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Abstract: 

 
We look at the trade-off between smallholder cocoa intensification and the ecosystem 

in Indonesia and investigate the determinants of environmental efficiency in cocoa production. 

In our analysis, we apply a distance output function that includes cocoa production and the 

abundance of native rainforest plants as outputs. Our data set, based on a household and 

environment survey conducted in 2015, allows us to analyze 208 cocoa producers with both 

measured and self-reported data. We find that the intensification of cocoa farms results in 

higher ecosystem degradation. Additionally, the estimations show substantial mean 

inefficiencies (50 percent). On average, the efficiency scores point to a possible production 

expansion of 367 kg of cocoa per farm and year, to a possible increase of 43680 rainforest 

plants per farm, or to a possible acreage reduction of 0.52 hectares per farm. Finally, our results 

show that agricultural extension services have a substantial role in increasing efficiency.  
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1. Introduction 

 

1.1 Background 

 

The global demand for cocoa grew steeply over the last 15 years. This increase was 

primarily due to the population and economic growth of the Asian and African countries 

(ICCO, 2014; Squicciarini and Swinnen, 2016). Growing demand led to increased cocoa prices 

which, together with the incentives by government subsidies for the sector, triggered farmers 

to increase production by raising cultivated land and intensification (Teal et al., 2006).  

As a consequence of the acreage expansion, the more fertile rainforest soils, and the 

lack of other available land, cocoa plantations are increasingly intruding into the Indonesian 

rainforest, which is a world biodiversity hotspot hosting a large number of endemic species 

(REDD, 2012).1 Findings from Frimpong et al. (2007) show a similar phenomenon in Africa. 

The production expansion into rainforest areas threatens biodiversity conservation and the 

functionality of ecological systems, and it contributes to climate change (Asare, 2005).  

The Indonesian Government announced the Gernas Pro Kakao revitalization program 

(KKPOD, 2013) for the cocoa industry in 2009. It was established to increase the adoption of 

pesticides and fertilizers to restore soil nutrients and the use of enhanced cocoa seedlings to 

boost productivity. However, the support of intensification and the ensuing increase in cocoa 

production can also cause environmental deterioration and raise concerns about biodiversity 

conservation (Asare, 2005). 

Welford (1995) consolidates the widespread definition of sustainable development into 

three components. First, the environment is not observed separately from the economic process 

but is included in it. Second, the prospective recognition of resources and third, the equal 

distribution of goods between all members of society. 

Agriculture is a crucial source of income for many low-income households in countries 

such as Indonesia. However, the benefits of income generation must be weighed against 

possible environmental effects such as nutrient losses, pollution, biodiversity losses, and 

climate change effects. The concept of environmental efficiency was developed in the 

economics literature to describe how the performance of environmental elements meet human 

                                                 
1 Indonesia has only 1.2 percent of the world’s land area. However, its forests host 11 percent of all plant species, 
12 percent of all mammal species, 17 percent of all bird species, 16 percent of all reptile and amphibian species, 
33 percent of all insect species, and 24 percent of all fungi species. In this country, 772 species are threatened or 
endangered, among them 147 mammal species. Moreover, 20 of Indonesia’s 40 primate species have lost more 
than 50 percent of their original habitat in the last ten years, among them orangutans (FAO, 2010). 
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demand (Huppes and Ishikawa, 2005). The World Business Council for Sustainable 

Development (WBCSD, 1992) probably first provided a formal definition of environmental 

efficiency. They describe environmental efficiency as a ratio of reduced environmental impact 

and increased production value. 

The goal of this paper is to study the environmental efficiency of cocoa production in 

Sulawesi, Indonesia. This region is an important example of environmental degradation due to 

economic development in terms of agricultural expansion and intensification. On this island, 

80 percent of the rainforests were gone by 2010 causing, sometimes, irreversible losses of 

biodiversity (FAO, 2010).  

 

1.2 Contribution 

 

Our research investigates the scope for increasing the environmental efficiency of 

Indonesian cocoa production as a means of fostering sustainability. We estimate based on 

household, agricultural and environmental surveys and stochastic frontier analysis (Coelli et 

al., 2005), the environmental efficiency of production. With the results, we aim to determine 

the magnitude of the attainable efficiency increases, and the methods that can be used to attain 

them.  

A number of studies (Ruf and Schroth, 2004; Schroth et al., 2004; Scherer-Lorenzen et 

al., 2005a) address various issues related to the environmental effects of cocoa farming. 

However, these papers do not deal with efficiency. Efficiency estimations are available for the 

large producing countries such as Ghana: Besseah and Kim (2014), Nigeria: Awotide et al. 

(2015), and Indonesia: Effendi et al. (2013). However, none of them consider the 

environmental effect of production. In order to do this, we include an environmentally relevant 

variable, the abundance of native rainforest plants, in the analysis. We use this, together with 

the cocoa production quantity, as multiple outputs in an output distance function (Fare et al., 

2005).  

