

is sparse (e.g., the tails of the distribution), and when the data points are dense, djk is small.

Nonparametric Cost Model

The nonparametric cost model is

where Mn(X) = ICi*ri(X), and

C = e,

r i(X) =
K1 ((x-X1)1h)

EK1 ((x-X1)/h)

Note that e, the nonparametric residual, is robust against misspecified functional forms. For estimation

of the response function a partial derivative of Mn(X) is used:

Recall size economies for product Irj are =



B(x) = [Mn(xi + h12) - Mn(xi - 142)111:

= aMn(X)I axj = CEE(ru - r2i)

8K((x-X1)1h)1 aXi)
where rli -  E K((x-x,vh)

_ E ok((x-oh) avi)*Kax-x"
and r2.1

and scale economies are

Data

(E K((xi-x)/h))2

= mcl p .(3)

0 = 1 - E mcic.
1 - E

(10)
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Farm level data from the Ontario Farm Management Analysis Project (OFMAP) was use in this

study. OFMAP is jointly administered by the Ontario Ministry of Agriculture and Food, the Farm Credit

Corporation, and the Department of Agricultural Economics and Business, University of Guelph.

Participation in OFMAP is generally voluntary, but some government assistance programs require

participation in OFMAP. Although OFMAP has been in existence for several years, only data from 1989

and 1990 were used in this study. The data was limited to two years for maximum consistency in the

collected variables, because the most recent data is thought to provide the most relevant results, and

because the data set has sufficient degrees of freedom. The data set has observations on 222 farrow-finish

operations, 107 feeder pig operations, and 105 finishing operations. Twenty observations from the farrow-
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finish sample and ten each from the feeder and finishing samples were retained for cross-validation tests.

Mean values for selected sample variables are reported in Table 2.

Over 300 variables on disaggregate revenues and costs were gathered for each participating farm.

Aggregation was necessary for estimation. For farrow-finish and feeder pig operations, outputs were

aggregated into i) feeder pigs, ii) market pigs, iii) crops, and iv) other (including other livestock).

Outputs for the finishing operations were aggregated into i) market pigs, ii) crops, and iii) other

(including other livestock). The data allowed for derivation of quantities and prices for the feeder and

market pigs, and crop outputs. An implicit Fisher quantity index for Other output revenues was obtained

by dividing other livestock output revenues by a farm price index for livestock and livestock products

(Statistics Canada), and other revenues divided by a farm price index for all farm products (Statistics

Canada), and weighting the resulting indexes.

For all types of operations inputs were aggregated into labour, feed, other intermediate inputs,

capital, and hog livestock. In all cases, an aggregate Fisher price index was computed and used to obtain

the implicit quantity index. Labour was recorded in both total person years and hired labour expense.

Hired labour expense was divided by the annual wage paid in agriculture (Ontario Ministry of Agriculture

and Food) to obtain the quantity of hired labour. This quantity of hired labour was subtracted from the

total person years to obtain family and owner/operator labour. An annual wage paid to family labour was

inputted using the self-employed annual salary in agriculture (Statistics Canada).

The feed input aggregated crop production fed to livestock, purchased feed, and purchased forages.

The tonnage of crop production fed to livestock was available from OFMAP. Prices for such crops were

from Market Commentary (Agriculture Canada). Total expenses of purchased feed and forages were

divided by an index of farm prices for crops (Agriculture Canada) to obtain an implicit feed quantity

index.
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The intermediate input aggregmted seed, fertilizer, pesticides, fuel, electricity and telephone, other

crop, other animal, and other intermediate inputs. Price indices from the farm input price index

(Agriculture Canada) were used to obtain an implicit intermediate inputs quantity index.

The capital input aggregated services of land, machinery, livestock herd, and buildings capital.

The user cost of capital approach (Lopez) was used as these inputs are generally owned by the operator.

The interest and inflation rates were those published by the Bank of Canada Review. Following Moschini

(1988), depreciation was assumed to be 0.15 for machinery, 0.05 for buildings, and zero for land and

livestock. To have a complete cost of capital, property taxes were added to land, and cost of repairs were

added to machinery, equipment, buildings and fence capital. Animal health expenses were added to

livestock capital, which was then divided by number of breeding livestock to obtain an implicit price.

