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Abstract  
There are instances when one wants to consider homogeneous, with regard to some functional 

relationship, groups. For example in representative farm modelling one is interested in 

specifying groups of farms that have the same input/output relationship. This paper questions 

the logic behind the established approaches. It argues that one should use the underlying 

functional relationship to derive such groupings. Directly grouping farms with regard to their 

production function (or any other functional relationship of interest) not only asks the relevant 

question directly, but also makes the classification issue explicitly dependent on the choice of 

functional form. It provides a clear definition of what kind of homogeneity and/or 

representativeness were are looking at. If we want farms with similar production function either 

because this is the characteristic we are interested in or because we intend to model their 

production function in a follow–on simulation model, this is clearly the type of question we 

have to ask.  

This paper proposes using finite regression mixture models to specify and estimate farm groups 

with regard to pre-specified functional relationship. We illustrate the proposed approach with 

regard to the production function. The properties and advantages of the proposed approach are 

discussed and explained.  
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One size does not fit all: an empirical investigation of the Romanian agriculture 

production function 

 

Motivation: 

Economic theory has a long standing tradition of emphasising uniformity. After all the 

principle of the ‘representative economic agent’ is probably the best known theoretical 

abstraction in economics. Assuming such uniformity is very useful in deriving theoretical 

properties in that micro-economic models can be easily expressed into a common sense logic. 

Having the representative economic agent simply requires one to put herself/himself into the 

shoes of this agent and they deduce economic principles from generalising one’s own 

response to external factors. This approach has been very fruitful in producing   logical 

outcomes based on sound principles of rationality. Furthermore it also provides a basis for 

statistical investigation. To explain the latter consider the representative economic agent 

response to external factors, and let us assume for simplicity that this can be described by a 

known response function.  Then since this concept is an abstraction and it is obtain just by 

averaging the reactions of the actual economic agents, the representative agent responses can 

be obtained just by averaging the responses of the real ones.  Hence, although we cannot 

observe this, estimating a mean regression type of statistical model implicitly yields the 

response of the representative economic agent.  

This uniformity principle, however useful has its limitations and has been questioned.  From 

a theoretical point of view models of bounded rationality which combine two types of 

representative agents have been shown to be able to produce qualitatively different outcomes. 

For example De Long et al. (1990) present a model with rational agents and noise traders 

(who behave randomly and interact with the rational agents). One of the surprising outcomes 

of this model is the noise traders who non-intentionally (i.e. randomly) make very risky 



investments may under certain conditions end up dominating the market. Kogan et al. (2006) 

further investigate this issue, which is now accepted in financial literature (see e.g. Cogley 

and  Sargent, 2009; Le Baron, 2012; Luo, 2012). 

Hereafter we will not be concerned with the theoretical challenges to this principle, but rather 

with empirical considerations that we outline below. A major problem in empirical research 

is the fact that theory rarely prescribes the form of the functional relationship between the 

variables in question. It is essentially not possible to know a forehead the functional form of 

this relationship.  Hence the problem of ‘representativeness’ i.e. homogeneity in response 

becomes inter-wined with the issue of functional specification. There is clearly a trade-off 

here. Using more flexible functional representation reduces this problem, but also makes 

interpretation, and inference more difficult and in some cases impossible (as in the case of the 

curse of dimensionality problem). Using more restrictive functional representations results in 

more tractable models for which the representativeness assumption is more likely to be 

violated simply because the used functional representation is inadequate. Therefore the 

representativeness condition in empirical modelling is dependent of a given functional 

specification. In other words the question of whether the units of analysis exhibit the same 

relationship is only meaningful with regard to the given functional form of this relationship. 

 Modelling such heterogeneous responses has a long tradition in agricultural economics, 

particularly in the area of the so called ‘representative farm modelling’. (may need some 

references here).  This approach splits   the units of interest (farms) into relatively 

homogenous groups and models these separately. Often the purpose of such modelling is to 

use the results for mathematical programing models for these different farm types.  The way 

these groups are derived can however be problematic.  Often some form of factor analysis or 

principal components analysis is applied with regard to farm characteristics to identify the 



groups.  The problem with this approach is that it yields group which a similar with read to 

the variables used in this analysis, not the functional relationship which is primary target of 

such approach. 

