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Abstract 
 
Using count models, this paper assesses the intensity of land and water management practices among 
smallholder maize farmers in Ghana and the factors driving the number of practices adopted. 
Farmers’ use of fertiliser, non-burning of farmland and ploughing-in of vegetative cover are the 
practices adopted the most. The paper cautiously notes that the farmers who combine three of the 
land and water management practices have the highest average productivity. Access to extension 
contact, credit and farmers’ experiences of food shocks are important driving factors. The findings 
have implications for a comprehensive land and water management policy within which different 
strategies are articulated to increase the productivity of the farmers. Fertiliser application, no 
burning, zero tillage and ploughing-in of the vegetative cover are important. However, the regression 
results for maize yields suggest that the adoption of a high number of the technologies might not 
necessarily result in better yields. 
 
Key words: intensity; land and water management practices; maize; policy measures; Ghana 
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1. Introduction  
 
The economies of most African countries are highly dependent on agriculture. While agriculture may 
have contributed significantly to improved growth performance in some countries, it is estimated that 
agriculture’s contribution is far less than its potential, and agriculture is growing slower than other 
sectors of the economy. There are productivity challenges for African agriculture, despite the 
significant technological advances that have taken place globally. Total factor productivity growth 
has averaged only 0.5% during the 2000s, well below the global average of 1.8% (Fuglie 2012). For 
Ghana, total factor productivity growth has averaged about 1.2% annually during the period 2001 to 
2009 (Fuglie 2012).  
 
Raising agricultural productivity provides impetus for agricultural transformation, sustainable 
poverty reduction and improved living standards (Timmer 1988; World Bank 2007). Ghana, like most 
countries in Sub-Saharan Africa, is faced with the challenge of finding a winning strategy for 
addressing stubbornly low agricultural productivity (Chapoto & Ragasa 2013), even though different 
production technologies have been extended to farmers over the years by both governmental and non-
governmental organisations (Evenson & Gollin 2003; World Bank 2013). While some non-
governmental organisations have partnered with government through the Ministry of Food and 
Agriculture (MoFA), others have initiated their own extension services to extend production 
technologies to farmers. Ultimately, the goals of the different stakeholders who have contributed to 
extending improved production technologies to farmers are similar: to help raise the productivity, 
output and income (and livelihood) of farmers (Evenson & Gollin 2003); to alleviate poverty and 
food insecurity (World Bank 2007); to increase the incomes of farm households; and to provide new 
employment opportunities (Minten & Barrett 2008; Noltze et al. 2013). 
 
Several productivity-enhancing technologies have been developed and promoted for maize in Ghana 
(Chapoto & Ragasa 2013). The Ghana Grains Development Project (GGDP), which ended in 1997, 
for example, was a large, long-term programme focusing on the maize sector. The GGDP involved 
developing and disseminating several varieties of maize, evaluating various agronomic practices, 
producing production guides, and making a heavy investment in the extension and dissemination of 
improved technologies. At the same time, the Sasakawa Global 2000 programme conducted farm 
demonstrations to test and promote modern varieties. One of the focus technology packages that was 
tested and promoted was the zero-tillage package. Other technologies have also been developed and 
promoted. These include (i) the use of fresh certified seed every season, or at most every three 
cropping seasons; (ii) fertiliser use (rate, method and timing); (iii) other soil fertility-management 
practices (applying both organic and inorganic fertiliser; intercropping, crop rotation or crop relay 
with nitrogen-fixing crops; fallow systems); and (iv) timely harvesting and proper storage 
(MoFA/CRI/SARI 2005; Chapoto & Ragasa 2013).  
 
This paper examines the intensity of and the factors influencing the adoption of land and water 
management (LWM) practices by maize farmers in Ghana. The objective is to help develop a better 
understanding of the drivers of intensity of adoption of LWM technologies. The analysis is expected 
to provide useful insights into smallholders’ choice of LWM practices, and the role played by farm-
specific as well as institutional factors in adoption intensity. In an operational environment in which 
farmers have to make ever more complex agronomic choices, it becomes increasingly important to 
understand the intensity of adoption (Sharma et al. 2011). 
 