Similarly, land capital was divided by tillable acres to obtain an implicit land price. Input price indices

for machinery and buildings (Statistics Canada) were used to obtain implicit quantity indexes.

The OFMAP data recorded the quantity of purchased hogs (market hogs, weaners and feeders,

sows, gilts, and boars). Livestock prices were from the Meat and Livestock Report (Agriculture Canada).

RESULTS

Parametric Model

To determine if the three enterprise types conform to a single cost function, equations (1) and (2)

were estimated as a system. Homogeneity was imposed by normalizing prices by the price of intermediate

inputs. The other regularity conditions held (i.e., monotonicity and concavity). Two dummy variables

(bi, i = 1,2) were added to the system to account for the different enterprise types. It is common to test

the null hypothesis that the operations from different types of enterprises conform to one cost relationship

by comparing the log likelihood of the restricted (i.e., bi=0) and unrestricted systems. However, the
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accuracy of the test depends on the orthogonality of the two parameters. Given that the covariance

between the parameters was non-orthogonal, the joint confidence region given by

F[2 ,n -lc] = = 1/2 (B - b)I(43)-1 (B-b)

was used to test the null hypothesis. The null hypothesis is rejected at a 99% level of confidence. Hence,

the three enterprise types do not conform to a common cost relationship and are modelled separately.

The estimated parameters for the three parametric models for the feeder pig, farrow-to-finish, and

finishing pig enterprises are reported in Table 3. The regularity conditions hold; the average cost curves

have their expect U-shape. The estimation statistics for the models are reported in Table 4. The R2 for

the cost functions are much higher than for the share equations. Low R2's in the share equations is

expected given the cross-sectional data (e.g., Moschini, 1988). Given the non-linearity of the system, the

t- and f-statistics are only asymptotically valid. Diagnostic tests for heteroscedasticity and collinearity

indicated the absence of those problems.

Nonparametric Model

Equations (10) were estimated with the same data as the parametric model. Nonparametric

hypothesis tests are similar to parametric tests. Given that nonparametric residuals are asymptotically

normal, a Likelihood Ratio (LR) can be used for hypothesis testing (Hardie):

LR = n*ln(s27s2), (12)

where n is number of observations, s2* is the restricted nonparametric residual sum of squares, and s2 is

the unrestricted residual sum of squares. Setting the response function for each exogenous variable

(analogous to parameters in parametric regression) to zero yields an asymptotically valid LR analogous

to a t-test.
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The overall significance of the model was determined using an Approximate Randomization Test

(ART), which allows one to generate the distribution of the test statistic under the null hypothesis. The

basis of the ART is that the data consists of observations (Ci,X), i = 1,...,n, where C is a scalar

representing cost and X is a vector of input prices and output levels, and le is a measure of the overall

relationship between C and X. Assuming that C are lid, the null hypothesis is that the pairing of (Ci,X)

is completely random. Simulating the data such that Ci is randomly paired with Xi, one can obtain an le*

that can compared to the true le from the correctly paired (Ci,X). This comparison produces a p-value

that is analogous to the F-value in parametric regression; i.e., a high p-value suggests that the exogenous

variables are not significant in predicting the endogenous variable while a low p-value suggests the

opposite.

The LR was used to test whether the three types of enterprises conform to one cost function. The

response functions on dummy variables representing two enterprise types were set to zero. The observed

LR was 66.312; a chi-square with 2 degrees of freedom and 99% confidence is 9.21. Hence, as with the

parametric estimates, the nonparametric estimates reject the null that the three enterprise types conform

to a common cost function.

The estimated parameters and estimation statistics for the three models are reported in Table 5.

The regularity conditions were found to hold at mean values. The high le indicates a high goodness of

fit. The p-values were all 0.0000, suggesting that the estimated response functions were significant in

explaining cost.

