

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Marginal Satisfaction of Recreational Hunters' Red Deer Harvests

Geoffrey N. Kerr Lincoln University

Contributed paper prepared for presentation at the 61st AARES Annual Conference, Brisbane Conference and Entertainment Centre, Brisbane, 8-10 February 2017. Copyright 2017 by Geoffrey Kerr. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Marginal satisfaction of recreational hunters' red deer harvests

Geoff Kerr

Australian Agricultural and Resource Economics Society annual conference, Brisbane 7-10 February 2017

Game Animal Council Act 2013

Deer were formerly "pests"

- Open access resource
 - Competition to harvest
 - No incentives to invest in quantity or quality
 - Low deer numbers
 - Poor trophy prospects
 - \Rightarrow Low value of recreational hunting
- Deer are now "game" that can be managed as a hunting resource
 - What are the costs and benefits of management?
 - How can management "add value"?

Managing for Satisfaction

Would a bag limit increase aggregate hunter satisfaction?

- What makes a hunt satisfying?
 - Seeing game, killing game, social, scenery, etc.
- What role do motivations play?
 - Is motivation important per se?

Research question

- Is more better?
 - Gossen's Law implies equal marginal utilities for efficiency, does it apply?
 - Does marginal utility diminish significantly with harvest?

New Zealand's specialist land-based university

Seeing & killing game: prior studies, different contexts

1980s Wildlife Society Bulletin

- Decker, D. et al. (1980). Further insights into the multiple-satisfactions approach for hunter management. *Wildlife Society Bulletin* 8: 323-331.
- McCullough, D.R. & Carmen, W.J. (1982). Management goals for deer hunter satisfaction. *Wildlife* Society Bulletin 10: 49-52.
- Rollins, R. & Romano, L. (1989). Hunter satisfaction with the selective harvest system for moose management in Ontario. *Wildlife Society Bulletin* 17: 470-475.
- Hammitt, W.E., et al. (1990). Determinants of multiple satisfaction for deer hunting. *Wildlife Society Bulletin* 18: 331-337.

2000s Human Dimensions of Wildlife

- Gigliotti, L. (2000). A classification scheme to better understand satisfaction of Black Hills deer hunters: The role of harvest success. *Human Dimensions of Wildlife* 5: 32-51.
- Heberlein, T.A. & Kuentzel, W.F. (2002). Too many hunters or not enough deer? Human and biological determinants of hunter satisfaction and quality. *Human Dimensions of Wildlife* 7: 229-250.
- Frey, S.N., et al. (2003). Factors influencing pheasant hunter harvest and satisfaction. *Human Dimensions of Wildlife* 8: 277-286.
- Fulton, D.C. & Manfredo, M.J. (2004). A panel design to assess the effects of regulatory induced reductions in opportunity on deer hunters' satisfaction. *Human Dimensions of Wildlife* 9: 35-55.

Data

- Tracked ~900 big game hunters for a year (June 2011/June 2012)
- Chose one hunt at random each month
- Measured specific hunt motivations, sightings, kills
- Measured satisfaction on a single item scale
 - Rate this hunt: (1) very unsatisfied to (5) very satisfied
 - A measure of overall satisfaction
- Already had information on demographics, motivations for hunting in general, relative importance of aspects of hunting, and hunting avidity
- Data on 2,917 red deer hunts by 698 different hunters

Data: 698 hunters

Variable	Ν	Mean	SD	Median
Age	697	39.74	13.05	40
Years of big game hunting experience	696	22.04	14.36	21
Days spent big game hunting per year	697	32.66	29.63	25
Big game hunts per year	696	16.97	21.53	12
Red deer killed per year	531	3.09	5.13	2
Male	698	97.9%		
Maori	698	8.3%		
North Island resident	698	50.1%		
NZ Deerstalkers' Association member	698	35.0%		
Primary motivation to hunt: Enjoy outdoors	698	50.0%		
Primary motivation to hunt: Meat	698	19.1%		
Primary motivation to hunt: See wild animals	698	7.2%		
Primary motivation to hunt: Excitement	698	6.6%		
Primary motivation to hunt: Get away from civilisation	698	6.2%		
Primary motivation to hunt: Trophy	698	5.6%		