The clustering approach is not entirely atheoretical. There is a long tradition in the hedonic 

literature dating back to at least Straszheim (1974, 1975) to identifying relatively 

homogeneous sub-markets. A point of departure for these early works is the premise that 

such groupings should be defined with regard to supply. The underlying logic of this 

approach is to define submarkets with regard to the concepts of substitutability and 

equilibrium. Note that in principle pairs of goods (or services) with similar characteristics are 

more likely to be close substitutes than pairs with dissimilar characteristics. The equilibrium 

process equates prices of characteristics across substitute goods. Therefore as long as 

submarkets are defined in such a way that they contain goods with similar characteristics, 

they should be close substitutes. This will ensure consistency of the prices within each 

submarket. 

With regard to the farm classification issue as long as the characteristics used to perform 

clustering are elements of their cost of profit functions, the same argument applies and the 

resulting groups of farms should under a similar set of assumptions be homogeneous with 

regard to their cost (or profit) function, i.e. with regard to the functional relationship.  

However, it is possible that quite different farms could have similar cost/profit/production 

functions yet their inputs may not be substitutes.  To simplify the discussion we will focus 

from now on the production function, but our argument will be equally applicable to other 

functional relationships. It is therefore more logical to ask the question directly: which are the 

farms that have the same production function? This question could avoid some of the pitfalls 

of the clustering approach. For example let us assume that all farms have the same production 



function, but there are two very different groups in terms of appearance: capital and labour 

intensive ones.  Since the first groups will have high stock of capital and low labour usage 

while the other one will have lots of labour but little capital, clustering  methods which are 

based on relative differences in some distance measure are likely to yield two separate farm 

groups. One may say this should not be a big issue because modelling them separately should 

yield the same production functions anyway. However in the presence of noise in the data, 

outliers and measurement errors, this may not be as straightforward.  Even if none of these 

empirical issues exist, using the different functional specifications for the production 

functions of the already defined clusters can produce very different outcomes (to whether 

their production functions are similar or not).  

Directly grouping farms with regard to their production function (or any other functional 

relationship of interest) not only asks the relevant question directly, but also makes the 

classification issue explicitly dependent on the choice of functional form.  It provides a clear 

definition of what kind of representativeness were are looking at.  If we want farms with 

similar production function either because this is the characteristic we are interested in or 

because we intend to model their production function in a follow–on simulation model, this is 

clearly the type of question we have to ask. A clustering type of approach in contrast asks a 

very different question. It asks how similar the farms appear with regard to some predefined 

characteristics.  Such a question leaves the issue of ‘representativeness’ very vague. It also 

implicitly claims a kind of logically inconsistent universality. For example one may use some 

set of ‘relevant variables’ to cluster farms and them assume that the functional relationship is 

homogeneous within each cluster. But the same approach could be applied to a wide range of 

relationships such as e.g. cost, profit and production functions.  So the farms in the same 

cluster are assumed to have the same type of functional relationship for all of the above (and 

more). Surely this is a very heroic assumption. 



This paper proposes using finite regression mixture models to specify and estimate farm 

groups with regard to pre-specified functional relationship. We illustrate the proposed 

approach with regard to the production function. The properties and advantages of the 

proposed approached are discussed and explained. 

Background 

In this paper we look at the issue of the production function that underlies the Romanian 

agriculture.  

There is the inheritance of transition that could potentially create quite heterogenous farming 

structure that incorporates the successors to the old cooperative farms and emerging modern 

farms.  Strictly speaking adapting pre-existing farming structures carries forward a set of 

constraints that can restrict the possible production responses that such legacy farms can 

exhibit. Starting anew on the other hand does not imply such restrictions and then potentially 

could result in drastically different technological relationships, which will result in 

production responses that are not alike those of the pre-existing farms. Furthermore a rather 

turbulent transition period could be characterised by a series of shocks and then establishing a 

new farm  could be quite different depending on when exactly one establishes such resulting 

in potentially even more diversity in underlying technologies.  

Finally there is another more practical consideration.  Economic analysis is often based)as we 

will do here) on aggregate relationships, which undoubtedly contain unobserved 

heterogeneity. For example when we look at the issue of production function, since 

technologies are very different for different farm typologies, it is  reasonable to consider 

different production functions for different types of farming typologies, e.g. livestock, crop 

etc farms. Yet doing so results in large  number of  underlying models without actually 

solving the problem of unobserved heterogeneity since even within a certain typology, 



different technologies could co-exists, based on characteristics that are not directly 

observable. Note that clustering approaches have no chance when trying to deal with such 

unobserved  heterogeneity due to the very fact that since it depends on unobservable  

characteristics, it is impossible to account them during a classification  stage. Therefore from 

a purely practical point of view we are looking at the following trade-off: we would want a 

small number of functional relationships (ideally a single one) but on the other hand  would 

want  these relationships to encompass both the similarities and differences amongst the units 

of interest.  In other words subject to the constraints defined by the choice of functional 

relationship (in this context  production function in terms of functional form and components) 

we want the best combination of (possibly more than one)  such functional relationships that 

describe the data.  Hence the question becomes: how many distinct production functions can 

describe the output response of Romanian agriculture and what are their characteristics. In 

this way we not only provide a characterisation of the agricultural economy, but also 

simultaneously determine their behaviour. 