Following Lohr and Park (2002) and Sharma et al. (2011), the number of technologies adopted was 
interpreted as a measure of the intensity and diversity of adoption. Count data models were employed 
in the analysis. Many existing studies model technology adoption using a dichotomous variable 
(adopt or not), where determinants of this choice are assessed econometrically (Fernandez-Cornejo 
et al. 2001). However, in a number of cases it is not appropriate to model technology adoption as a 
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simple dichotomous choice, as it is the combination of technologies employed that matters. In 
situations where a large number of techniques are available to farmers, technology adoption is more 
appropriately modelled as a multiple technology-selection problem. The literature on multiple 
technology adoption includes Rauniyar and Goode (1992), Chaves and Riley (2001), Fernandez-
Cornejo et al. (2001), Lohr and Park (2002), Cooper (2003), Isgin et al. (2008), Sharma et al. (2011), 
Teklewold et al. (2013), and Kassie et al. (2014; 2015). Rauniyar and Goode (1992) examined the 
adoption of seven technologies in a sample of maize farmers in Swaziland and found that the farmers 
did adopt specific sets of technologies, leading them to argue that, in implementing extension 
activities, emphasis should be on the adoption of a package of practices and not on specific practices 
in isolation. Teklewold et al. (2013) and Kassie et al. (2014) note that adopting a combined set of 
sustainable intensification practices (SIPs) provided more net income from maize than adopting them 
individually, suggesting that complementarities exist among new technologies being adopted. 
 
Lohr and Park (2002) and Isgin et al. (2008), in discussing the main assumptions underpinning a 
count of technologies as a proxy for intensity of adoption, note that (i) the adoption of any one 
technology does not preclude the adoption of any other, reducing the importance of the path 
dependence argument of Cowen and Gunby (1996); and (ii) there is no limit to the number of 
technologies adopted, as long as the last one adopted is profitable. Isgin et al. (2008), in a study of 
Ohio State farm operators, found that only 12% of the sample adopted more than 50% of the available 
technologies and reported evidence of diffused and partial adoption of the available technologies. 
Their count results show that several factors, including farm size, soil quality, farmer’s status of 
indebtedness and farm location, were significantly associated with adoption intensity. Similarly, 
Sharma et al. (2011) found that 22% of farms adopted more than 50% of the 18 technologies 
considered in a study of UK cereal farmers. They found that total area farmed was positively related 
to the number of technologies adopted, whereas the number of years of experience of the farmer was 
negatively related. 
 
2. Econometric methods 
 
The methods for examining technology adoption behaviour have been explained in the literature. In 
principle, technology selection can be modelled using a multinomial Logit or Probit specification, 
where the dependent variable is a categorical variable taking a different value according to the 
technologies selected. Count data models can also be used to model technology selection, in which 
case the dependent variable is the number of technologies selected. Count data models focus on 
adoption intensity. The existing count data literature on technology adoption typically employs 
parametric specifications such as the Poisson model or the negative binomial. The number of 
technologies adopted is the dependent variable, and a set of farm-level characteristics are the 
explanatory variables (Lohr & Park 2002; Isgin et al. 2008; Sharma et al. 2011). Lohr and Park (2002) 
reject the Poisson model in favour of the negative binomial, Isgin et al. (2008) employ Poisson and 
negative binomial specifications, and Sharma et al. (2011) employ both parametric (OLS, Poisson 
and negative binomial specifications) and non-parametric methods. Overall, Sharma et al. (2011) find 
that there is a reasonable degree of agreement between the results generated by the various methods.  
 
In this paper, the Poisson and negative binomial models were used to examine the intensity of 
technology adoption. The Poisson regression model, which is a suitable model for the estimation of 
count data (Greene 1997; 2000), was selected for the estimation of the farmers’ decisions on the 
number of LWM practices to adopt. The maize farmers made a series of discrete household decisions 
that can be computed across an aggregation of choices to a Poisson distribution. The Poisson 
regression model is the development of the Poisson distribution to a non-linear regression model of 
the effect of independent variables, xi, on a scalar dependent variable y. The density function for the 
Poisson regression is specified as: 
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This means that the coefficients of the marginal effects of the Poisson model can be interpreted as the 
proportionate change in the conditional mean if the jth regressor changes by one unit. Finally, the 
Poisson model sets the variance as equal to the mean, as follows: 
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This restriction of the equality of the mean and variance in the Poisson distribution is often not 
realistic, as it has been found that the conditional variance tends to exceed the mean, resulting in an 
over-dispersion problem (Cameron & Trivedi 1986; Grogger & Carson 1991; Winkelmann 2000). If 
an over-dispersion problem does exist, the conditional mean estimated with a Poisson model is still 
consistent, although the standard errors of β are biased downwards (Grogger & Carson 1991). A more 
generalised model to account for the over-dispersion problem is based on the negative binomial 
probability distribution, expressed as: 
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and  characterises the degree of over-dispersion (i.e. the degree to which the variance differs 
from the mean). That is, in the case of the negative binomial model, the variance is not equal to the 

mean; 2)/(  ixyV . Once the negative binomial model has been estimated, the presence of 

significant over-dispersion is given by the significance of the alpha coefficient. If the estimated alpha 
coefficient is significantly greater than zero, then over-dispersion is present and the estimated 
negative binomial model is preferable to the Poisson model. Otherwise, the negative binomial model 
reduces to the Poisson model. In this study, the test of equality of the mean and variance (no over-
dispersion) was performed to select between the Poisson and the negative binomial model. 
 

