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CAN INCREASING RETURNS OCCUR IN PEST MANAGEMENT?

Abstract

'Cl'his paper analyses the role of damage control inputs in production. Damage

control inputs differ from conventional inputs in that they act indirectly or

conditionally on output. Their productivity depends on the presence of a damage

agent. Examples of damage control inputs include crime and fire protection, flood

control and irrigation, disease prevention in people, plants and animals, and national

defense. Agricultural economists, other agricultural researchers and foresters have

also studied damage control inputs in pest management models. The indirect action

of damage control inputs means that the marginal productivity of this class of inputs

depends on their effectiveness in controlling the damage agent, the level of damage

agent and the degree of production loss caused by a given level of damage agent.

Our analysis shows that increasing returns to the damage control input, in terms of

its effect on production, can occur even when the control and damage functions are

concave. 1
vz-

.•
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CAN INCREASING RETURNS OCCUR IN PEST MANAGEMENT?

Introduction

Inputs which mitigate damage act conditionally or indirectly on output. If the factor which

causes the damage is not present, then the application of the damage control input has no effect on

the quality or quantity of production.1 As Lichtenberg and Zilberman (1986), Babcock et al (1992),

Carrasco-Tauber and Moffitt (1992) and Blackwell and Pagoulatos (1992) have argued, inputs which

are used to prevent damage pose unique problems for model builders. Damage control inputs are

used in a wide range of circumstances. Examples include investments in surveillance and crime

protection in banks and stores, the use of pesticides in agriculture and forestry, fire prevention,

disease prevention in people and animals, water and air purification systems and investments in

irrigation and flood control infrastructure. Even national defense is an example of a damage control

input.

Conventional inputs, X, are shown in Figure 1 as having a direct effect on the volume or

quality of production. The marginal physical product of X depends on its direct relationship with

output, Y, as summarized in the production function F(X). This type of direct effect is examined in

detail in production economics texts. One of the hallmarks of the analysis is the requirement for

eventually decreasing returns to ensure the existence of a finite optimal level of input use. Damage

control inputs act through the mechanism illustrated in the lower portion of Figure 1. The damage

control input, T, through the control function, C(T), reduces the incidence of the damage agent, Z.

The level of Z, acting through the damage function, D(Z), influences production. The marginal

physical product of T depends on the structure of both the damage and control functions.

1 Some damage control inputs may even reduce output. For example a herbicide

applied to a crop may have adverse effects on the crop itself.



2

Marginal productivity estimates for damage control inputs like pesticides at the aggregate

(Headley) and at the farm level (Campbell) suggest that pesticides have been under applied. The

Lichtenberg and Zilberman (LZ) model, which incorporates a damage abatement function and a

potential yield function, explains part of the reason for these overuse findings. Blackwell and

Pagoulatos include state variables omitted from the LZ specification through a process modeled

production function. Their incorporation of natural abatement suggests that the marginal productivity

of pesticides may be over estimated. Carrasco-Tauber and Moffitt have shown that aggregate

pesticide productivity estimates depend on the functional form chosen for the damage function.

Similarly, Cousens, Pannell and Swinton have shown that the functional specification of pesticide

involvement in production influences the pest threshold at which pesticide is applied. The impact

of alternative functional forms for the control or kill function has been examined in farm level

threshold studies but has been ignored completely in aggregate studies of pesticide productivity.

Generally, the damage and control functions have been implicitly collapsed into a single algebraic

function. Interaction between the control and damage functions has not been studied systematically.

The purpose of this study is to explore the relationship between the damage and control

functions and to indicate the possibility of increasing returns in the use of damage control inputs.

Although a number of functional specifications for C(T) and D(Z) have been used in the literature,

the available models impose a structure on the underlying biological and physical data that guarantees

eventually decreasing returns. The analysis below shows that minor departures from the traditional

models, even departures that maintain weak concavity in the control and damage functions, can lead

to increasing returns in the damage control input, T, up to the point that the damage agent, Z, is

eradicated. Under these circumstances, eradication can be a strategy which dominates over a wide

range of price and cost conditions. Much of the empirical literature in this area has focused on pest

management problems in agriculture and forestry. Our results offer a possible explanation of the high
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productivity estimates for pesticides which have been reported in this literature and raise concerns

about the effectiveness of taxation schemes designed to reduce the use of pesticides.

Derivation of the Control and Damage Functions

The control function characterizes the proportion of the damage agent which is removed for

a given level of treatment, T. That is

Z0-Z(T)

0 5_ C(T) = 1
Zo

(1)

where Zo is the level of damage agent present in the absence of treatment and Z(T) is the level of

damage agent at treatment level T. The Z(T) function, in general, could take on various shapes (see

Figure 2). T could reduce Z at a constant rate, giving the linear function (a), it could act with

decreasing marginal effect, (b), or with increasing marginal effect (c). Z(T) would cross the

horizontal axis if eradication of the damage agent occurs. Inflection points in ZO are also possible.