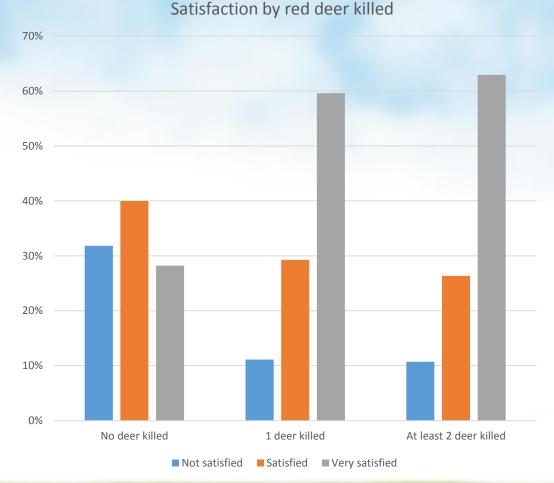
Data: 2,917 hunts

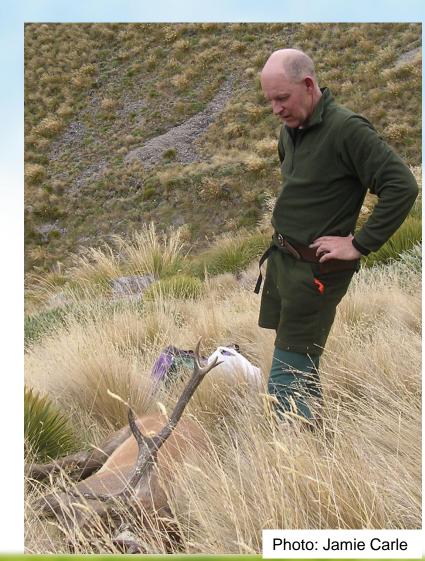
Variable	Ν	Mean	SD	Median
One way travel distance (km)	2910	136.95	184.01	80
One way travel time (hours)	2910	3.23	9.27	1.5
Cost of travel (NZ\$)	2912	118.87	238.35	50
Days hunted	2909	2.16	2.00	1
Number of hunters in the party	2912	2.07	1.17	2
Number of red deer the individual killed	2763	0.44	0.88	0
Primary motivation for this hunt: Enjoy outdoors	2917	33.5%		
Primary motivation for this hunt: Meat	2917	29.4%		
Primary motivation for this hunt: Trophy	2917	10.9%		
Saw red deer	2917	64.0%		
Didn't kill a red deer	2763	68.2%		
Killed 1 red deer	2763	23.7%		
Killed 2 red deer	2763	6.0%		
Killed 3 or more red deer	2763	2.1%		
Didn't kill a red deer, but another party member did	2756	10.0%		

Killing deer affects satisfaction

χ² = 287.7, P << .0001

- Very satisfied hunters are more likely to have killed a deer
- Not much difference if more than 1 kill



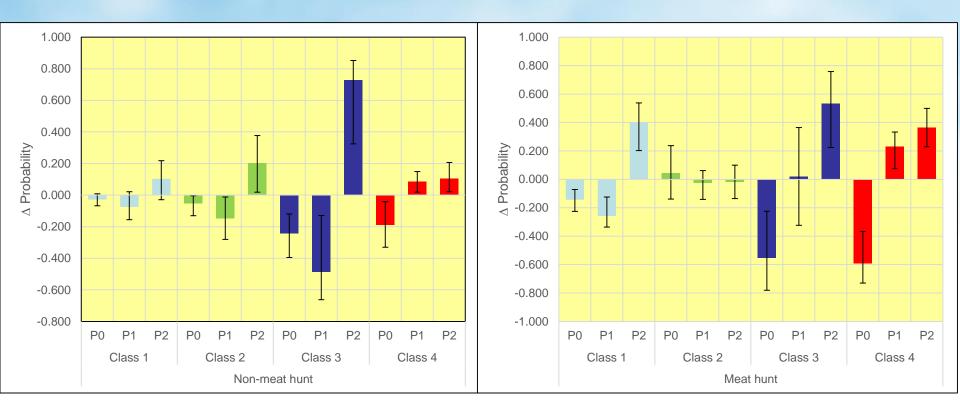

Photo: Geoff Kerr

Data analysis

Latent class ordered logit model

- Preference heterogeneity is endemic
- Latent class better than RPL
- Accounts for correlated responses in panel data and for multivariate correlations

Similar to Frey, S.N., et al. (2003). Factors influencing pheasant hunter harvest and satisfaction. *Human Dimensions of Wildlife* 8: 277-286.