0
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When modelling farmers’ decisions on the number of technologies to adopt, particularly in a 
developing country, it may be important to consider the effect of the number of non-adopters in order 
to reveal the effect of excess zeros in the raw data (Long 1997; Greene 2000). To test whether the 
zero-inflated model fits to the data better, the Vuong (1989) test was performed.  
 
A shortcoming of most studies in which the intensity of technology adoption has been analysed is 
that a higher number of technologies adopted may not necessarily mean higher productivity and 
therefore better welfare for adopters. As a result, we estimated a land productivity function derived 
from an assumed well-behaved production function to check for the relevance of the number of the 
technologies adopted for higher yields. The land productivity function is specified as: 
 

),,,,,( iA ZLWMPSLFAqQ  ,                    (8) 

 
where QA is land productivity of maize measured in metric tons per hectare, A is land size in hectares, 
F denotes quantity of fertiliser used measured in 50 kilogram bags, L is labour equivalent measured 
in man days (female days have been converted into equivalent man days using a factor of 0.70), S is 
seed quantity measured in kilograms, LWMP is the predicted values of the Poisson regression 
regarding the number of LWM practices adopted, and Zi are other socio-economic variables. It is 
expected, a priori, that LWMP would have a positive relationship with land productivity. A neo-
classical land productivity function, in the form of a Cobb–Douglas production function, was 
estimated. Different forms of the land productivity function, based on different terms for LWMP, 
were estimated. The adjusted R-squared and root mean standard error (MSE) values of the fitted 
models were considered to select the suitable regression results for discussion.  
 
3. Data  
 
The data were collected by administering a pretested structured questionnaire to smallholder 
producers selected from seven districts in five regions of Ghana in March 2010. Samples were taken 
from the three main geographical locations, namely Guinea Savanna zone, Transition zone (the 
middle belt) and Coastal Savanna zone. Considerations for the purposive selection of the districts 
from these zones included production levels, potential for increased production, proliferation of 
farmer-based organisations (FBOs), availability of agricultural and financial services, and proximity 
to markets. The districts selected were East Manprusi in the Northern region (Guinea Savanna zone); 
Ejura and Sekyere East in the Ashanti region (Transition zone); Nkoranza and Atebubu in the Brong–
Ahafo region (Transition zone); Kwahu East in the Eastern region (Coastal Savanna zone); and North 
Tongu and Ketu South in the Volta region (Coastal Savanna zone). A total of 21 communities (four 
from East Manprusi, three from Ejura, two from Sekyere East, three from Nkoranza, two from 
Atebubu, two from Kwahu East, three from North Tongu and two from Ketu South) of smallholders 
were selected from a possible number of communities that could be enumerated. Within each 
community, a random sample of smallholder households was drawn at intervals of three to five 
houses, depending on the availability of a maize farmer in a selected house and the spatial distribution 
of houses across the study areas. 
 
The three study zones form part of the six major agro-ecological zones of Ghana: Rain Forest, 
Deciduous Forest, Forest-Savannah Transition zone, Coastal Savannah, Guinea Savannah and Sudan 
Savannahs (the latter two comprise the Northern (Interior) Savannah) (FAO 2005; Oppong-Anane 
2006). The main distinguishing climatic factor among the zones is rainfall. Rainfall distribution in 
the Transition and Coastal Zones is bimodal, giving a major season of 200 to 220 and 100 to 110 days 
and a minor growing season of 60 and 50 days respectively. In the Guinea Savanna zone, the unimodal 
rainfall distribution gives a growing season of 180 to 200 days (MoFA 2013). The mean annual 
rainfall is 1 300 mm, 800 mm and 1 100 mm for the Transition, Coastal and Guinea Savanna zones 
respectively (FAO 2005; MoFA 2013).  
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Rainfall largely determines the type of agricultural enterprise carried out in each zone (Oppong-
Anane 2006). The dominant land-use systems are annual food and cash crops in the Transition zone 
(with maize, roots and plantain as the main food crops), annual food, cash crops and livestock in the 
Guinea Savanna zone (with sorghum and maize as main food crops), and annual food crops in the 
Coastal Savanna zone (with roots and maize as main food crops). In Ghana, about 50% of maize is 
produced in the Transition zone, 15% in the Guinea Savanna zone and 6% in the Coastal Savanna 
zone, while the remaining 29% is produced in the other three agro-ecological zones (FAO 2005). 
 