Economies of Size and Scale

Economies of size and scale computed from the parametric and nonpammetric models are reported

in Table 6. The economies of size are reported at both "theoretical" and "practical" levels of output.

Theoretical economies of size for output i occur where the average incremental cost (AICi) of output i
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equals the marginal cost of output i, or where the derivative of AIC with respect to output i is zero. If

the AIC approaches its minimum relatively quickly, then the theoretical level of economies of size is a

realistic recommendation for hog producers. However, if the AIC approaches sits minimum over a broad

range of outputs, over which increases in output correspond to infinitesimal decreases in AIC, then the

theoretical level of economies of size has less practical value. "Practical Size Economies" in this study

is the output level that corresponds to dAIC/dC <0.01. If the AIC approaches its minimum quickly, then

the "Practical" output level is in close proximity to the "theoretical" output level. However, if the AIC

approaches its minimum slowly, then the "practical" level will allow the firm to exploit the great majority

of the economies of size.

Elasticities of scale and size from both the parametric and the nonparametric models indicate that

the great majority of Ontario swine enterprises are operating at levels that are not technical and/or

economically efficient. Even when evaluated at the "practical" output level, which ranges from

approximately 40-60% of the theoretically optimal level, few swine farms of any enterprise type are

operating at a level that fully exploits economies of size.

Nonparametric kernel methods were used to estimate the pdf of each type of enterprise with

respect to their major output (i.e., weanlings for farrowing operations, market hogs for farrow-to-finish

and finishing operations). These estimated distributions are superimposed on the corresponding AIC and

MC curves derived from the nonparametric models in Figures 1, 2, and 3, to provide a pictorial

representation of the cost structure of the enterprises along with a the distribution of Ontario hog producers

operating at the corresponding level of output. It is easy to see that the majority of hog producers of all

types of enterprises could increase their efficiency as indicated by their AIC by increasing their size of

operations.
•
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COMPARISON OF PARAMETRIC AND NONPARAMETRIC METHODS

The basic results from both models are that cost functions for the three enterprise types do not

conform to a single cost function and that few Ontario hog producers of any enterprise type are fully

exploiting either economies of scale or size. However, the output levels where economies of size are fully

exploited are different according to estimation method used. Hence, it is important to determine which

of the methods most accurately models the true cost functions. Three criteria are used: estimation

statistics, residual analysis, and cross-validation analysis.

Estimation statistics that indicate the overall significance of estimation for the two methods are

reported in Table 7. Given that the methods produce models with different numbers of variables ( e.g.,

the farrowing operation has 45 exogenous variables in the hybrid translog and 36 in the nonparametric

model) adjusted les are an appropriate comparison. For all three types of enterprises, the nonparametric

models explained more variation in costs than did the parametric models. The F-values/p-values indicate

that both methods reject the null hypothesis that the estimated parameters or response functions are jointly

insignificant.

The residual analysis includes two tests.' First is an augmented non-nested Approximate

Randimazation Test (ART) similar to the J-test (Davidson and MacKinnon). In this case, the ART is

based on (Ei,Xi), where Ei is the residual from the parametric model and Xi is a vector of input prices and

output levels. Assuming that E. are iid, the null hypothesis is that (Ei,Xi) is random; i.e., no futher

explain of the variation in costs can be explained from X. To test the null, the data is simulated such that

Ei is randomly paired with Xi. The resulting (Ei,Xi) is then non-parametrically regressed, and the le* is

compared to the R2 from the correctly paired (Ei,X). The comparison produces a p-value analogous to

the F-value. The results are reported in Table 7. The low p-valued indicate that the independent variables

are jointly significant and therefore suggests that the parametric model does not adequately aproximate

the actual data generating process.
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The second residual analysis test is the Ansari-Bradley Distribution Free Rank test (AB) which

is not dependent on degrees of freedom and does not assume normality of the residuals (Hollander and

Wolfe). The AB can be used to test the goodness of fit by comparing the dispersion among the residuals

from the two models. Specifically, the null is that the dispersion of the residuals from the nonparametric

model is equal to or greater than the dispersal of the residuals from the parametric model. The p-values

from the AB test are reported in Table 7. The low values indicate that the dispersion among the residuals

from the hybrid translog models are significantly greater than the dispersion among the residuals form the

nonparametric models.