As a result, even if the marginal effect of the treatment on the damage agent is non-positive, ZT

0, irr is of indeterminate sign, in general, and therefore

1

Zo
ZIT

is also of indeterminate sign.

Similarly, the damage function is defined as

Yo - y(Z)
0 D(Z) = 5_ 1 (3)

Yo

where yo is the level of production that would be forthcoming if no damage agent were present and

y(Z) is the actual level of output obtained. Since y(Z) may exhibit various curvature properties even

when yz 5. 0, the sign of yzz and hence of D is indeterminate.
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The Structure of Damage Control Models

Given a control and damage function defined in terms of a proportionate loss, realized output,

y, can be written as

Y = Yo (1 - D(Z)) (4)

where Z = Zo (1 - C(T)) (5)

The total product curve is therefore

Y = Yo (1 - D (Zo - Zo C(1))) • (6)

Actual yield depends on the pest free yield, initial pest density and the level of control agent along

with parameters of the damage function and control function. Conventional inputs affect yo directly

which in turn has a non-negative relationship with actual yield,

= (1 - D(Z)) O.
aYo

In contrast, actual yield will be lower with an increase in the initial pest population,

aY = -yo Dz (1 - C(T)) 0 (8)azo

(7)

Both pest free yield and initial pest density act to shift the total product curves presented later in

Figures 3 and 4.

The impact of the damage control input on actual yield is not as straight forward. The

marginal physical product of T, the damage control input, is

YT = Yo Zo DZ CT (9)

which by construction is non-negative. The marginal productivity of the damage control input thus

depends on pest free yield, yo, untreated pest density, Zo, the marginal effect of pest level on yield,

Dz, and the marginal effect of the damage control input on the damage agent, Cr. The level of

damage control input which maximizes profit equates yo Z0 Dz Cr and the ratio of the price of the

damage control input and the price of output. Whether this stationary value for T maximizes profits



depends on the second derivative being non-positive. The sign of the second derivative,

• YIT = Yo zo {Dz err - zo Dzz C2T} (10)
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is indeterminate, even if Crr and Dzz are negative. The slope and curvatures properties of the

control and damage functions interact in ways that cannot, in general, guarantee a non-positive value.

Even for the case of commonly assumed weakly concave damage and control functions, that is Crr

0 and Dzz 0, if the slope of the control function (Cr) at high levels of control is large relative

to the slope of the damage function, Dz, at low levels of incidence of the damage agent, Dz CI-1i -

Z0 Dzz Cr2 can be positive. Note that for a linear control function, Cm. = 0 and as long as Dzz <

0, then yrr is positive, indicating increasing returns to damage control. The implications of this

outcome are discussed below.

Functional Forms

Table 1 summarizes some of the properties of control and damage functions that have been

studied by agricultural economists as well as the damage function popularized by Cousens and a

square root function which we employ below. With the exception of the square root model, all of

these functions are asymptotic. This means that eradication of the damage agent and complete loss

of production cannot occur. Also, as high but not complete levels of control are achieved, that is as

x -o co, fi(x) -o 0 and V(x) -o 0. For a control function, this means that the first and second

derivatives vanish as more and more damage control linput is applied. This will tend to make YT and

YTT converge on zero, mitigating against increasing returns. When the functions in Table 1 are used

as damage functions, their behaviour as x 0 is more important. As the table indicates, several of

the functional forms in common use do not have first or second derivatives which disappear as x -0

0.



Two Examples

and

then

onential Functions

If both the damage and control functions are exponential so that

C(T) = 1 - (11)

D(Z) = 1-e

CT = C eT >_ 0

crr = ..c2e-cT 0

Dz = d > 0

Dzz = -d2 e < 0

(12)
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This situation is illustrated in Figure 3.

As T increases without limit and as Z approaches zero, CT approaches zero from above, Crr

approaches zero from below, Dz approaches d and Dzz approaches 412.

Under these circumstances, output is

-cT
-c1Z e

Y = Yoe °

so that y --0 570 as T op.

Recall that Z(T) = Z0(1 - C(T)). The marginal product of T is

YT = Y0eh(1) = 111(1) Y

where h(T) = -d Z0 e It _follows that •

yr = Yie(r) (1)."(T))2}

(13)

so that the sign of h(T) + (h'(T))2 determines whether increasing returns to the use of T are



present.

For yTr 5_ 0 to hold as T 00, it must be true that

-h"(T) (ha(T))2

or

Simplification gives

i -dc2 Zoe c2
a
2z2'T > 0e

2cT

7

1 Z0e T

which clearly holds as T 00. Therefore, by construction, a model of damage control which uses

exponential damage and control functions imposes eventually diminishing marginal returns.