The heterogeneous agricultural production structure indicates differences in the agricultural income 
structure across the regions (Breisinger et al. 2008). The forest zone remains the major agricultural 
producer, contributing about 43% of agricultural GDP, compared to about 10% contributed by the 
Coastal Zone, and 26.5% and 20.5% by the Southern and Northern Savannah Zones respectively. 
Export-oriented agricultural production plays an important role in total agricultural income for the 
Coast and Southern Savannah zones, while 90% of agricultural income in the Northern zone comes 
from staple crops and livestock (Breisinger et al. 2008). The poverty rate remains high, at 62.7% in 
the Northern Zone in 2005/2006, whereas it had dropped to 20% in the rest of Ghana (Breisinger et 
al. 2008). 
 
The survey returned 327 administered questionnaires from the smallholder households for maize, but 
292 maize farmers representing 89.3% of the maize sample were used for this study. Furthermore, 
the continuous variables used for the productivity regression were cleared of outliers. The list of the 
13 main technologies employed for LWM practices by the respondents, and their rate of adoption, 
are presented in Table 1. 
 
Table 1: Land and water management practices  

Practice  Percentage of households practising (multiple responses) 
Apply chemical fertilisers  66.1 
No burn/land clearing (cutlass/hoe) 47.6 
Plough-in vegetative cover 40.4 
Zero tillage (chemical) 38.4 
Ploughing across slopes 26.4 
Cover cropping 19.5 
Mulching  18.2 
Apply manure  16.8 
Ridging (including ridging across slopes) 12.0 
Mounding 7.2 
Earth bunding 5.4 
Stone bunding 3.1 
Irrigate crops 2.4 

 
The use of practices such as fertiliser application, non-burning of land and the ploughing-in of 
vegetative cover is relatively high. The use of other activities, such as bunding and irrigation of crops, 
is much lower, possibly due to their laborious nature and initial costs. 
 
The mean number of LWM practices adopted was 3.0, with a standard deviation of 1.87, and the 
modal number was 2. Only 9.58% of the maize farmers adopted more than 50% of the technologies 
considered (Table 2), compared to 12% and 22% estimated by Isgin et al. (2008) and Sharma et al. 
(2011) respectively. About 4.79% of the farmers practised none of the LWM practices. Maize farmers 
who adopted any three of the LWM practices were the most productive, with an estimated average 
land productivity of 2.43 tons/ha. Among the farmers who had adopted three of the LWM practices, 
those (8.57%) who had adopted the technology of no burning, zero tillage and ploughing-in of the 
vegetative cover were the most productive (6.03 tons/ha), followed by those (8.57%) who applied 
chemical fertilisers, ploughing across slopes and mulching (2.88 tons/ha). The results suggest that, 
besides fertiliser application, no burning and ploughing across slopes, LWM practices such as zero 
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tillage, mulching and ploughing-in of the vegetative cover, which allow some of the natural nutrients 
to be returned to the soils, are important for increasing farmers’ productivity. However, these 
estimated averages should be interpreted with caution, since the confounding factors have not been 
controlled for. 
 
Table 2: Intensity of practices and land productivity  

Number of land and water management practices Frequency Percent Land productivity (tons/ha) 
0 14 4.79 2.10 
1 38 13.01 1.41 
2 76 26.03 1.90 
3 70 23.97 2.43 
4 43 14.73 1.53 
5 23 7.88 1.79 
6 14 4.79 2.18 
7 7 2.40 1.31 
8 1 0.34 1.20 
9 3 1.03 1.23 

10 2 0.68 0.90 
11 1 0.34 0.90 

Total 292 100.00  

 
The tetrachoric correlation coefficients presented in Table 3 show that most (70.6%) of the significant 
correlation coefficients are less than 0.5 (i.e. r < 0.5). Rauniyar and Goode (1992) and Sharma et al. 
(2011) interpret correlation coefficients greater than 0.5 as high. Thus, in general, the estimated 
correlations among maize farmers’ selection of LWM technologies are not high. High, positive and 
significant correlation coefficients among technologies suggest that technologies are selected 
simultaneously, whereas high, negative and significant correlation coefficients suggest that 
technologies turn toward mutually exclusiveness (Rauniyar & Goode 1992; Sharma et al. 2011). 
Sharma et al. (2011) revealed that the farmers employ a mix of integrated pest management 
technologies. The estimated high and positive correlation between earth bund and stone bund is 
because the two technologies are similar and their use together, depending on the available materials, 
ensures a tight bund. The estimated correlation between earth bund and either mulching, manure 
application or ridging is also high and positive, suggesting that the pair are selected simultaneously. 
Similarly, the estimated correlation between stone bund and either cover cropping, ploughing across 
slopes, manure application, fertiliser application or ridging is high and positive. Ridging and manure 
application are also highly and positively correlated, meaning they are adopted together by the 
farmers.  
 