 

Methodology 

The finite mixture of regressions can be considered a generalisation of the mixture of 

distributions model (MDM). To illustrate the general structure of a mixture of distributions 

model (MDM), let us denote the set of n d-dimensional vectors comprising the available data 

by y = {y1,   ,yn} (i.e. the sample contains n observations and d variables). In this application 

we will use a single y variable (i.e. d=1), but it will be useful to present the multidimensional 

case since its treatment is essentially the same. Additionally, it allows one to demonstrate the 

generality of the used approach. It is assumed that each yi arises from a d-dimensional 

probability distribution with the following density: 
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(d-dimensional) probability distribution, parameterised by k .  This means that y can be 

viewed as drawn from K different underlying probability distributions. The ‘standard’ 

application of the MDM uses the unconditional distribution of yi.. When the conditional, with 

regard to some set of (explanatory) variables X, distribution is used instead we essentially 

obtain a mixture of regressions: 
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In this representation the parameters k  include a fully parameterised regression model, i.e. 

they include regression coefficients, as well as the distribution parameters. In this study we 

will use a linear regression specification (as introduced in De Sarbo and Cron, 1988; see also 

Wedel and Kamakura, 2001) but in principle any other parametric specification, i.e. a mixed 

model could be used instead.  As we will demonstrate later the nature of the estimation 

algorithm is very general and allows for a wide range of specifications which may also be 

non-parametric.  Equation (2) states that the data-generating process for y, conditional on X, 

is a mixture of regressions. Thus if y is the output and X are the production factors, this 

expression provides us with a basis for using the production function to define separate types 

of farms, which are characterised by distinct production functions. 

A sample of indicator variables z = {z1,  ,zn}, sometimes referred to as labels, can be assigned 

to the observed data.  These are defined as: zi = {zi1,   ,ziK}, where each zik assumes the value 

of 1 if yi arises from the k-th mixture component and the value 0, otherwise.  When the 



sample of indicator variables is known the problem is one of discriminant analysis, where the 

vector of parameters to be estimated is 
 1 11 1 1,.. , ,.., ,.., ,..,K J K KJp p    

, where ij  denotes 

the j-th parameter of the i-th regression model.  When the indicator variables are unknown the 

problem is one of cluster analysis or conditional density estimation. In the cluster analysis 

case, in contrast to the density estimation, we are also explicitly interested in estimating the 

indicator variables. 

One can obtain the maximum likelihood estimate for the parameters,  , by using the 

Expectation Maximisation (EM) algorithm of Dempster et al. (1977) and then applying the 

‘maximum a-posteriori’ (MAP) principle to assign a value to the indicator variables, zi.  The 

EM is standard algorithm for estimating MDM.  

The EM algorithm used in the analysis consists of the following two steps, namely, the 

E(xpectation) step and the M(aximisation) step. In the E step the conditional probability of zik 

being equal to one, estimated during the m-th iteration for all i and k is given by: 
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where the (bracketed) superscripts denote estimates for the parameters during the 

corresponding iteration. 

In the M step the ML estimate, 
( )m  of  , is updated using the conditional probabilities, 

( )m

ikt
, 

as conditional mixing weights.  This leads to maximizing: 
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The updated expressions for the mixing proportions are given by: 
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The updating of k  depends on the parametric specification and therefore, no general formula 

can be given. Note however that while the expectation step (3) is pretty standard, the 

maximisation step (4) depends on the particular statistical model assumed, i.e. type of 

conditional distributions and type of conditioning (e.g. linear regression).  The maximisation 

step is essentially the standard maximisation routine used to estimate the conditional model 

given some fixed (determined in the expectation step) mixing proportions. The generic 

expression (4) expresses calculating the log-likelihoods for each separate component and 

maximising the weighed likelihood with weights given by the posterior probabilities 
( )m

kp
. 