Furthermore, previous studies analyze the effect of shading trees and intercropping only 

on efficiency and this leads to inconclusive results (Besseah and Kim, 2014; Nkamleu et al., 

2010; Ofori-Bah and Asafu-Adjaye, 2011). We include these variables in the production 

frontier because we assume that they have a direct effect on production. Additionally, unlike 

previous studies in Indonesia, we include the Gernas Pro Kakao government program in our 

analysis. 
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Moreover, based on Maytak (2014), we collect both measured and self-reported data to 

improve the reliability of estimation. He synthesizes results from cocoa studies using household 

data and shows that self-reported data can exhibit significant bias. For example, he reports an 

average of 10 percent underestimation of farm size when self-reported, with substantial 

deviations from farm sizes 10 hectares and above. 

  Our research sheds more light on the environmental effects of cocoa production and 

on the dissonances between economic and environmental objectives. We focus on yield 

expansion because, with appropriate technologies, it has a smaller negative effect than acreage 

expansion. Our results help to inform policies and practices to sustainably improve yields and 

income, thus reducing deforestation. The results indicate which investments produce the 

highest marginal benefits: for example, improving education or access to financing or to 

extension services (Ingram et al., 2014). 

 

2. Methodology 

 

2.1 Multi-output frontier model 

 

In the economic literature, there are three main frameworks to measure environmental 

efficiency. First, one can compare the environmental performances of production units 

(Yaisawarng and Klein, 1994). Second, one can use environmental variables as inputs in the 

production function (Reinhard et al., 2002). In the latest methodology, environmental effects 

are treated as outputs of production (Fare et al., 2005). Following Picazo-Tadeo et al. (2014), 

we choose this third framework to account for environmental outputs.  

Efficiency is the capability to maximize outputs given a level of inputs used in the 

production. Debreu (1951) introduced the first concept of creating a production frontier to 

measure efficiency. This led to two main empirical methods for frontier estimation: the 

deterministic Data Envelopment Analysis (DEA) and the parametric Stochastic Frontier 

Analysis (SFA). We assess efficiency using the parametric method since it can differentiate 

between technical inefficiency and the effects of random shocks (Coelli et al., 2005). The most 

established SFA model is based on the output distance function. It is used by a number of 

researchers including Brümmer et al. (2006). 

According to Coelli et al. (2005), the output distance function treats inputs as fixed and 

extends output vectors as long as the outputs are still technically feasible:  
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, 0: ∈              (1) 

where  represents the set of feasible output vectors (y) which can be produced using the 

input vectors (x). ,  describes the technology completely and gives the reciprocal of the 

maximum proportional expansion of the output vector with given inputs. It is linearly 

homogeneous, non-decreasing, and convex in outputs and non-increasing and quasi-convex in 

inputs. For two outputs, Figure 1 depicts the distance function in output space (Brümmer et al., 

2006). The output set  is bounded by the production-possibility frontier (PPF), which 

represents the technically efficient points for all output combinations, given the input 

combination x. To determine the value of the distance function, all observed points of 

production are scaled radially toward the output set boundary. The distance function shows the 

relation of a given output vector (  in Figure 1) to the maximal feasible output with 

unchanged output mix ( 	in Figure 1). The output orientated measure of technical efficiency 

equals the reciprocal of the output distance function: 

 1/ , .               (2) 

It is difficult to estimate the output distance function directly with ordinary least squares 

(OLS) or maximum likelihood (ML) methods because its value is unobserved. However, we 

can transform the function into an estimatable equation by exploiting its linear homogeneity 

property in outputs. A possible way to impose this condition is by normalizing the output 

distance function by an output (Coelli et al., 2005). We choose y1, which leads to the following 

expression: 

, , .              (3) 

Subsequently, taking the log of both sides and rearranging yields 

ln ln , ln ,            (4) 

In this case, the technical efficiency of farm i can be written as  

	 	 	                (5) 

where ui is a non-negative unobservable term assumed to be independently and identically 

distributed as μ , . Finally, substituting equations (2) and (5) into (4), and then adding a 

random error term vi that is independently and identically distributed as μ ,  and 

independent of ui gives 

ln ln ,              (6) 



6 
 

B 

P(x) 

A=y 

y1 

  y
2
 

O 

,  

The parameters of the distance function in equation (6) must theoretically satisfy the 

regularity conditions: monotonicity and curvature (Coelli et al., 2005). Because the Cobb-

Douglas production function has the wrong curvature in the yi/y1i space of a distance function 

framework, we use a translog functional form. In this function, the inclusion of squared and 

interaction terms provides a high level of flexibility, an easy calculation, and the possibility to 

impose homogeneity (Brümmer et al., 2006). 

The extension of our model in equation (6) enables us to measure how household 

characteristics influence efficiency. We choose a specification proposed by Coelli et al. (2005), 

which models the mean of the technical inefficiency ( ) as a function of several variables: 

               (7) 

where  is a vector of farm-specific factors that are assumed to affect efficiency,  is a vector 

with parameters to be estimated, and  is an independent and identically distributed random 

error term. If the estimated parameter is positive, then the corresponding variable has a negative 

influence on technical efficiency.  

 

Figure 1: Output distance function for two outputs 

  

  

Source: Brümmer et al. (2006). 
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2.2 Estimation issues 

 

 We look at three issues of the statistical inference: the estimation technique of the 

frontier model, the estimation technique of the inefficiency model, and endogeneity. 