Defining significant correlation coefficients between 0.25 and 0.50 as moderate suggests that manure 
application is moderately and positively correlated with no burning, ploughing across slopes and 
ploughing-in vegetative cover, but negatively correlated with zero tillage. The estimated tetrachoric 
correlation coefficients suggest that manure application and zero tillage are mutually exclusive 
technologies for LWM. Similarly, ploughing-in vegetative cover and mulching are mutually 
exclusive technologies (Table 3). Zero tillage and no burning are moderately selected together. 
Fertiliser application, which is used by most of the maize farmers (66.1%), is either moderately or 
lowly correlated with the other LWM practices, except for stone bund. Thus, the exclusive promotion 
of the use of fertiliser, for example under the current fertiliser subsidy programme that was reinitiated 
in 2008, may limit the adoption of other important practices of LWM.  
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Table 3: Tetrachoric correlation estimates of land and water management practices  
LWM 
practices 

Earth 
bunding 

Stone 
bunding 

Mounding Mulching  
Cover 
cropping 

No 
burning 

Zero 
tillage 

Plough-in 
vegetative 
cover  

Ploughing 
across 
slopes  

Apply 
manure 

Apply 
fertiliser 

Irrigate 
crop 

Ridging 

Earth 
bunding 

1.000             

Stone 
bunding 

0.894*** 1.000            

Mounding -1.000 -1.000 1.000           
Mulching  0.519*** 0.344* -0.351 1.000          
Cover 
cropping 

0.187 0.650*** 0.157 -0.065 1.000         

No burning 0.432*** 0.347* 0.000 0.251** 0.182 1.000        

Zero tillage 0.069 0.069 0.124 
0.375**
* 

0.101 0.469*** 1.000       

Plough-in 
vegetative 
cover  

0.120 0.419** -0.166 -0.256** 0.031 0.173* 0.086 1.000      

Ploughing 
across 
slopes  

0.385** 0.567*** 0.034 0.189* 0.110 0.243** -0.098 0.260*** 1.000     

Apply 
manure 

0.544*** 0.686*** -0.173 0.006 0.069 0.362*** -0.252** 0.246** 0.236** 1.000    

Apply 
fertiliser  

0.335* 1.000** 0.152 0.221* 0.260** 0.120 0.271*** -0.096 0.149 0.099 1.000   

Irrigate crop 0.238 0.369 -1.000 -1.000 0.292 -0.051 -0.113 -0.135 -0.179 -1.000 -0.100 1.000  
Ridging 0.514*** 0.845*** 0.058 0.102 0.180 0.143 0.241** 0.209* 0.231* 0.561*** 0.089 0.267 1.000 

*** denotes 1% significance, ** denotes 5% significance and * denotes 10% significance
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Table 4 presents the description, mean and standard deviation of the variables included in the 
regression estimations. The average size of per capita land cultivated by the maize farmers was 
about 0.40 ha. About 76% of the respondents were males. Most of the farmers (53.1%) had a basic 
level of education, but 29.4% of them had no formal education. Also, most of the maize farmers 
had contact with extension agents during the 2009 crop season (66.8%), saved towards farm 
investments (69.9%) and were members of FBOs and/or community-based organisation (CBOs) 
(58.5%). Few of the sampled farmers’ households (14.4%) normally experienced severe food 
shortages. The mean of the predicted value of the number of technologies adopted from the 
estimated count (Poisson) model is 3.04, with minimum and maximum predicted values of 1.71 
and 5.41 respectively.  
 