Thus by adapting the maximisation step a wide range of models could be fitted. I.e. if we 

have an estimation routine for any type of statistical model by plugging this estimation 

routine in the M-step of the EM algorithm we can obtain (and estimate) a mixture of such 

models. In particular we could be interested in a general mixture of regressions sometimes 

referred to as latent class regression or cluster-wise regression. Using a generic term, where 

under ‘regression’ we understand any parametric (or even nonparametric) model that 

provides us with a parameterised conditional distribution, we can consider our data as coming 

from a mixture of such models. In particular in this application we are interested whether a 

single parameterised in a specified way production function can be applied to the whole land 

price dataset, or several submarkets exhibiting different pricing functions could be identified.  

So far we have considered estimating a mixture model for the purposes of classifying 

observations into a pre-defined number of distributions (sub-samples or clusters).   In other 



words the above estimation procedure only works with predefined fixed number of clusters. 

However, the number of clusters is typically unknown.  Choosing the appropriate number of 

mixing distributions (clusters) is essentially a model selection problem. One can estimate the 

regression mixture models for different number of clusters and then selects amongst these. 

A popular criterion in model selection problems is the Bayesian Information Criterion (BIC) 

(Schwarz, 1978).   

BICmK  = -2 Lmk +vmKln(n) (6) 

where m is any model (thus m denotes the choice of the parametric (conditional) distributions 

g(.) or any combination thereof, K is the number of components, L is the (maximised) 

complete log-likelihood and v is the number of free parameters in the model.  If the choice of 

g(.) is taken for granted, then (5) suggests a strategy of consecutive estimation of (m, K) 

models for K=1,2,   until BIC increases.  It is clear that if (m, K) and (m, K+1) provide 

essentially the same fit then the BIC for (m, K) will be smaller, since it has less free 

parameters. The consecutive estimation strategy also ensures against the danger of over-

fitting the statistical model (2).   

We will use the BIC as a main model choice criterion, although details on some alternatives 

will also be provided. The reasons for our choice are outlined below. The BIC is based on an 

asymptotic approximation of the integrated log-likelihood, valid under some regularity 

conditions. In spite of the fact that these regularity conditions are usually violated in mixture 

models, it has been proven that the BIC is consistent under some conditions and efficient on a 

practical ground (e.g. Fraley and Raftery, 1998). Moreover the whole class of penalised 

likelihood estimators (of which the BIC is a special class) are consistent (Keribin, 2000). 

Using the BIC can be viewed as an approximate Bayes factors inference. The BIC is 



furthermore approximately equivalent to the popular in information theory Minimum 

Description Length (MDL) criterion. 

Alternatively one may use cross-validation to select the appropriate model. This would 

however substantially increase the computational burden.  

If one needs to select of model where in addition to the model fit the ability to define well 

separated clusters is taken into account, the integrated complete likelihood (ICL) criterion can 

be used. The ICL can be expressed (Biernacki et al., 2002) as BIC with an additional entropy 

penalty term as follows: 

ICLmK  = -2 BICmk -2 1 1

ln
n K

ik ik

i k

z t
 


 (7) 

where the conditional probabilities ikt
 and the cluster membership indicators ikz

 are defined 

as in (3). Depending on the purposes of applying a finite mixture model, often one may not 

be explicitly interested in the degree of separation of our clusters. Nevertheless, applying the 

ICL can be used as an illustration to how clustering criteria can lead to different results. 

One can note that the mixture models with increasing number of components can be analysed 

in a nested models framework. Therefore the Likelihood Ratio (LR) test can be readily 

applied to consecutively test for number of components.  In order to provide a valid small 

sample inference the distribution of the LR tests statistic can be simulated via bootstrap. In 

order to do this we need to simulate under the null, estimate the model under the alternative 

and calculate the LR test statistic. The estimation step needs a number of different 

initialisation (starting) points to avoid local optima. This means that such a bootstrap 

approach will be very expensive in computational terms. For this reason instead of using it in 



a consecutive manner, we will only implement it to additionally test the model selected by the 

information criteria. 

The finite regression mixture approach describes the functional relationship as am 

hierarchical mixture model, where the data generation process generates each observation 

from a finite set of underlying sub-models, which define separate clusters.  By definition 

these clusters represent different functional relationships, in this case different production 

functions. Hence we define the representativeness condition directly with regard to the 

production function, conditional on its functional form. Note that technically the data 

generation process assumed in Bayesian hierarchical models, in particular model averaging 

(bot Bayesian and frequentist) as well  Bayesian variable selection models follows the same 

hierarchical mixture representation. The advantage of the finite mixture approach is the ease 

by which data observations can be attached to the different underlying production functions. 