New Zealand's specialist land-based university

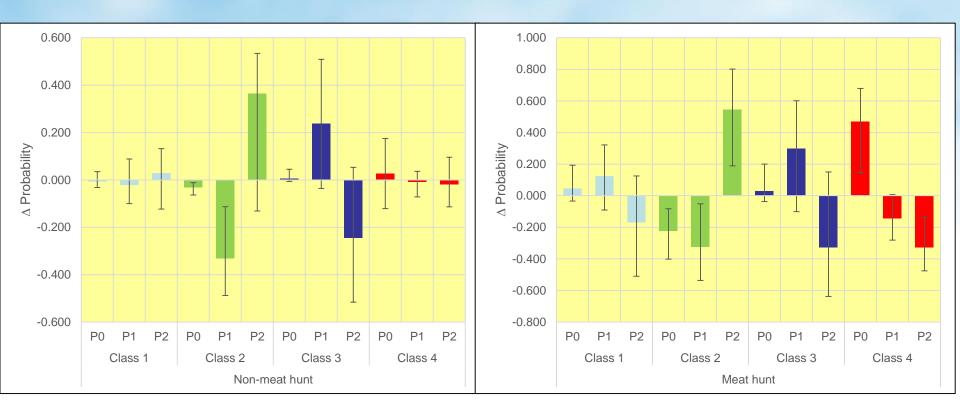
Latent class ordered logit model

Parameter	Class 1	Class 2	Class 3	Class 4
Constant	1.49***	2.05***	-0.31	-1.38***
Category threshold	1.62***	3.38***	4.57***	1.66***
Saw a red deer	1.33***	0.22	1.43***	1.01***
Killed one red deer	0.71	0.91**	4.59***	0.77**
Killed two or more red deer	0.29	1.67***	-1.09	-0.11
Individual did not kill red deer, but party did	0.64	0.07	5.71***	0.62*
Meat hunt	-1.18***	-0.85**	-1.37**	-1.07**
Interaction: Meat hunt x killed a red deer	1.52***	-1.16**	0.38	1.97***
NZ Deerstalkers Association member	0.25	0.21	0.09	0.87***
Class probability	0.31***	0.23***	0.19***	0.26***
N hunts	2756			
N hunters	698			* α < .10
LL (restricted)	-2984.141			** α < .05
LL (model)	-2527.055		*	***
BIC/N	1.946			
aBIC/N	1.901			
Adjusted Rho ²	0.140			

Marginal effects, first deer killed

Non-meat hunt: Significant positive effects for Classes 2, 3 and 4

Meat hunt: Significant positive effects for Classes 1, 3 and 4


P0 ≡ Probability not satisfied P1 ≡ Probability satisfied P2 ≡ Probability very satisfied

Are two kills better than one?

Marginal effects, second deer killed

Non-meat hunt: Effects not significant

Meat hunt: Significant positive effects for Class 2 (positive) and Class 4(negative)

Why a second kill might be sub-optimal for a meat hunter!

Lincoln University Te Whate Wanaka o Aoraki CHRISTCHURCH-NEW ZEALAND aaland's specialist land-based university

Marginal utility

10,000 Monte Carlo replications

	Cla	ss 1	Clas	ss 2	Cla	ss 3	Cla	ss 4
	Non- meat hunt	Meat hunt	Non- meat hunt	Meat hunt	Non- meat hunt	Meat hunt	Non- meat hunt	Meat hunt
MU1	0.71	2.24***	0.91**	-0.26	4.59***	4.97***	0.77**	2.73***
MU2	0.29	0.29	1.67***	1.67***	-1.09	-1.09	-0.11	-0.11
MU1-MU2	0.42	1.95*	-0.77	-1.94*	5.68***	6.06**	0.87*	2.84***
Diminishing MU?		\checkmark		X	\checkmark	\checkmark	\checkmark	\checkmark

 $MU1 \equiv Marginal utility from first kill$ $MU2 \equiv Marginal utility from second kill$ * α = 0.10; ** α = 0.05; *** α = 0.01