.•••

Eradication in the Control Function

An arguably small change in the structure of the model, however, can reverse this result even

when Crr 0 and Dzz 5 0. Suppose we retain the exponential damage function used in the

previous example (12) but use the following control function,

C(T) =
orT if cIrT 5. 1

1 if WI' > 1
(16)

which is illustrated in Figure 4. The control function is quasi-concave but it allows for the possibility

that complete control of the damage agent can be achieved for some finite application of the damage

control input, Te. An example of such a control function in agriculture is the control of weeds

through herbicides.

This modification of the model gives a total product curve up to the point of pest eradication

associated with application of Te which can be written as

-dZ + dZ
o g(T)

Y = Yoe 
o = yoe

Therefore

(17)
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Because

YT = gi(T) Y (18)

yTr = y le(T) + {gi(r)}2 (19)

g'(T) = 1/2 dcZoT* > 0

8

and r(T) = -1/4 dcZ073/2 < 0

the sign of yrr is determined by the relative magnitudes of g'(T) and g"(T). The result yrr 5. 0

requires that -

(T) {gi(r)}2

As T Te

1/4 dcz0T-3,2 > 1/4 d2c2z20T-'

which simplifies to

Te dc1 0 ) 2Z 

If this weak inequality does not hold, then increasing returns to T occur as T -> Te as illustrated in

Figure 5.

Note, that a damage function which allows for complete loss of production together with an

exponential control function does not lead to increasing returns. If

d(Z)
diZ if diZ 1

= 1 
1 if cliZ > 1

and

C(T) = 1 _ e-cT

then
-cT

YT. = -2- yo diZo e 2

and
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-cT

yrr - -2C 2 yo cliZo e 2

which approaches zero from below as T co

Under the scenario of increasing returns to the application of the damage control input as

obtained with the assumption of eradication in the control of function, a profit maximizing firm

(Figure 6) facing a fixed cost for damage control of Vo and a variable cost of V1 will opt for complete

control. The response of optimal damage control to variations in prices and costs would be non-

continuous. For example, a reduction in the price of output could initially have no effect on the level

of the damage control input until some critical level is reached. Then control efforts jump to a lower

level or even to zero. Proposals to influence use of pesticides through taxes could founder on this

result. Depending on the structure of the underlying biological relationship embodied in the control

and damage functions, a policy to reduce pesticide use by imposing a tax could have substantially

different effects on the levels of use of different products.

Conclusions and Discussion

Functional forms that have been used in the pest control literature have invariably assumed

that both the control and damage functions are asymptotic. This rules out the possibility of comp
lete

control or complete damage. Decision rules based on these models show a continuous respons
e to

variations in prices and costs and indicate that less than complete control is optimal. This result
 may

be an artifact of the structure of the models that have been estimated and not an adequate ref
lection

of the underlying biological relationships.

The possibility of increasing returns arising from the nature of the control function may v
ary

across damage control problems. For example, complete control of a damage agent is mo
re likely

in weed control in field crops or disease control in confinement livestock production than in
 insect
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control in orchards, given the mobility of the damage agent. This suggests that researchers and model

builders should exercise caution in using particular functional specifications in new circumstances.

Our results have important implications for experimental design and data interpretation in

pest and disease management studies. A small variation in functional form, a variation which

maintains quasi-concavity in the control function, can have a profound impact on the economic

analysis. Pest control experiments often produce data points as in Figure 7. The ability of

researchers to discriminate among classes of functional forms using these data is limited.

Furthermore, it is the slope and curvature of the damage function at low levels of infestation and of

the control function at high levels of T that matter. Experimental design should emphasize the slope

and curvature of the damage function at low values of Z and the slope and curvature of the control

function at high values of T in order to make efficient use of research inputs. The truncation of the

control and damage functions also requires modification to standard regression techniques.

Several authors have suggested models to explain the apparently cautious pesticide use by

farmers (see Robison and Barry, Ch. 8). These models are animated by risk aversion. Our results,

which do not appeal to risk-based arguments, offer an alternative or supplementary explanation of

the observed behaviour of farm firms. Damage control inputs have been largely ignored in the

economics of production. The indirect action of these inputs creates a possibility of increasing

returns which has not been acknowledged. The wide range of examples identified in the introduction

suggests that the neglect of the mechanism of action of these types of inputs may have been a serious

impediment to our understanding of a broad category of human behaviour.
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Figure 1

Direct and Indirect Inputs in Production
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Incidence of

Damage Agent (Z(T))

• Figure 2
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Figure 3

Exponential Damage and Control Functions
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Figure 5
Exponential Damage Function and Square Root Control Function
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