First, standard techniques such as OLS are inappropriate for estimating the 

unobservable frontier function from observable input and output data because they focus on 

describing average relationships. Therefore, we base the parameters on ML. Before carrying 

out the estimation, each variable is normalized by its sample mean. Given this transformation, 

the first-order coefficients can be viewed as partial production elasticities at the sample mean 

(Coelli et al., 2005).  

Regarding the second inference issue, Greene (2008) points out that researchers often 

incorporate inefficiency effects using two-step estimation techniques. In the first step, the 

production function is specified and the technical inefficiency is predicted. The second step 

regresses the assumed characteristics on the predicted inefficiency values via OLS. This 

approach leads to severely biased results. The issue is addressed by using a simultaneous 

estimation that includes the efficiency effects in the production frontier estimation. 

 Furthermore, the direct inference of a stochastic frontier may be susceptible to 

simultaneity bias that occurs if each farmer selects the output and input levels to maximize 

profit for given prices. But no simultaneity bias ensues if farmers maximize expected rather 

than actual profit (Coelli et al., 2005). We make this reasonable assumption meaning that 

technical efficiency is unknown to producers before they make their input decisions. Thus, the 

quantities of variable inputs are largely predetermined and uncorrelated with technical 

efficiency. 

Finally, according to Brümmer et al. (2006), several studies also question the 

transformation of the distance function by applying the ratio method. For example, Kumbhakar 

and Lovell (2000) argue that the Euclidean norm of output model, which avoids the choice of 

a specific output, might be less susceptible to the endogeneity bias than the ratio model. 

However, Sickles et al. (2002) conclude that in the stochastic production frontier context, the 

ratio of two output variables is not endogenous, even if the output levels are. Another advantage 

of the ratio transformation is that in this model, the degree of multicollinearity is considerably 

smaller than in the norm model.  
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3. Empirical specification  

 

3.1 Production frontier model 

 

The translog output distance function for the observation i with two outputs, three 

inputs, and five dummy variables is specified as: 

	 ∑ ∑ ∑

∑ ∑            (8) 

where the unit of observation is the farm of household i, y1i is the amount of cocoa beans 

harvested in kilograms, y2i is the environmental output, xk is a vector of observations on inputs, 

Dj is a vector of observations on dummy variables characterizing the production process, the 

’s, ’s, ’s, and ’s are unknown parameters to be estimated, v is a random error term, and 

finally u is a non-negative unobservable variable representing inefficiency. 

 Based on Gockowski and Sonwa (2011), we use plant abundance as a measure of the 

environmental output y2. We did not include tree biomass and other crop outputs in the 

production function because of the small number of forest and other crop trees on the sample 

cocoa farms. 

We draw on Nkamleu et al. (2010) and Ofori-Bah and Asafu-Adjaye (2011) to identify 

the production factors that we consider in our analysis (Table 1). These include land (x1), costs 

(x2), tree age (x3), and dummies representing the cocoa farmers’ management capabilities 

(Wollni and Brümmer, 2012). In our model, land indicates the total cultivated cocoa area 

measured in ares, while costs are calculated in Rupiah and involve all labor, fertilizer, and 

pesticide costs used on the cocoa farm.2 We aggregate the latter inputs to avoid 

multicollinearity (Brümmer et al., 2006) and assume that the value of material inputs and labor 

costs reflects the quality of inputs better than quantity (Wollni and Brümmer, 2012). The age 

of cocoa trees (x4) is also added to the classical production factors. It influences the cocoa 

output the following way. Cocoa trees begin to produce pods only from about three years after 

planting, reach full bearing capacity around the age of 10 years, and their output starts to 

diminish gradually thereafter (Dand, 2010). Hence, the sign and magnitude of the effect of tree 

age varies depending on the average tree age in the sample.  

                                                 
2 1 hectare equals 100 ares. In December 2015, 1 euro cost around 15000 Rupiahs. 
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Following Wollni and Brümmer (2012), we enhance the basic production frontier with 

five dummy variables to describe the cocoa cultivation process more accurately. The first 

dummy variable equals one if only family labor (no material inputs or hired labor) was used 

for maintenance and harvesting tasks. According to Binswanger and Rosenzweig (1986), if 

family members cannot get off-farm jobs in imperfect input and labor markets, their time may 

be allocated to work on the cocoa farms up to the extent where the marginal utility of 

production is equal to the marginal utility of leisure. Therefore, using exclusively family 

workers may negatively affect production if cocoa plantations are used to absorb surplus family 

labor. The second dummy variable equals one if the smallholder participated in the Gernas Pro 

Kakao government program. The objective of this program is to rehabilitate cocoa farms and 

expand intensification by providing easier access to inputs (KKPOD, 2013). The third dummy 

variable for yield loss is used to reflect the effect of pests and adverse weather on cocoa harvest 

quantity. 

Some cocoa is grown in an agroforestry or an intercropping system (Ofori-Bah and 

Asafu-Adjaye, 2011). Ruf and Zadi (1998) and Asare (2005) suppose that cocoa yields can be 

maintained in the long run only with the use of forest tree species in cocoa cultivation. Cocoa 

agroforests also support conservation policies because they connect rainforest areas and 

provide habitat for native plants and animals. However, the influence of shading trees on cocoa 

yields is highly debated. Although some papers report the advantages of these trees because 

they decrease plant stress, others provide evidence that shade can limit cocoa yields (Frimpong 

et al., 2007). Following Bentley et al. (2004), we add a fourth dummy variable to our model that 

captures the influence of the higher shade (larger than 35 percent) production system and 

expect the sign to be negative.  