A random sample of 10 observations each from the farrowing and finishing operations and 20

from the farrow-to-finish operations was selected for cross-validation. The mean absolute error (MAE),

root mean squared error (RMSE), and the R2 of the forecast for each model are reported in Table 7.5 In

all cases, the nonparametric models had lower MAE and RMSE. The magnitudes are much greater in the

farrowing and finishing models than in the farrow-to-finish models. The R2 indicate that the

nonparametric model is better at out-of-sample predicting than the parametric model, though the

nonparametric model does have some slippage from the in-sample R2 to the out-of-sample R2.

Theoretical size economies are fully exploited at greater output levels in the parametric models

than in the nonparametric models, as reported in Table 6. A possible reason for this greater output level

is that the estimated lambda (X) in the hybrid translog parametric models is constrained to be equal across

all outputs, and lambda represents the curvature of the cost function with respect to a particular output.

Relatively small variations in output can yield an estimated cost curve that is relatively linear; such may

be the case with the minor outputs (e.g., crops, other livestock). Similarly, variation around the entire

range of output levels can yield a relatively non-linear cost curve; such may be the case with the major

outputs (e.g., market hogs or feeders). Therefore the total incremental cost curves would be bias non-

linear for the minor outputs and bias linear for the major output. The implications of a bias linear total
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incremental cost curve is a slow convergence to minimum AIC and hence an upward bias on the output

level where economies of size are fully exploited. The convergence to minimum AIC in the Hybrid

translog models was distinctly slower than in the nonparametric models. This difference in convergence

rates suggests that constraining the curvature in the parametric models, i.e., , yields relatively linear cost

curves with minimum AIC at greater levels of output compared to the more "classically" shaped cost

curves with minimum AIC at lower levels obtained from the nonparametric models.

SUMMARY AND CONCLUSIONS

Parametric and nonparametric estimation methods were used to analyse the current economies of

size and scale in the Ontario swine industry. The parametric method employed a hybrid translog

functional form. The nonparametric method employed a guassian Kernel estimator of order two. Cost

functions were estimated for farrowing, farrow-to-finish, and finishing operations using 1989 and 1990

OFMAP data. Both methods rejected the hypothesis that the three enterprise types conform to a single

cost function. Additionally, both methods estimated that very few Ontario hog producers are fully

exploiting economies of size. In general, the results with respect to size and scale economies are quite

similar. However, the parametric models do not appear to "let the data speak for itself." The

nonparametric models consistently out performed the parametric models with respect to le, adjusted le,

Approximate Randimazation Tests, the Ansari-Bradley test, and cross-validation results. Only the F-

values/p-values were similar across models.

Perhaps the most significant finding of this paper is that the recommendations about optimum size

of hog operation in Ontario is not robust to the choice of estimation method employed. The fact that the

parametric method estimated minimum AIC at a greater output level than did the nonparametric method

does not imply that all parametrically estimated cost curves are biased. However, there are questions

about the accuracy of the recommendations about size of operations based upon parametric estimation
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methods. The nonparametric regression used in this study lets the data speak for itself without imposing

prior restrictions about form and structure. It is possible that the restrictions imposed in order to use

parametric regression have resulted in recommended size of operations that are larger than necessary to

exploit economies of size.

Similar to most previous studies on economies of size, this study found that the majority of the

producers in the sample could lower per unit costs of production by increasing their size of operations.