 

Data and choice of functional form 

We use data from the 2008 FADN for Romania. The implementation of CAP creates 

methodological issues about how to treat the CAP subsidies and by choosing the year 

immediately after accession we hopefully avoid some of these issues.  The key question is 

whether the Romanian farms can be described by the same production function.  As already 

discussed this question requires us to specify the inputs and the functional form for the 

specific production function.  Here we will use the translog functional specification. 

There is extensive literature on the issue of the productions functions and their theoretical and 

empirical properties (Griliches and Ringstad, 1971; Berndt and Christensen, 1973; 

Christensen and Lau, 1973). With regard to the problem in hand, it is advisable to employ a 



production function specification that is sufficiently flexible, since in a finite regression 

modelling framework we advocate there is a clear trade-off between flexibility and the 

potential number of farm groups in that more flexible functional forms will reduce the 

number of farm clusters. In the production function literature the term ‘flexible’ has a specific 

meaning. According to Diewert (1974) a functional form can be denoted as ‘flexible’ if its 

shape is only restricted by theoretical consistency.  The unrestricted Translog non-homothetic 

and imposes no restrictions of the production technology.  It can be restricted to satisfy the 

homotheticity, homogeneity or separability, but in this application we will not apply any such 

restrictions. The main reason for this is that by avoiding such restriction we can maintain its 

generality.  Furthermore, as our previous argument demonstrates there is a clear trade-off 

between flexibility and the potential number of clusters in that more flexible specifications 

would result in smaller number of clusters.  Therefore when question is whether a single 

production function specification is sufficient to describe the data, it makes sense to avoid 

imposing restrictions that could inflate the potential number of clusters. 

Although in more recent research the translog appears to have somewhat fallen out in favour 

with empirical researchers, it is still the most extensively investigated second order flexible 

functional form and surely the one with the most empirical applications as its empirical 

applicability in terms of statistical significance is outstanding (Feger, 2000).  Furthermore the 

fact that the translog function can be considered as a second order (Taylor series) 

approximation of a more general production function provides a sound justification in 

applying it here, since the uncertainty about the production function is major justification for 

the present proposal. 

An important reason for the popularity of the translog specification is that it is linear with 

regard to the parameters, which means that standard linear regression techniques can be used 



for estimation and testing purposes. In principle estimating a finite regression model simply 

requires plugging in the M step an estimation routine for the underlying model, which creates 

tremendous flexibility since this means that the underlying model can be fully non-

parametric. Linear specifications offer considerable savings in terms of computational costs.  

 

Results 

Both the BIC and the ICL point to two clusters (see Table 1).  Bearing in mind that the BIC is 

a model fitting criterion expressing the fit of the statistical model, a single common translog 

production function is not sufficient to describe the Romanian farms. Furthermore taking into 

account that the ICL accounts for both model fit and cluster separation, the fact that the ICL 

also points to two cluster model demonstrates that these two clusters are well separated. In 

practical terms this means that (at least some of) the corresponding coefficients are 

significantly different resulting in two quite different production functions (subject to the 

functional restriction of a translog functional form) 

In order to confirm the above conclusion we implemented LR bootstrap tests for 2 mixtures 

(clusters).  Such tests are based on model fitting like the BIC and do not take into account the 

cluster separation (as ICL does) and as such are only comparable to the BIC results.  

However since BIC and ICL agree on the number of clusters, this technical difference is not 

crucial in this particular implementation. The probability levels for these are shown in Table 

2. These bootstrap tests are very costly in terms of computational time and in most applied 

work one could expect that information criteria would be preferable to determine the number 

of mixture components. The LR bootstrap tests agree with the information criteria  in that  the 

Romanian farms can be split into two distinct clusters with regard to their underlying 

production function. 



Table 3 presents the estimation results, while Table 4 shows the summary statistics for the 

used variables, both for the overall sample and by cluster. In order to facilitate the discussion 

the summary statistics in Table 4 are for the raw variables (rather than their logarithmic 

transformation which is used in specification and estimation).  Cluster 1 is smaller with 296, 

while Cluster 2 consists of 574 observations. Cluster 1 contains bigger farms.  Comparing the 

mean values for the two clusters, the only input for which Cluster 2 has larger values is land. 

Hence in general we can say the first cluster is characterised by larger farms. The larger 

average value of land in the input mix of the farms in the second cluster suggests that these 

might use a production technology that is much more land intensive, something that the 

estimation results might throw a more light on. 