To assess the effect of crop diversification on cocoa production (Ofori-Bah and Asafu-

Adjaye, 2011), a fifth dummy variable for intercropping is also added to the model. Farmers 

can grow a variety of fruit-bearing trees to help cope with the volatile cocoa prices by 

supplementing their income. In Indonesia, banana, durian, and coconut are mainly intercropped 

with cocoa at its fruit-bearing age (Ministry of Agriculture, 2015). But crop diversification has 

also another advantage. An increasing number of studies demonstrate that intercropping 

improves erosion control (soil and water retention), nutrient cycling, carbon dioxide capture, 

biodiversity, and the relationship of fauna and flora (Scherer-Lorenzen et al., 2005b; 

Gockowski and Sonwa, 2011). Therefore, interplanting is often supported to take advantage of 

the mutualism between different plants and to compensate for the low level of intermediate 

inputs (Pretzsch, 2005). We anticipate that intercropping has a positive effect on cocoa yields.
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Table 1: Description of the cocoa farm variables. 

Variable Description 

Output  

Cocoa Cocoa quantity harvested on the farm (kilograms) 

Plants Number of native rainforest plants in a random 5*5m area on the cocoa farm 

Input 

Tree age_M Average cocoa tree age (years), measured 

Tree age_S Average cocoa tree age (years), self-reported 

Land_M Total area planted with cocoa, measured (ares) 

Land_S Total area planted with cocoa, self-reported (ares) 

Costs Fertilizer, pesticide, transport, processing, and labor costs for the farm (1000 Rupiah) 

Technology 

No expense Dummy, 1 = household used only family labor (no material inputs or hired labor) 

Gernas  Dummy, 1 = household joined the Gernas Pro Kakao program in the last 3 years 

Intercrop_M  Dummy, 1 = there was intercropping on the cocoa farm, measured 

Intercrop_S Dummy, 1 = there was intercropping on the cocoa farm, self-reported 

Shade_M Dummy, 1 = shade level of the cocoa farm is larger than 35 percent, measured 

Shade_S Dummy, 1 = shade level of the cocoa farm is larger than 35 percent, self-reported 

Crop loss Dummy, 1 = yield loss because of adverse weather or pests  

Inefficiency 

Male  Dummy, 1 = household head is male 

High school  Dummy, 1 = household head completed the junior high school 

Extension Dummy, 1 = household head had extension contacts 

Credit Dummy, 1 = household head obtained credit in the last 3 years 

Notes: All variables refer to the last 12 months with the mentioned exceptions. 

 

3.2 Inefficiency model 

 

We specify six elements in the vector Z in equation (7) that express the management 

skills of cocoa smallholders and their access to productive resources and knowledge (Wollni 

and Brümmer, 2012). First, we anticipate that it is more difficult for households with female 

heads to access markets (Wollni and Brümmer, 2012). They are also usually widows, which 

can limit labor availability to accomplish agricultural work timely (Onumah et al., 2013b). 

As a result, we expect female-headed households to display lower efficiency levels.  

Second, the education dummy equals one if the head of the household completed junior 

high school. We expect that it affects positively the management skills of the cocoa farmers 

and hence efficiency (Ingram et al., 2014). However, a number of papers show that 

smallholders with higher educational attainment reveal lower technical efficiency levels (Teal 

et al., 2006). An explanation of these findings is that smallholders with higher educational 
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levels have more likely additional sources of income and they concentrate more on these off-

farm activities than on the farm management. 

The next two variables indicate the external support for cocoa farming households 

(Nkamleu et al., 2010; and Ofori-Bah and Asafu-Adjaye, 2011). Contacts with extension agents 

are commonly considered to influence efficiencies positively since the information circulated 

in extension services should enhance farming methods (Dinar et al., 2007). However, some 

factors such as other information sources, the ability and willingness of smallholders to employ 

the distributed information, and the quality of agricultural extension services can confound the 

results of extension contacts (Feder et al., 2004). 

Furthermore, the credit dummy variable indicates whether the cocoa farmer has access 

to credit. If smallholders can buy intermediate inputs with credit when required and not just 

when they have sufficient cash, then input use can become more optimal. Consequently, the 

economic literature underlines the failure of credit markets as the cause of non-profit 

maximizing behaviors and poverty traps (Dercon, 2003). Additionally, reducing capital 

constraints decreases the opportunity cost of intermediate inputs relative to family labor and 

allows the application of labor-saving technologies such as enhanced cocoa hybrid-fertilizer 

methods (Nkamleu et al., 2010). Therefore, many economists view the spread of feasible 

agricultural credit services crucial for raising the productivity of labor and land (Zeller et al., 

1997). 

Based on Rao et al. (2012), we also include production frontier variables in the 

inefficiency model. Following Wollni and Brümmer (2012) and Waarts et al. (2015), the size 

of the farm reflects households’ endowments. It influences the technical efficiency 

ambiguously. If farmers with larger plantations specialize less in cocoa cultivation, then the 

size of the farm may negatively affect efficiency. However, farm size as a proxy for total wealth 

is anticipated to positively influence technical efficiency if financial markets are constrained 

(Binswanger and Rosenzweig, 1986).  