Table 4: Description and summary statistics of regression variables 

Variable Description Mean Std. dev. 
Count regression    

Number (intensity) of 
practices 

Number of LWM practices adopted 3.034 1.8737 

Gender Sex of the respondent (male = 1; female = 0) 0.764 0.4255 

Extension contact 
Had extension contact in 2009 farm season (Yes = 1; No = 
0) 

0.668 0.4718 

Save towards farm 
investments 

Respondent saves towards farm investments (Yes = 1; No 
= 0) 

0.699 0.4596 

Experience severe food 
shortage 

Household normally experiences severe food shortages 
(Yes = 1; No = 0) 

0.144 0.3515 

FBO membership 
Respondent is member of FBO and/or CBO (Yes = 1; No 
= 0) 

0.586 0.4934 

Access to credit 
Respondent has access to agricultural credit (Yes = 1; No 
= 0) 

0.366 0.4827 

Own bicycle Respondent has own bicycle(s) (Yes = 1; No = 0) 0.668 0.4718 
Own land for farming Respondent has own land for farming (Yes = 1; No = 0) 0.589 0.4929 
Land per capita Maize farm size per household member (Ha/person) 0.400 0.5858 
Education status Respondent’s educational level   

 No education No education = 1, otherwise = 0 0.294 0.4566 
 Basic education Basic education = 1, otherwise = 0 0.531 0.4999 
 Secondary/higher Secondary/higher education = 1, otherwise = 0 0.174 0.3803 
Maize belt Respondent’s location (Transition zone = 1; otherwise = 0) 0.524 0.5003 
Added variables for yield 

regression 
   

Land productivity  Output of maize per plot size ( metric tons per hectare) 1.864 1.9318 
Plot size Size of maize plot cultivated (hectares) 2.326 2.2984 
Fertiliser quantity Quantity of fertiliser applied (50 kilogram bags) 7.776  11.6086 
Labour quantity  Total labour equivalent (mandays) 156.979 179.3640 
Seed quantity Quantity of seed maize planted (kilograms) 59.350 85.4910 

Number of practices 
Predicted value of number of LWM practices adopted 
(from count regression) 

3.044 0.5414 

 
4. Regression results and discussion 
 
The regression results are presented in Table 5. The results indicate a reasonable degree of 
uniformity regarding the sign of the parameter estimates and the statistical significance at either 
5% or 10% for both the Poisson and the negative binomial specifications. The Poisson model 
estimation is preferred to the negative binomial model, and therefore is considered for further 



AfJARE Vol 12 No 2  June 2017    Mensah-Bonsu et al. 
 

151 

analysis and discussion. This is because the estimated alpha coefficient for the negative binomial 
model is insignificant, suggesting the absence of over-dispersion. Also, the Poisson model has 
marginally lower AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) 
estimates than the negative binomial model. The Vuong test result for the zero-inflated Poisson 
(ZIP) model suggests that, at the 5% level of significance, the standard Poisson model is the 
suitable model for describing the maize farmers’ intensity of adoption of LWM practices. The 
estimated pseudo R-squared value is low (2.42%), but the overall significance of the Poisson 
model, reported by the Wald chi-squared value, is satisfactory.  
 
Maize farmers’ contact with extension, having experienced severe food shortages, having access 
to agricultural credit, and being located in the maize belt are positively and significantly associated 
with the intensity of technology adoption. On the other hand, a maize farmer being a member of a 
FBO/CBO and land per capita cultivated are negatively and significantly related to the intensity of 
technology adopted.  
 
Table 5: Regression results of the factors influencing the intensity of adoption of land and 
water management practices 

Variable  
 

Poisson regression Negative binomial regression 
Coefficient Robust 

standard error 
Coefficient Robust 

standard error 
Gender  0.050 0.0851 0.052 0.0848 
Extension contact 0.169** 0.0829 0.168** 0.0825 
Save towards farm investment 0.064 0.0826 0.067 0.0822 
Experience severe food shortages 0.274** 0.1186 0.274** 0.1190 
FBO member -0.138* 0.0792 -0.139* 0.0794 
Credit access  0.138* 0.0820 0.138* 0.0821 
Basic education1 -0.109 0.0763 -0.109 0.0762 
Secondary/Higher education1 0.019 0.1049 0.021 0.1041 
Land per capita -0.099** 0.0475 -0.099** 0.0474 
Own land for farming  0.095 0.0728 0.096 0.0726 
Own bicycle 0.055 0.0766 0.056 0.0762 
Maize belt  0.134* 0.0707 0.137* 0.0704 
Constant  0.819*** 0.1260 0.814*** 0.1266 
Ln(alpha) 

  
-4.092 1.4804 

Alpha 
  

0.017 0.0247 
Obs 292 

 
292 

 

Wald chi2 (14) 25.49 
 

25.07 
 

Prob > chi2 0.0127 
 

0.0145 
 

Pseudo R2 0.0242 
   

Log pseudo-likelihood -561.996 
 

-561.776 
 

AIC 1 149.992 
 

1 151.555 
 

BIC 1 197.789 
 

1 203.030 
 

Vuong test of ZIP vs. standard Poisson: z = 1.10   Pr > z = 0.1359 
1 The comparative level of education is no formal education 
***, ** and * are 1%, 5% and 10% critical levels respectively  
 