Often recommendations that farmers increase their efficiency by increasing their size of operations have

met with arguments from farmers that their operations are already an efficient size. Results from this

study indicate that the farmers may be right. For example, the nonpammetric model estimates that a

farrow-to-finish operation fully exploits economies of size at 4323 market hogs per year, or 200-215 sows

averaging 20-22 pigs/sow/year. However, "practical economies of size" (dAIC/dy < 0.01) are fully

exploited in the 100-110 sows range. Given that the average farrow-to-finish operation had 83 sows in

1990 (Ontario Ministry of Agriculture and Food, 1991), and that there are several large, technically

advanced hog farms with 200 or more sows, the Ontario hog industry may be more efficient than

economic theory and parametric regression methods estimate.
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ENDNOTES

1. The Integrated Mean Squared Error (IMSE) is a global measure of goodness of fit or accuracy.

The IMSE is the integral of the Mean Square Error (MSE) which is the sum of the integrated

squared bias and the integrated variance:

IMSE(o) = f[a(x) - 6(x)fclx + fraro(x)dx = fEro(x) - 0(x)fcix

where

Eo(x) = f(11/1)*K((x-y)lh)*0(y)dy,

and VAR (x) = (1/n)f(1/h2)*K((x-y)lh2*6(y)dy - [(11h)lk((x-y)111)*(3(y)dyf

2. A kernel is of order k if fl((x)*xidx = 0 for all i <k, where i is a positive integer. Basically,

higher order kernels represent higher moments in a distribution.

3. Parzen derived an optimal "h" that minimizes IMSE, but it depends on knowing the unknown

density function.

4. A third test was considered but is not formally reported due to its ad hoc nature. Note that

parametric regression in effect restricts the data to a weak specification by way of assuming a

functional form. Nonpammetric regression does not impose such a restriction. Thus, the residuals

from the hybrid translog can be considered restricted and the residuals from the nonparametric

model unrestricted for purposes of constructing a likelihood ratio (LR) test. Using the LR test

from equation (12), with s2* the restricted parametric residual sum of squares and s' the

unrestricted nonpammetric residual sum of squares, the observed LR for farrowing, farrow-to-
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finish, and finishing are 100.55, 212.42, and 73.98, respectively. However, the degrees of

freedom for this test have not been established. The high LR values intuitively indicate that the

null hypothesis of restricting the nonparametric model to the hybrid tmnslog model is rejected in

all three cases, but one can argue that without the distribution of the test statistic that the observed

LR is uninformative.

5. The R2 for the forecast is defined as

R2 = [1 - (s.2/s2b)]*100,

where sa2 is the mean squared error in predicting using the cross-validation sample and 5b2 is the

mean squared error in predicting from the estimation mean. The R2 has a maximum of 100 but

can easily be negative.

•
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Table 1: Survey of Selected Empirical Studies of Size and Scale Economies

Authors Year Approach Method Industry Results

Moschinia 1990 Average Nonpararnetric Multiproduct Cost Function Ontario Dairy IRS

Moschinia 1988 Average Multiproduct Hybrid Translog Cost Function Ontario Dairy CRS

Deller, Chicoine, & 1988 Average Multiproduct Hybrid Translog Cost Function Rural Low-Volume IRS
Waizer Roads

Alcridge & Hertel 1986 Average Multiproduct Hybrid Translog Cost Function Indiana & Illinois IRS
Fertilizer

Ray 1982 Average Multiproduct Hybrid Translog Cost Function U.S. Agriculture IRS

Ball & Chambers 1982 Average Non-Homothetic Translog Cost Function U.S. Meat Products IRS

Fleming & Uhm 1982 Average Cost Function Saskatchewan Grain CRS

Caves, Christensen, 1979 Average Multiproduct Translog Cost Function U.S. Railroad IRS
& Trethewayb

Caves, Christensen, 1979 Average Multiproduct Hybrid Translog Cost Function U.S. Railroad IRS
& Trethewayb

Fare, Jansson, & 1984 Average Homothetic Production Function U.S. Transportation IRS
Lovell Equipment

Fare, Jansson & 1984 Average Ray-Homogeneous Production Function U.S. Transportation IRS
Lovell Equipment

Fare, Jansson, & 1984 Average Ray-Homothetic Production Function U.S. Transportation IRS
Lovell Equipment

Chan & Mountain 1983 Average Translog Production Function Canadian Agriculture IRS

Vlastuin, Lawrence, 1982 Average Translog Production Function New South Wales IRS
& Quiggin Wheat/Sheep



Table 1: Survey of Selected Empirical Studies of Size and Scale Economies (Cont'd)