The Gernas variable is also part of the inefficiency specification because we expect that 

this government program did not just influence the output directly but also indirectly through 

the efficiency. In particular, we hypothesize that, although Gernas increases output, it reduces 

efficiency temporarily due to a learning curve effect: it shifts out the production frontier but 

producers are not able to keep pace in the short run (Brümmer et al., 2006).  
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4. Data description 

 

4.1 Data sources 

 

We acquire the data using the survey infrastructure of the earlier STORMA (Stability 

of Rainforest Margins in Indonesia) project in Göttingen. This project conducted four rounds 

of household and agricultural surveys in Indonesia between 2001 and 2013. The survey data 

were collected from 722 randomly selected cocoa farmer households in 15 random villages 

near the Lore Lindu National Park in Central Sulawesi province. This province is the second 

largest cocoa producer in Indonesia with 17 percent of the Indonesian production in 2014 

(Ministry of Agriculture, 2015). The park provides habitat for some of the most unique 

animal and plant species in the world. However, the increase of land used for farming is 

threatening its integrity (Zeller et al., 2002).  

For our survey, we randomly selected one third (240) of the STORMA households in 

2015. First, these households were interviewed using standardized structured questionnaires. 

The researchers edited the questionnaire in English first, then translated it into Indonesian and 

tested it with a pilot survey. The interviews lasted, on average, about 2 hours. Because some 

farmers cultivated several cocoa plots simultaneously, output and input details were collected 

at plot level to increase data accuracy (Rao et al., 2012).  

Second, we extended this data by verifying the self-reported values of variables and by 

measuring environmental outputs such as native plant abundance on the farm of every sampled 

household. Based on Maytak (2014), we expect that estimations with measured and self-

reported data lead to significantly different results. In particular, we hypothesize that self-

reported data overestimates efficiencies because farmers tend to paint a too rosy picture of their 

operations. 

The data collection protocol for our survey was developed with the help of the 

EFFORTS (Ecological and Socioeconomic Functions of Tropical Lowland Rainforest 

Transformation Systems) project at Göttingen.3 We tested this protocol on 12 cocoa farms to 

improve it. To implement it, we hired six BA graduates in botany from the University of 

Tadulako in Palu, Central Sulawesi, who also carried out the household interviews. A 

representative 5 meter by 5 meter area in the middle of the each cocoa farm was selected for 

plant counting and plant identification in the understory vegetation (Gockowski and Sonwa, 

                                                 
3 Funded by the German Research Foundation (DFG). 
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2011). Furthermore, cameras with GPS reception were used to photograph all the unknown 

plants for later identification and to verify the farm size and the other farm characteristics.  

 

4.2 Descriptive statistics 

 

Table 2 shows the summary statistics of the independent and dependent variables in the 

production frontier and inefficiency equations. On average, we find 106 native rainforest plants 

on the 5x5 meter sampling areas. However, the standard deviation and the extreme values 

reveal huge differences between the farms. Compared with the last survey done in our sample 

area in 2012, the average output of the cocoa farms almost halved in 2015, while the average 

farm size remained almost constant at around one hectare, which is about one third of the 

African average (ICCO, 2016). This resulted in an almost 50 percent decrease in the average 

cocoa yield, which was in 2015 around 350 kg/hectare. We can list two reasons for this. First, 

cocoa trees are now considerably older than the most productive age: in 2015, they were on 

average 15 years old. This is still just one half of the African average because of the later start 

of cocoa cultivation in Indonesia. Second, a record drought hit Sulawesi in 2015 because of the 

latest El Niño cycle. Due to the extremely dry weather, 90 percent of the households reported 

significant yield losses.  

Labor, fertilizer, and pesticide use more than doubled in the last three years. The 

continued expansion of the Gernas Pro Kakao government program could have contributed 

to this phenomenon by providing easier access to intermediate inputs (KKPOD, 2013). 

According to our survey data, the level of labor and intermediate input use is now 

approaching the African average (Maytak, 2014). Furthermore, we find that cocoa in our 

sample area is cultivated mostly in a full-sun monoculture system, in contrast to Africa 

(Gockowski and Sonwa, 2011; Nkamleu et al., 2010).  

The statistics of the inefficiency variables show that the share of female household 

heads stood at 6 percent in 2015, which is consistent with past studies that show cocoa 

cultivation as a male-dominated livelihood (Nkamleu et al., 2010; Maytak, 2014). Moreover, 

the educational attainment of the average household head increased considerably over the 

years: in 2015, more than 50 percent of the household heads completed junior school. 

Furthermore, we could observe an increase of extension services in the last three years: 40 

percent of household heads had extension contacts in 2015. However, credit access fell back 

significantly just to 8 percent in 2015.  
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Finally, let us compare the measured and self-reported variables. Two dummy variables 

have both values: intercropping and shade cover. As we can see from Table A1, the self-reported 

dummy variables differ in about 5-10 percent of observations from the measured ones and there 

are no clear directions in the inaccuracies. Figure A1 shows us the differences in the two 

continuous variables: tree age and farm size. We can find alternative values in 30 and 80 percent 

of the observations. Again, the inaccuracies seem to be random. T-tests confirm that there are no 

significant differences in the means of the four self-reported and measured variables. 