It is difficult to ascertain the differences between the clusterwise production functions given 

in Table 2, due to their non-linear form.  A reliable way to compare two nonlinear functions 

is by comparing their partial correlation plots.  It simple terms this amounts to using the 

estimated models to predict the dependent variable and plotting the predicted values against 

the values for a given factor by keeping the other factors values fixed at ‘typical’ values. In 

this way one can visualise the effect of a given production factor when the rest of the inputs 

are kept fixed. The main issue here is what would be reasonable values to fix the other inputs 

at.  This would depend on the purpose of the above plot.  Often one is interested in average 

effects and in such cases using simply the averaged over the estimation sample values would 

be an easy way to achieve this.  Sometimes averaging would not be a reasonable strategy. See 

e.g. Kostov et al (2008) who discuss the different options and in particular the pitfalls of 

averaging discrete values and suggest alternatives  for creating reference points to use for 

such comparisons. In this case all the inputs are continuous variables and we want to compare 

the two clusters production functions. Therefore averaging over the estimation sample is a 

viable option.  



Note that although the translog is a non-linear functional form, from estimation point of view 

it is still linear in parameters and technically it is a linear regression model. Therefore 

predicting from it is very easy.  We simply need to create a prediction sample containing a 

range of values for input variable the effect of which we want to investigate and the ‘typical’ 

values for the other inputs, create the relevant (transformed) variables needed in the  translog 

specification and predict from the estimated linear model.  The only choice we need to make 

is the range of values for the analysed input. We use a regular grid of 100 points defined over 

the range over which the input in question is observed.  Since the two clusters are quite 

different in their input mixes (see table 4) it is reasonable to produce separate such ranges for 

each cluster. In this way the values for the variable of interest are actually observable within 

the estimation sample. The resulting plots show the range of values for each input by cluster 

and this facilitates the interpretation of the results. It also avoids the danger of predicting 

outside the range each of the two clusters is defined over. In particular, since Cluster 2 

consists of smaller farms, we would not want to plot predictions of what its production 

function would yield for very large farms, since it simply would not be applicable to them. As 

for the variables over which any such plot is conditioned upon (i.e. the other inputs) 

averaging over the whole sample is applied in order to ensure that the effects plotted for the 

two clusters are comparable (since all the rest is being equal. Since the summary statistics for 

both clusters exhibit considerable dispersion, it is easy to verify that such  common ‘typical’ 

values lie comfortable within the range of observable values for each of the two clusters and 

therefore the synthetic  observations that we create in order to produce the effects of interest 

are entirely feasible. 

Simply plotting the effects for each input can provide a useful overview of the differences 

between the corresponding production functions. However the usefulness of such a 

comparison would be limited if we cannot say how different are these statistically. The latter 



can be accomplished if we can provide confidence intervals for such effects.  These can be 

obtained by bootstrapping the corresponding models. Here we will follow Kostov et al. 

(2008) in using nonparametric case bootstrap.  

The partial correlation plots for the inputs are presented in Figures 1-4. In producing these we 

have transformed both output and the input back into the original units, since results for the 

logarithms are not amenable to meaningful interpretation. 

Due to the non-linear nature of the model we obtain asymmetric confidence intervals. The 

first noteworthy feature of these figures is that cluster 2 is considerably more homogenous in 

terms of the underlying production function in that the confidence intervals for the effect of 

all inputs are narrower than those for cluster 1. Although this on its own is not that surpising 

given the larger dispersion in the underlying inputs (see standard deviations in Table 4), the 

latter by no means guarantees a higher dispersion of the estimated effects.  This difference in 

the homogeneity means that the farms in cluster two are much better characterised by their 

underlying production function than those in cluster 1. Taking into account that there are 

actually considerably more farms in cluster 2 and that cluster 1 farms are larger, it looks like 

the growth in farm size could be responsible for farms moving away from a common 

production function. The other important results is that these difference in the form of 

different width  of the corresponding confidence intervals, but also in terms of underlying 

mean  effects for each separate input, are quite unevenly distributed amongst the different 

inputs. We comment on these difference below. Furthermore in order to better explain any 

such difference we have calculated the own elasticities derivable form the estimated translog 

specifications for both clusters and these are presented in Table 5.  For comparison purposes 

it also includes overall elasticities are calculated from a common (single cluster) translog 

specifically applied to the full sample. We calculated the own elasticities for each farm and 



the mean values and their standard deviations are summarised in table 5. Since the elasticities 

are in fact properties of the underlying production functions, they can be used to complement 

the  partial correlation plots effects. 