Author(s) Year Approach Methodology Industry

Hoch

Weaver

1976 Average

1983 Average

Yotopoulos & Lau 1971 Average

Weersink, Turvey & 1990 Frontier
Godah

Moore

Madden

Aigner & Chu

Weimar, Hallman, &
Trede

1982 Frontier

1967 Frontier

1968 Frontier

1988 Synthetic

Cobb-Douglas Production Function

Multiproduct Translog Profit Function

UOP Profit Function

Deterministic Nonparametric Programming

Stochastic Programming

Stochastic Programming

Deterministic Parametric Programming

Economic Engineering

California Dairy

North & South Dakota
Wheat

Indian Agriculture

Ontario Dairy

Western U.S.
Agriculture

U.S. Beef Feedlots

Primary Metals

Midwest U.S. Beef
Feedlot

Results

CRS

IRS

CRS

IRS &
DRS

CRS

IRS

CRS

IRS

Note: IRS = increasing returns to size or scale, CRS = constant returns, and DRS = decreasing returns.



Table 2: Mean Values for Selected Sample Variables

Variable Enterprise Type & Year

Farrow-to-Finish Farrowing Finishing

1989 1990 1989 1990 1989 1990

Number Farms Reporting 110 112 57 50 59 46

Farm Size (acres) 163 161 107 121 212 208
Market Livestock Sold (Head) 751 877 78 61 825 712
Feeder Livestock Sold (Head) 144 139 1,039 1,002 0 43

Total Revenue ($) 187,469 18.5,605 119,833 116,826 213,101 219,808

Crop Sales ($) 16,739 11,299 15,225 13,701 44,273 27,381
Market Livestock Sales ($) 103,026 133,532 20,229 18,597 118,683 148,421
Feeder Livestock Sales ($) 21,761 10,368 47,653 59,472 4,101 6,880
Other Sales ($) 45,945 30,406 36,727 25,056 46,044 37,127

Inventory Change

Livestock ($)
Crops ($)
Feed ($)

6,263 5,226 (14) 4,163 9,035 5,828
3,542 4,886 1,855 4,911 6,272 5,823
1,293 6,712 902 647 1,722 5,634



Table 3: Estimated Parameters for Farrowing, Farrow-to-Finish, and Finishing Operations from the Hybrid Translog Models

Coefficients Farrowing Farrow-to-Finish Finishing

a 10.9360* 11.7160* 11.7070*

(0.1028) (0.0434) (0.0558)

* b 1 0.0109 0.4956* 0.4474*
(0.0288) (0.0429) (0.0471)

b2 0.4109* 0.0483 0.1035*
(0.1024) (0.0248) (0.0304)

b3 -0.0654 0.0038 0.1930*
(0.0446) (0.0080) (0.0470)

b4 0.3174* 0.1928 0.1191*
(0.0917) (0.0348) (0.0083)

b5 0.2419* 0.1683* 0.2259*

(0.0143) (0.0083) (0.0116)

b6 0.0136 0.4045* 0.3111*

(0.0073) (0.0129) (0.0124)

b7 0.2431* 0.0210 0.2098*
(0.0226) (0.0218) (0.0080)

b8 0.3893* 0.2451 0.0458
(0.0210) (0.0171) (0.0490)

b 1 1 -0.0135 0.0448*
(0.0092) (0.0120)

bI2 0.0075 0.0326* -0.0126
(0.0115) . (0.0268) (0.0157)

b13 0.0038 -0.0128 -0.0239

(0.0036) (0.0111) (0.0379)

b14 0.0048 -0.1502 -0.0672
(0.0106) (0.0457) (0.0062)

bIS -0.0024 -0.0480 0.0315*
(0.0023) (0.0078) (0.0098)

b 1 6 -0.0013 0.0983* 0.1445*
(0.0006) (0.0113) (0.0106)

b17 -0.0044 0.0063 -0.0707

(0.0022) (0.0078) (0.0063)

b 1 8 0.0087* , -0.0416
(0.0025) (0.0094)

b22 0.0357 0.0105
(0.0322) (0.0110)