 

Table 2: Summary statistics of the cocoa farm variables. 

Variable Observations Mean Standard Minimum Maximum 

Output      

Cocoa 208 372 542 15 4500 

Plants 208 106 65 10 315 

Input      

Tree age_M 208 14.9 5.8 3 40 

Tree age_S 208 15.0 5.6 3 40 

Land_M 208 104 73 20 500 

Land_S 208 106 74 17 540 

Costs 208 1557 2027 30 11735 

Technology      

No expense 208 0.02 0.14 0 1 

Gernas 208 0.26 0.44 0 1 

Intercrop_M  208 0.13 0.34 0 1 

Intercrop_S 208 0.14 0.35 0 1 

Shade_M 208 0.15 0.36 0 1 

Shade_S 208 0.16 0.37 0 1 

Crop loss 208 0.90 0.30 0 1 

Inefficiency    0 1 

Male  208 0.94 0.24 0 1 

High school  208 0.51 0.50 0 1 

Extension 208 0.40 0.49 0 1 

Credit 208 0.08 0.27 0 1 

 

5. Results and discussion 

 

5.1 Production frontier 

 

 Table 3 shows the parameter estimates of the frontier models. According to equation (8), 

a positive rainforest plants distance elasticity implies a negative effect on the cocoa production. 
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Similarly, a negative input distance elasticity is interpreted as a positive contribution of the input 

to the cocoa production. 

 The coefficients of the native plants variable are significant and have the expected 

positive signs. Their values, 0.651 and 0.698, mean that a one percent increase in the number 

of rainforest plants on the cocoa farm reduces the cocoa output by almost 0.7 percent. Each 

significant first-order input distance elasticity possesses the expected sign and, therefore, satisfies 

the monotonicity property at the sample mean. In the measured variables model, the partial 

production elasticities of land and costs are 0.699 and 0.194. The values from the model using 

the self-reported variables are similar. We use t-tests to evaluate whether the scale elasticities 

of 0.893 and 0.906 at the sample mean significantly differ from one. The null hypothesis of 

constant returns to scale is rejected at the 5 percent level, according to the test results. This 

implies that cocoa production exhibits a diminishing returns to scale. Normally, undertakings 

with this characteristics are viewed as too big. However, the average cocoa farm size in our 

sample is small: just around one hectare. A plausible cause of the diminishing return to scale 

can be some impediments to growth (Brümmer et al., 2006). 

 The positive square terms of plants and tree age fulfil the curvature conditions of the 

production function at the sample mean. The values for the tree age variable point to the maturing 

and aging process of the cocoa trees, although the coefficient in the self-reported variables model 

is not significant. Moving to the cross-term coefficients, we find evidence of input complementary 

effect between land and costs. In the case of the measured variables model, two additional 

interaction terms are significant. They show complimentary effect between plants and costs, and 

substitution effect between plants and tree age. 

Additionally, various dummy variables are incorporated into the models to describe 

cocoa farming more accurately. The coefficient of the Gernas Pro Kakao government program 

is negative and significant at the 1 percent level in both models. This means that, as anticipated, 

farms participating in this program have higher cocoa output levels. However, it seems that the 

self-reported variables substantially overestimate the effect of Gernas Pro Kakao. The crop loss 

variable is also significant in both models and possesses the expected sign. This points to the 

exceptionally dry El Niño weather. However, the self-reported variables largely 

underestimated its effect. Finally, high shade cover seems to decrease production, but its 

coefficient is only significant in the self-reported model.  
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Table 3: Parameter estimates of the cocoa production frontier models. 

Variable TE measured variables TE self-reported variables 

Input   

ln Plants 0.651 (0.058)*** 0.698 (0.065)*** 

ln Tree age_M/S 0.221 (0.165) 0.042 (0.123) 

ln Land_ M/S -0.699 (0.355)** -0.697 (0.165)*** 

ln Costs -0.194 (0.080)** -0.209 (0.071)*** 

0.5 (ln Plants)2 0.113 (0.039)*** 0.143 (0.047)*** 

0.5 (ln Tree age_ M/S)2 0.609 (0.283)** 0.242 (0.197) 

0.5 (ln Land_ M/S)2 0.026 (0.362) -0.118 (0.165) 

0.5 (ln Costs)2 -0.048 (0.064) -0.062 (0.051) 

ln Plants * ln Tree age_ M/S 0.082 (0.039)** 0.028 (0.054) 

ln Plants * ln Land_ M/S 0.024 (0.081) -0.090 (0.059) 

ln Plants * ln Costs -0.078 (0.022)*** -0.044 (0.039) 

ln Tree age_ M/S * ln Land_ M/S 0.019 (0.180) -0.059 (0.115) 

ln Tree age_ M/S * ln Costs 0.072 (0.075) 0.038 (0.081) 

ln Land_ M/S * ln Costs -0.195 (0.051)*** -0.232 (0.065)*** 

Technology   

No expense 0.380 (0.240) 0.170 (0.336) 

Gernas -0.357 (0.031)*** -0.516 (0.121)*** 

Intercrop_ M/S 0.153 (0.117) 0.103 (0.094) 

Shade_ M/S 0.121 (0.080) 0.212 (0.072)*** 

Crop loss 0.459 (0.195)** 0.282 (0.133)** 

Constant -0.389 (0.098)*** -0.007 (0.152) 

Variance   

σu 0.487 (0.052)*** 0.501 (0.071)*** 

σv 0.000 (0.000)*** 0.154 (0.049)*** 

RTS 0.893 0.906 

Notes: Robust standard errors are in the parentheses. *: p<0.10, **: p<0.05, ***: p<0.01. 