Let us first consider the capital input.  Cluster 1 employs more capital (Table 4) than cluster 2 

uses wider range of capital inputs (Table 4 and Figure 1). Furthermore cluster 1 is also more 

capital intensive in that in manages to extract considerably more output from the capital it 

employs. This can be ascertained from the fact that the average contribution of capital to 

output is higher for cluster 1 over the whole range of capital values. Taking into account the 

associated confidence intervals, which do not overlap, the difference in these effects is 

statistically significant.  One can also note that the confidence intervals for the effect of 

capital in cluster 2 are quitter narrow showing  that cluster 2 consists of  farms which are very 

homogeneous with regard to the contribution of capital to their output. In contrast to this the 

corresponding confidence intervals for cluster 1 are considerably wider.  If we compare the 

(own) elasticity of capital, it is higher in cluster 1 (Table 5), which also shows from the graph 

in that the slope of its production curve is steeper for cluster 1. Yet quite interestingly both 

the mean values and standard deviation for the capital elasticity in cluster 1 coincide (subject 

to of course rounding error) with those derived from a single cluster full sample estimation.  

Taking into account that there are smaller number, although much larger  farms in cluster 1, 

this shows that  this cluster defines the role of capital in Romanian agriculture. 

With regard to labour, again cluster 1 is characterised by larger farms employing both more 

labour and having a wider range of labour inputs (Table 4). Note however that on average the 

labour/capital mix is not that different between the two clusters (which can be inferred by 

dividing the average values for labour and capital in Table 4 and comparing the ratios).  

However, contrary to the case for capital, the farms in cluster 2 make much better use of 



labour in that they manage (except for the very small farms) to extract considerably more 

output per unit of labour employed (Figure 2). Hence we can view the sector 2 farms as more 

labour intensive. Intriguingly the average labour output elasticities for the two sectors are 

rather similar (Table 5).  Once again the dispersion of the labour effects looks larger in 

cluster 1, but if we look at the width of the confidence interval at similar values for the labour 

input and in particular for values observed over the larger farms in cluster 2 these are actually 

of similar magnitude. So unlike any of the other inputs contibutions, we cannot claim that 

labour effects are more homogenous in cluster 2. 

Although cluster 1 in general uses less own land (Table 4), the output from the two clusters 

with regard to own land is not statistically different (Figure 3). While cluster 2 appears to be 

more land intensive in terms of both the slope of its partial effect, as well as its own elasticity 

(Table 5), this effect does not appear to be statistically significant, mainly due to the large 

dispersion of the land effect in sector 1. We used here the monetary value for land  and 

therefore in this way accounted for the potentially different productive capacity of land. 

Owing to the latter one should expect that the partial effect of such value measured input 

would be similar across clusters. 

The difference between the land effects raises an interesting possibility. It might be that farms 

manage better own land and hence they could obtain higher output form it.  If this is the case 

cluster 1 could be heterogeneous with regard to this how well the corresponding farms 

manage rented in land. It is not possible in the present model to capture such heterogeneity. 

Furthermore the lack of separation between the partial land effects could be also due to the 

flexible functional form that leads to a smaller number of clusters. 

Finally consider the effects of  IC.  These mirror the case of capital. Cluster 1 comprises of 

larger farms, which are relatively more productive, both in terms of the average output they 



can extract from IC , but also that this output effect is statistically larger than this attributable 

to farm sin cluster 2. Similarly to the case of capital cluster 2 shows considerably 

homogeneity with regard to this effect. Furthermore the examination of the clusterwise and 

overall own elasticities mirror the case of the capital input in that cluster 1 dominates in 

defining the total contribution of IC in Romanian agriculture. 

 

Conclusions 

This paper uses unrestricted translog production function specification to cluster Romanian 

farms. Our results suggest that there are (at least) two very different farm types with distinct 

production functions. The larger cluster contains relatively smaller farms, which however 

cultivate larger land areas. In addition to this they are more labour intensive in that they 

extract more output form their labour input. The other cluster consist of smaller number of 

relatively larger farms whose production function is more capital intensive in that they 

manage to make better  use of their capital and intermediate consumption. This split 

alongside the capital-labour trade-off and in particular the much greater heterogeneity that we 

observe with regard to the smaller capital-intensive cluster suggests a traditional vs new 

farming technologies explanation of our results. In particular this mean that more traditional 

farming structures, most likely inheriting the technological constraints of the pre-transition 

era are identifiable with the labour intensive sector. There is however also a new emerging 

capital-based agriculture. The latter is considerably more heterogenous in terms of its 

production technology. It is therefore clear that the differences between these two types of 

farms are consistent with the legacy of central planning and emergence of new commercial 

farms during transition. There are two important implications of the above farming structure.  