b23 -0.0035 -0.0138
(0.0210) (0.0076)

b24 -0.0122 0.0025
(0.0792) (0.0253)

b25 -0.0313 -0.0089
(0.0 ISO) (0.0045)

b26 0.0115* 0.0151*
(0.0036) (0.0065)

b27 -0.0577 0.0030
(0.0132) (0.0048)

b28 0.0790* -0.0047
(0.0129) (0.0056)

b33 0.0271 0.0010 0.0583*
(0.0160) (0.0066) (0.0159)

b34 -0.0255 0.0149 0.0150
(0.0240) (0.0092) (0.0 I 77)



Table 3: Estimated Parameters for Farrowing, Farrow-to-Finish, and Finishing Operations from the Hybrid Translog Models coned)

Coefficients Farrowing Fan-ow-to-Finish Finish

b35 0.0104* -0.0052 -.00055
(0.0044) (0.0018) (0.0033)

b36 -0.0012 -0.0155 -0.01166
(0.0011) (0.0027) (0.0052)

b37 -0.0027 0.0017 -0.0095
(0.0035) (0.0018) (0.0051)

b38 -0.0201 0.0096* 0.0174*
(0.0057) (0.0023) (0.0034)

b44 0.2475* 0.1929* 0.0953*
(0.0889) (0.0453) (0.0456)

b45 -0.0300 -0.0162 -0.0007
(0.0132) (0.0071) (0.0064)

b46 -0.0025 -0.0209 0.0333*
(0.0034) (0.0109) (0.0099)

b47 -0.0222 -0.0032 -0.0566
(0.0127) (0.0078) (0.0104)

b48 -0.0094 0.0204* 0.0153*
(0.0125) (0.0101) (0.0064)

b55 -0.2854 0.0668 0.0439
(0.0984) (0.0645) (0.0657)

b56 0.0155 0.0086 -0.0476
(0.0213) (0.0476) (0.0536)

b57 0.0535 0.0529 0.0486
(0.0739) (0.0658) (0.1041)

b58 0.2041* -0.1082 -0.2792

(0.0887) (0.0673) (0.0658)

b66 0.0680 -0.0802 0.0377

(0.0368) (0.0808) (0.0854)

b67 -0.1488 -0.0599 -0.3179

(0.0974) (0.1252) (0.1784)

b68 -0.0960 0.0485 0.1445

(0.0704) (0.0989) (0.0969)

b77 -0.0023 0.2882 1.7021*
(0.6657) (0.6054) (0.6313)

b78 -0.0971 0.1229 -0.7054
(0A322) (0.3636) (0.3506)

b88 -0.1104 0.2288 0.4399

(0.3909) (0.2979) (0.2755)

lambda 0.0933* 0.2006 0.1494*

(0.0540) (0.0520) (0.0559)

Legend: 1 - market hogs; 3- crop quantity index; 4 - other quantity index; 5 - capital price index; 6 - stock price index; 7 - labour price