 

5.2 Efficiency levels 

 

 Generalized likelihood ratio tests are employed to evaluate whether average response 

functions would fit the models or inefficiency effects are present in the models. We reject the 

null hypothesis for both specifications at the 1 percent level, which means that the stochastic 

frontier model represents the data better than the OLS model. 

 Table 4 documents the average degree of technical efficiency, while Figure A2 presents 

the distributions of efficiencies for the sample farms. Based on the measured variables, we 

estimate that the average technical efficiency of cocoa farms is around 50 percent. Low values 

such as this tend to indicate a less specialized and less competitive market (Coelli et al., 2005). 
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According to our field observations, this coincides with smallholder cocoa markets in Sulawesi, 

where the only controllable characteristic is the quality of the raw product and many producers 

do not pay too much attention to this. Compared with this value, the self-reported variables 

model overestimates the efficiency by 7 percentage points. The histogram of the differences is 

depicted in Figure A3. Using a t-test, we find that the difference in means is statistically 

significant.  

In both cases, the range of efficiency estimates is very wide and many scores are inside 

the bottom quarter of the distribution range. This means that most cocoa farmers have an ample 

scope to expand cocoa output or increase the number of native rainforest plants without 

increasing input use. The efficiency scores point, on average, to a possible expansion of 

production by 367 kg of cocoa per farm and year or to a possible increase of 43680 rainforest 

plants per farm. 

By plotting the individual efficiencies against the numbers of rainforest plants on the 

corresponding farms, we can detect a logistic increase of efficiencies with the increasing 

number of native plants (Figure 2). This means that native plants can positively affect the output 

level via efficiency. Furthermore, the efficiency distributions show, at the mean, a higher 

degree of efficiency for producers with smaller farms. Other factors such as allocation of labor, 

fertilizer, and pesticide are also lower on farms with higher efficiencies, suggesting a more 

efficient use of the available labor force and materials. 

 

Table 4: Descriptive statistics of the cocoa farm efficiency estimates (percentages). 

Model Observations Mean Standard deviation Minimum Maximum 

TE measured variables 208 50 22 13 100 

TE self-reported 208 57 21 12 93 

TE difference 208 7 9 -24 32 
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Figure 2: Scatter plot of the cocoa farm efficiencies and the number of native rainforest plants. 

a) technical efficiency estimated using measured explanatory variables 

 

b) technical efficiency estimated using self-reported explanatory variables 

 

  

Efficiency 

Efficiency 

Number of native plants 

Number of native plants 
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5.3 Inefficiency effects 

 

 Table 5 presents the results of the inefficiency model estimations: both the estimated 

coefficients and the corresponding marginal effects at the means. For dummy variables, the 

marginal effects are calculated for a discrete change from zero to one. A negative sign indicates 

that the variable in question has a negative influence on inefficiency, which means a positive 

influence on efficiency. We check the joint significance of the possible inefficiency effects 

with likelihood ratio tests. Based on the results, we reject at the 1 percent level for all three 

models that all inefficiency variables are insignificant.  

In both models, the Gernas Pro Kakao government program has a significant influence 

on farm-specific productive efficiencies. Efficiency decreases by 34 percent, on average, with 

participation in this program in the measured variables model. This is plausible because Gernas 

farmers have to apply new production methods due to new hybrid cocoa varieties and 

chemicals. The model using the self-reported data substantially overestimates the effect of the 

Gernas Pro Kakao program. Agricultural extension is the other variable that is significant in 

both cases. In the measured variables model, it increases efficiency by 21 percent. Again, the 

coefficient is largely overestimated with the self-reported variables. 

Finally, we find that credit access does not have a significant effect on efficiency. This 

result does not match with African studies which show positive linkages (Nkamleu et al., 2010; 

Awotide et al., 2015). For example, many economists view the spread of feasible agricultural 

credit services crucial for raising technical efficiency (Zeller et al, 1997).  

 

Table 5: Estimates and average marginal effects of the cocoa farm inefficiency models. 