The positive and significant association of the extension contact variable suggests that exposing 
(more) farmers to agricultural extension advice could help to increase the adoption of more LWM 
practices. DeGraft-Johnson et al. (2014) suggest that, for technologies that require some level of 
technical knowhow, having direct contact with extension services and projects increases the 
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acquisition of relevant knowledge. Thus, if the high farmer–extension ratio can be reduced, the 
adoption of technologies will be enhanced. Ghana’s growth and poverty-reduction strategy for 
2006 to 2009 did seek to intensify these linkages, but a major challenge remains the low extension 
officer–farmer ratio, which was at 1:1 400 by the end of 2004 (NDPC 2005) and 1:1 500 in 2009 
(NDPC 2010), falling short of the 1:1 200 target. Efforts therefore are needed to increase the 
number of extension officers and extension contact in the system, and to harness new information 
and communications technology (ICT) media. 
 
Having access to agricultural credit was positively associated with the intensity of LWM practices 
adopted. Credit support to the agricultural sector in general continues to lag behind the support to 
other sectors of the economy, and this should be considered as a matter for policy action. 
Furthermore, while it was expected that belonging to a FBO/CBO, which normally acts as a group, 
would lead to a positive relationship with the adoption of technology, and in this case LWM 
practices, the regression result suggests otherwise. Probably, the FBOs/CBOs and their members 
do not have the capacity to access and adopt these practices, hence the negative relationship. Isham 
(2002) found out that participatory social affiliations, acting as forms of social capital, had a 
positive effect on the technology adoption decision in Tanzania. Similarly, Munasib and Jordan 
(2011) found that associational memberships had positive effects on the decision to adopt 
sustainable agricultural practices among Georgian farmers, and on the extent to which the farmers 
adopted these practices. 
 
Interestingly, the maize farmers who normally experienced severe food shortages adopted more 
LWM practices (Table 5). This positive relationship means that the adoption of more LWM 
practices serves as an adaptation strategy in response to the regular experience of severe food 
shortages, perhaps as a result of irregular rainfall patterns. In a related study, Abdulai and Huffman 
(2014) reveal that the adoption of field ridging increased rice yields of farmers in northern Ghana. 
Ouédraogo et al. (2001) conclude that compost application is a sound technology for combating 
soil degradation and could contribute to increased food availability. Thus, our empirical result 
confirms the need for strategies to assist individuals and communities that experience food 
shortages on a regular basis as a result of rainfall/water shortages to increase their production 
through the introduction and adoption of new/improved technology. This implies that new 
technologies, like LWM practices, could be implemented as an integral part of relief programmes 
to assist farmers and rural communities in managing production risk.  
 
Another important result is the negative and significant association due to per capita land cultivated 
by the maize farmers. The negative association implies that, as the relative amount of land 
cultivated declines due to increasing population pressure, farmers adopt more LWM practices. 
Thus, LWM practices that encompass a number of intensification efforts are a direct response to 
an increase in household populations relative to the amount of land cultivated in order to produce 
more. Sharma et al. (2011) and Isgin et al. (2008) have estimated that the total area farmed is 
positively related to the intensity of technology adopted.  
 
The location variable is positive and significant, which means that farmers located in the maize 
belt adopt more LWM practices than their counterparts in other locations. This result may be 
interpreted to mean that the intensity of adoption of a technology for a targeted crop will be high 
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in locations where the crop is highly cultivated, and therefore the specificity of adaptive 
technologies for different areas may sometimes be crucial.  
 
As far as the relationship between land and water management practices and yield are concerned, 
the regression results for the land productivity functions are presented in Table 6. The estimated 
forms that included the terms for LWMP gave better adjusted R-squared and root MSE values than 
the estimated form that excluded LWMP. Similarly, they allowed socio-economic variables, 
namely gender, access to credit and extension contact, to count as explanatory variables, at least 
at the 10% level of significance, for the neo-classical land productivity function compared to the 
estimated form that excluded the LWMP term. Only the estimated form that included the natural 
logarithm terms of LWMP had a significant value for LWMP, hence the discussion is based on this 
estimated form.  
 