First, the rise in global food prices would intensify the process of structural transformation 

exemplified the emergence of capital intensive farms.  Since the aggregate production 



function of Romanian agriculture can be viewed as weighted average of the tow underlying 

‘technologies’  this essentially means a transition from the more labour intensive into the 

more capital intensive  cluster.. Such a transformation could also perhaps surprisingly  avoid 

the detrimental effects of such transition  on overall employment due to the fact  that it does 

not entail the classical ‘substitution of capital for labour’. Note that in terms of their input 

mix  (i.e. the ratio of capital to labour) the two types of farms are very similar which means 

that transformation of traditional into new farms will not replace labour with capital, but 

essentially ‘upgrade’ capital with more productive one.  
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Table 1   Information Criteria Results for number of clusters 

Number of 

clusters BIC ICL 

1 2931.021 NA 

2 2831.105 2931.105 

3 2849.514 3783.277 

4 2864.836 3931.209 

5 2908.899 3906.923 

6 2956.215 4279.229 

 

Table 2.  Bootstrapped LR test  (5000 replications) 

Test P value 

2 (NULL) vs 1 clusters 0.72 

2 (NULL) vs 3 clusters 0.17 

 

  



Table 3. Estimated translog for overall sample and clusters 

 

All data 

 

Cluster 1 

 

Cluster 2 

 

Coefficient P-value 

 

Coefficient P-value 

 

Coefficient P-value 

(Intercept) 9.68 0.00 

 

10.64 0.00 

 

6.77 0.00 

capital -0.21 0.01 

 

-0.33 0.06 

 

0.08 0.20 

labour 1.01 0.00 

 

1.07 0.06 

 

0.49 0.00 

land 0.57 0.00 

 

0.72 0.00 

 

0.25 0.00 

ic -0.37 0.00 

 

-0.45 0.10 

 

0.08 0.18 

I(0.5 * capital2) 0.03 0.00 

 

0.03 0.00 

 

0.01 0.00 

I(0.5 * labour2) 0.05 0.16 

 

0.00 0.26 

 

0.31 0.00 

I(0.5 * land2) 0.13 0.00 

 

0.14 0.00 

 

0.16 0.00 

I(0.5 * ic2) 0.06 0.00 

 

0.06 0.14 

 

0.02 0.00 

capital*labour -0.03 0.05 

 

-0.06 0.10 

 

0.04 0.00 

capital*land -0.02 0.00 

 

-0.03 0.01 

 

-0.01 0.00 

capital*ic 0.01 0.07 

 

0.02 0.16 

 

-0.01 0.12 

labour*land -0.04 0.00 

 

0.02 0.03 

 

-0.20 0.00 

labour*ic -0.02 0.20 

 

-0.01 0.42 

 

-0.02 0.01 

land*ic -0.05 0.00 

 

-0.07 0.00 

 

-0.01 0.06 

Note: variable labels refer to variables in natural logarithms (i.e. capital is the natural 

logarithm of the capital variable) 

  



Table 4  Summary statistics for the clusters 

 

 

Cluster 1 

 

mean sd min max 

Output, 000s 1,530 22,563 0 506,143 

capital, 000s 472 2,219 0 37,216 

labour 14 54 0 680 

land 219 757 0 11,196 

ic, 000s 763 9,502 0 212,143 

     

 

Cluster 2 

 

mean sd min max 

Output  000s 225 660 1 9,978 

capital, 000s 197 732 0 15,334 

labour 6 14 0 142 

land 306 1,211 0 21,565 

ic, 000s 182 980 0 23,479 

 

 

Table 5  Elasticities (own) 

 
capital labour land ic 

All data     

Average 0.13 0.44 0.26 0.18 

SD 0.06 0.12 0.26 0.13 

Cluster1 

    Average 0.13 0.44 0.23 0.19 

SD 0.06 0.12 0.25 0.13 

Cluster2 

    Average 0.10 0.44 0.40 0.10 

SD 0.05 0.39 0.30 0.03 

 

  



Figure 1. Effect of capital 

 

 

Figure 2. Effect of labour 

 

 



Figure 3 Effect of land 

 

Figure 4. Effect of IC 

 