Variable TE measured variables TE self-reported variables 

 Coefficients Marginal effects Coefficients Marginal effects 

ln Land_M/S 0.321 (0.317) 0.236 0.309 (0.216) 0.184 

Gernas 0.337 (0.99)*** 0.248*** 0.660 (0.233)*** 0.394*** 

Male  0.408 (0.226)* 0.300* 0.547 (0.341) 0.326 

High school  0.148 (0.105) 0.109 0.186 (0.116) 0.111 

Extension -0.211 (0.104)** -0.155** -0.318 (0.155)** -0.190** 

Credit -0.254 (0.204) -0.187 -0.242 (0.216) -0.144 

Constant 0.306 (0.337)  -0.134 (0.433)  

Notes: Robust standard errors are in the parentheses. *: p<0.10, **: p<0.05, ***: p<0.01.  
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5.4 Shadow prices 

 

To understand the trade-off between the cocoa output and the native rainforest plants, 

the monetary quantification of this connection is desirable. Because markets for these 

herbaceous plants in our specification do not exist, we estimate the shadow price based on our 

output distance function and the corresponding revenue function. In combination with the 

cocoa bean price, we can calculate the absolute price for the native plants. According to FAO 

Statistics, the aggregated Indonesian cocoa price was 1.74 US dollars/kg in 2015. We compute 

the shadow price with the following equation (Fare et al., 2005): 

∗ , , /

, , /
∗              (9) 

Because of the normalization of our variables, we have to multiply the derivatives in the 

equation by the ratio of output averages to obtain real values. The shadow price of a rainforest 

plant describes the monetary value of production that must be forgone to increase the number 

of native plants by one moving along the efficient points on the production frontier. According 

to the measured variables model (Table 6), the average price for one plant is 3.7 US cents. The 

t-test did not find a significant difference (Figure A4) between the results of two estimates. Due 

to violations of monotonicity, two observations of the shadow price estimations are dropped to 

prevent scaling in the reverse direction on the production frontier (Fare et al., 2005). 

The connection between the abundance of native plants and the shadow price gives an 

additional insight on the shape of the trade-off function. It appears that farms with lower 

abundance of rainforest plants are linked to higher shadow prices than farms with a high 

abundance. Plotting the individual shadow prices against the characteristics of producers also 

reveals that bigger farm sizes and costs are connected to lower prices. 

  

Table 6: The calculated shadow prices of the native rainforest plants in US cents. 

Model Observations Mean Standard deviation Minimum Maximum 

SP measured variables 206 3.71 4.93 0.47 48.47 

SP self-reported 206 3.57 2.79 0.60 20.48 

SP difference 206 -0.14 3.06 -27.98 3.94 

  

6. Conclusion  

 

The surge in cocoa demand and price prompts us to search for sustainable ways to 

improve cocoa yields. We look at the trade-off between smallholder cocoa intensification 
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and the ecosystem in Central Sulawesi and investigate the determinants of environmental 

efficiency in cocoa production. We apply a distance output function that includes cocoa 

production and the abundance of native rainforest plants as outputs. Our data set, based on a 

household and environmental survey conducted in 2015, allows us to analyze 208 cocoa 

producers with both measured and self-reported data. 

We find that there is a trade-off between cocoa yields and abundance of native 

rainforest plants. According to this connection, the intensification of cocoa farms results in 

higher ecosystem degradation. By computing the shadow prices of these rainforest plants, we 

estimate the monetary value of reductions in their abundance. Additionally, each significant 

first-order input distance elasticity possesses the expected sign and the results indicate that 

most cocoa farmers operate under diminishing returns to scale. Given the small average farm 

size, the latter could reflect the impediments to growth. As expected, the Gernas Pro Kakao 

government program helps the participating farmers to increase their output. 

The estimations show substantial inefficiencies for the majority of cocoa farmers. The 

low average efficiency value of 50 percent indicates a less specialized and less competitive 

market with low pressure for cocoa producers. Increasing efficiency could lead to a win-win-

win situation: more production coming from less hectares, with more native plants co-existing 

with cocoa on the remaining hectares. On average, the efficiency scores point to a possible 

production expansion of 367 kg of cocoa per farm and year, to a possible increase of 43680 

rainforest plants per farm, or to a possible acreage reduction of 0.52 hectares per farm. 

Looking at the inefficiency effects, we can see that the participation in the Gernas Pro 

Kakao program decreases efficiency. This is plausible because Gernas farmers have to learn 

new production methods due to new cocoa varieties and chemicals and they are not able to 

catch up to the outward-shifting production frontier in the short run. Furthermore, we find that 

agricultural extension services have a substantial role in increasing efficiency, confirming 

evidence from West Africa. We can also observe that the model using self-reported variables 

overestimates the inefficiency effects, as well as the distance elasticities and efficiencies.  

Finally, we find that credit access does not have a significant effect on efficiency. This 

result is inconsistent with African studies which show positive linkages. Feasible agricultural 

credit services are viewed by numerous economists as a crucial prerequisite for improving 

efficiency, a critical part of encouraging development. We recommend linking credit to 

extension services as part of this effort. 
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Appendix 

 

Figure A1: Histograms of the differences between the self-reported and measured cocoa farm variables. 

a) Cocoa tree age  

 

b) Total cocoa farm size 
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Figure A2: Distribution of cocoa farm efficiencies in the models. 

a) technical efficiency estimated using measured explanatory variables 

 

b) technical efficiency using self-reported explanatory variables 
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Figure A3: Histogram of the differences between the cocoa farm efficiencies (self-reported – measured variables 

method). 

 

Figure A4: Histogram of the differences between the shadow prices of native rainforest plants in US cents (self-

reported – measured variables method). 
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Table A1: Comparison of the self-reported and measured values of the cocoa farm dummy variables. 
Variables Observations Same 1 → 0 0 → 1 

Intercrop_M vs. Intercrop_S 208 199 3 6 

Shade_M vs. Shade_S 208 189 8 11 

 