As expected, conventional inputs, namely quantities of fertiliser, seed and labour employed, had 
positive and significant effects on land productivity. Similarly, the relationship between land 
productivity and size of the land cultivated was negative and significant, supporting the stylised 
inverse relationship between farm size and land productivity (e.g. Carletto et al. 2013; Gucheng et 
al. 2013; Byiringiro & Reardon 1996). The number of LWM practices used had a negative 
relationship with land productivity (yield) and were significant at the 10% level. The net effect of 
LWMP was negative, with an estimated mean elasticity of 0.7885 ( lnQA / ln LWMP = -2.8961 
+ (2 x 0.960 x lnLWMP)). Thus, a higher number of LWM practices adopted might not lead to 
higher land productivity.  
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Table 6: Regression results for land productivity (yield) 

Variable  
Coefficient 
(standard error) 

Coefficient 
(standard error) 

Coefficient 
(standard error) 

Coefficient 
(standard error) 

Lnplotsize 
-0.607*** 
(0.0777) 

-0.680***  
(0.0797) 

-0.674*** 
(0.0798) 

-0.677*** 
(0.0798) 

Lnfertilizer qty 
0.317*** 
(0.0386) 

0.327*** 
(0.0382) 

0.327*** 
(0.0383) 

0.327*** 
(0.0383) 

Lntotal labourequivalent 
0.145*** 
(0.0554) 

0.152*** 
(0.0554) 

0.158*** 
(0.0552) 

0.155*** 
(0.0553) 

Lnseedqty 
0.147*** 
(0.0532) 

0.173*** 
(0.0530) 

0.169*** 
(0.0530) 

0.171*** 
(0.0530) 

Lnnumber of technologies 
 -2.896* 

(1.7552) 
  

Lnnumber of technologies 
squared  

 0.960 
(0.7813) 

  

Number of technologies 
  -0.846 

(0.5201) 
1.246  
(1.0220) 

Number of technologies 
squared 

  0.094 
(0.0783) 

 

Square root of number 
technologies 

   -5.268  
(3.6441) 

Gender 
0.117 
(0.0896) 

0.179** (0.0903) 0.171* 
(0.0903) 

0.175* 
(0.0903) 

Extension contact 
0.089  
(0.0848) 

0.162* 
(0.0864) 

0.158* 
(0.0867) 

0.161* 
(0.0865) 

Maize belt 
0.592*** 
(0.0893) 

0.679*** 
(0.0918) 

0.673*** 
(0.0920) 

0.677*** 
(0.0920) 

Credit access  
0.070 
(0. 0804) 

0.162* 
(0.0848) 

0.161* 
(0.0850) 

0.162* 
(0.0849) 

Constant  
5.357*** 
(0.2987) 

7.069*** 
(1.0081) 

6.747*** 
(0.8672) 

10.436*** 
(3.2372) 

Number of obs. 
F – Value  
Prob > F 
R-squared  
Adj R-squared  
Root MSE    

275 
25.94 
0.0000 
0.4383 
0.4214 
0.6010 

275 
22.49 
0.0000 
0.4600 
0.4396 
0.5914 

275 
22.26 
0.0000 
0.4575 
0.4369 
0.5928 

275 
22.34 
0.0000 
0.4588 
0.4383 
0.5921 

 
5. Conclusions and policy implications 
 
Technology adoption is crucial for the enhanced productivity of farms. This study examined the 
factors influencing the intensity of adoption of water and land management technologies by maize 
farmers in Ghana. Primary data was analysed using the Poisson and negative binomial regression 
models, and a Cobb–Douglas specification of the land productivity function.  
 
The results of the descriptive statistics should be used with caution, as confounding factors have 
not been controlled for. The mean and modal numbers of LWM practices adopted are 3.0 and 2 
respectively. Only 10% of the maize farmers adopted more than 40% of the technologies 
considered, and the estimated correlations among maize farmers’ selection of LWM technologies 
are not high. 
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The empirical results of the fitted Poisson model reveal that access to extension services, 
agricultural credit, regular experience of severe food shortages, smaller amount of farmland per 
capita and location in the major maize belt have a positive influence on the number of LWM 
technologies employed. The regression results for land productivity suggest that a higher number 
of technologies adopted might not necessarily lead to an increased yield of maize for the farmers.  
 
The findings have implications for the formulation of a comprehensive LWM policy within which 
different strategies are articulated for increasing agricultural production. The recently implemented 
fertiliser subsidy programme is one such strategy, but a programme that promotes the use of zero 
tillage and ploughing-in of the vegetative cover to help restore natural nutrients to the soils as well 
as to minimise erosion is also recommended. Policy measures could help to intensify these 
practices, which might also contribute to higher farm productivity. The provision of improved 
extension services and agricultural credit should be strengthened to facilitate the adoption of 
technology. The findings of the study also suggest that LWM practices could be used as mitigating 
measures to help raise the production of those who regularly experience severe food shocks. In 
particular, a new agricultural technology could be implemented as an integral part of relief 
programmes to assist farmers and the rural communities to manage production risk, although the 
adoption of a high number of technologies might not be relevant. 
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