index; 8 - feed price index. * - asymptotically significant at a = 0.05 level



Table 4: Estimation Statistics; Hybrid Translog Results

Farrowing 
Farrow-to-Finish 

Finishing

Cost Equation 
R
-squared 

70.31 
76.52 

73.45
Adjusted R

-squared 
44.11 

69.75 
56.97

Capital Share Equation 
R
-squared 

28.55 
40.44 

58.96
Adjusted R

-squared 
22.05 

37.97 
55.14

Stock Share Equation 
R
-squared 

24.89 
41.82 

26.63
Adjusted R

-squared 
18.06 

39.41 
19.80

Labour Share Equation 
R
-squared 

38.04 
1.40 

75.11
Adjusted R

-squared 
32.41 

-2.69 
72.79

Feed Share Equation 
R
-squared 

50.80 
21.76 

69.20
Adjusted R

-squared 
46.33 

18.52 
66.33

L
o
g-likelihood of the system 

589.5233 
1020.7000 

530.2920
Asymptotic F

 - statistic of Cost Equation
Asymptotic F

 - Value 
2.6839 

11.2977 
4.4571

0.0004 
0.0000 

0.0000



Table 5: Estimation Results and Statistics; Nonparametric Models

Variable Mean(Beta) Likelihood p-Value*
Ratio Test
Statistic*

Farrowing
Market Hogs 44.8538 14.5670 0.0001
Feeders 30.1787 79.7839 0.0000
Crop Quantity Index 5493.5317 18.9661 0.0000
Other Quantity Index 33175 99.2760 0.0000
Capital Price Index 33195 0.5998 0.4387
Intermediate Inputs Price Index -239930 1.8678 0.1717
Stock Price Index 249890 2.5369 0.1112
Labor Price Index -133450 0.8340 0.3611
Feed Price Index -54286 0.1815 0.6700

Farrow-to-Finish
Market Hogs 68.5982 243.6106 0.0000
Feeders 24.4842 49.5816 0.0000
Crop Quantity Index 5233.1665 5.9134 0.0150
Other Quantity Index 35574 184.0723 0.0000
Capital Price Index -13831 1.5769 0.2092
Intermediate Inputs Price-Index 212550 7.9488 0.0048
Stock Price Index -24958 1.6609- 0.1975
Labor Price Index 418820 7.7248 0.0054
Feed Price Index -196920 0.8890 0.3457

Finish
Market Hogs 91.0309 88.7610 0.0000
Crop Quantity Index 21919 54.0288 0.0000
Other Quantity Index 37836 49.3895 0.0000
Capital Price Index 2078 20.5818 0.0000
Intermediate Inputs Price Index 513280 3.2787 0.0704
Stock Price Index -40211 1.3065 0.2530
Labor Price Index -38642 0.3055 0.5804
Feed Price Index -625510 2.2066 0.1374

Legend: * - asymptotically valid only

Estimation Statistics

Farrowing
R-Squared 90.39
Adjusted R-Squared 89.40
Standard Randomization Test (p-value) 0.000

Farrow-to-Finish
R-Squared 91.73
Adjusted R-Squared 91.34
Standard Randomization Test (p-value) 0.000

Finishing
R-Squared 84.10
Adjusted R-Squared 82.62
Standard Randomization Test (p-value) 0.000



Table 6: Scale and Size Economies from the Estimated Paramtres and Nonparameters Models.

Farrowing 
Farrow-to -Finish 

Finishing

Hybrid 
N
o
n
-
 

Hybrid 
N
o
n
-
 

Hybrid 
N
o
n
-

Translog 
parametric 

Translog 
parametric 

Translog 
parametric

Elasticity of Scale
- at means 

0.7993 
0.8027 

0.8510 
0.7555 

0.9581 
0.7461

- output where scale elasticity =
 1.0 

2598 
1805 

1207 
1453 

1154 
1327

- percent of population realizing economies of scale 
6
.
4
8
%
 

2
0
.
5
5
%
 

30.39% 
2
0
.
5
5
%
 

2
5
.
9
6
%
 

21.36%

Elasticity of Size
-at means 
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AIC, MC (feeders) 

Figure 1
Average Incremental Cost, Marginal Cost, a

n
d
 Probability Distribution of Feeders

Feeder Pig Production: Nonparametric Results
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Legend: P
D
F
 -
 probability distribution function of feeders in feeder pig production operations in Ontario.

:
 M
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 -
 the marginal cost of producing a
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 feeder pig production operation.

:
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 - the average incremental cost of producing a

 feeder in a
 feeder pig production operation.
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Figure 3
Average Incremental Cost, Marginal Cost, a

n
d
 Probability Distribution of Market H

o
g
s

Feeder Pig Finishing: Nonparametric Results
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Legend: P
D
F
 - probability distribution function of market h

o
g
s
 for feeder pig finishing operations in Ontario.

:
 M
C
 - the marginal cost of producing a

 market hog in a
 feeder pig finishing operation.

:
 A
I
C
 - the average incremental ocst of producing a

 market hog in a
 feeder pig finishing operation.

Note: Marginal Cost and Average Incremental Cost are evaluated at m
e
a
n
 prices.
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