New Zealand's specialist land-based university

Class 2 hunters are little different to others

Mean (SEM)	Class 1	Class 2	Class 3	Class 4	F	Sig
Annual game hunts	18.43	16.96	17.18	15.13	0.748	.524
Annual days game hunting	34.70	31.89	32.85	30.92	0.583	.626
NZDA member	0.35	0.36	0.30	0.37	0.514	.673
Experience (years)	23.19	22.42	18.98	22.42	2.320	.074
Age (years)	40.92 ³	40.38 ³	36.53 ^{1,2}	39.80	3.116	.026
Importance of killing game	1.78	1.96	1.94	1.83	2.437	.064
Importance of trophy	1.67	1.80	1.73	1.81	1.267	.285
Importance of harvesting meat	2.53	2.47	2.53	2.51	0.233	.873
Main reason to hunt is meat	0.20	0.19	0.17	0.19	0.145	.933
Main reason to hunt is trophy	0.05	0.08	0.03	0.07	1.257	.288
Annual red deer harvest	2.83	3.29	3.28	3.06	0.213	.888
Killed one deer this hunt	0.26 ³	0.24	0.19 ¹	0.24	2.912	.033
Killed 2 or more deer this hunt	0.09	0.08	0.07	0.08	0.481	.695
This hunt was a meat hunt	0.32	0.29	0.27	0.29	1.253	.289
This hunt was a trophy hunt	0.09 ²	0.14 ^{1,4}	0.11	0.09 ²	4.505	.004

Numbered superscripts identify group mean differences using Tukey HSD test at P \leq .05

ISTCHURCH•NEW ZEALAND

Te Whare Wanaka

Allocation evaluation

- Comparison of coefficients across classes is not valid
 - Cardinality of satisfaction can not be invoked
 - Problem for optimisation across classes
- Assume: Deer kills are reallocated within each category of hunter (Class x Motive)
 - i.e. the 298 deer killed in 624 non-meat hunts by class 1 hunters are reallocated across those 624 hunts
 - This is a strong assumption, but it permits evaluation of a within group one deer bag limit

New Zealand's specialist land-based university

 Assuming reallocation within classes (ignore motive) would permit within class optimisation

One deer bag limit

Class 1 Non-meat hunts N = 624	Hunts on which no deer are killed	Hunts on which 1 deer is killed	Hunts on which 2 or more deer are killed	Total
Utility per hunt	0	0.712	1.000	
Observed hunts	430	143	51	298 Deer
Utility observed	0	101.82	51.04	152.86
Hunts under one deer bag limit	326	298	0	298 Deer
Utility _{bag limit}	0	212.19	0	212.19
Δ Utility	0	110.37	-51.04	59.32
$Z(\Delta \text{ Utility} = 0)$				0.942
p(Z)				0.346

All utility estimates are relative, U(zero kills) = 0 by assumption. Z from 10,000 Monte Carlo simulations

What about other classes?

- 10,000 Monte Carlo utility difference simulations
- Reported statistics are (1) sign of utility change and (2)
 p(Z) mean utility change = zero

	Class 1	Class 2	Class 3	Class 4
Non-meat hunt	+ p=.346	- p=.780	+ p=.008	+ p=.051
Meat hunt	+ p=.047	- p=.077	+ p=.010	+ p=.000

New Zealand's specialist land-based university

Management Implications

- Multiple kills are not a big issue:
 - Only 8% of hunts have multiple kills, 24% kill one deer, 68% don't kill a deer
 - But, in most cases the first kill is very valuable
 - Few would be harmed by a one deer bag limit (Maybe Class 2 meat hunters)
 - But Class 3 and 4 hunters would definitely benefit
- Meat hunts are different for everybody
 - Meat hunters "need to kill" to be as satisfied as non-meat hunters without a kill

Management Implications

- Efficient to reallocate second kills from Class 4 to Class 2
 - $-MS2_{Class 4} < 0, MS2_{Class 2} = >0$
 - But why do Class 4 hunters kill the second deer?
 - Are hunters' ex ante and ex post perspectives different?
 - More research needed
- Efficient allocation requires differentiation of class
 membership and motivations
 - This is not possible by observing external characteristics

Conclusions

- A simple overall satisfaction question enabled identification of relative values of attributes of the hunting experience
- Diminishing marginal utility (Gossen's Law) may not apply to all hunters
- Hunter heterogeneity implies the need to manage some hunters differently
 - Since class membership is not observable, it is not clear how that could be done
- Overall, a one deer bag limit is likely to have efficiency benefits

geoffrey.kerr@lincoln.ac.nz

Photo: Graham Nugent