
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


1 

 

PRICE BASED POLICIES FOR MANAGING RESIDENTIAL LAND 

DEVELOPMENT: IMPACTS ON WATER QUALITY  

Douglas H. Wrenn 

Department of Agricultural Economics, Sociology, and Education,  

Pennsylvania State University, 

112A Armsby Building  

University Park, PA 16802 

814-865-9216 

814-865-3746 

 dhw121@psu.edu 

 

H. Allen Klaiber 

Department of Agricultural, Environmental, and Development Economics,  

The Ohio State University, 

klaiber.16@osu.edu 

 

David A. Newburn 

Department of Agriculture and Resource Economics,  

University of Maryland 

dnewburn@umd.edu 

 

 

May 28, 2017 

 

 

 

 

mailto:dhw121@psu.edu
mailto:klaiber.16@osu.edu
mailto:dnewburn@umd.edu


2 

 

PRICE BASED POLICIES FOR MANAGING RESIDENTIAL LAND 

DEVELOPMENT: IMPACTS ON WATER QUALITY  

Abstract: Urban land use plays a critical role in determining the health of urban ecosystems. In this 

paper, we link an instrumental variable land use model with a model of local nutrient pollution to 

analyze how price-based land use policies, designed to influence development outcomes, impact 

water quality. Our results demonstrate that these polices can be effective at limiting the impact 

growth on water quality outcomes. We also show that policymakers will be required to make 

tradeoffs between managing sprawl and limiting its impact on water quality, a counterintuitive result 

that stems from the interaction between the location of urban land conversion and baseline land 

cover.  
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1. INTRODUCTION 

Land use plays a critical role in determining the health of urban ecosystems (Glaeser and Kahn, 

2004; Hansen et al. 2005; Wu, 2008). This is particularly true for water-based systems where land use 

change has a significant impact on water quality. With the Environmental Protection Agency’s 

(EPA) implementation of total maximum daily load (TMDL) restrictions in watersheds throughout 

the U.S., many localities have adopted policies designed to limit urban spatial expansion and 

encourage high-density development in an attempt to limit the impact of urban land use on water 

quality. To achieve these results, policymakers have increasingly turned to price and incentive-based 

policies (Bruecker, 2000). While these policies have been celebrated as market-based solutions for 

regulating development, research is still limited in assessing how specific policies, designed to 

influence the timing, density, and location of urban development, actually impact water quality 

outcomes. To explore this relationship, and evaluate the implications of different policies, it is 

necessary to couple economic land use models with models of water quality; it is also necessary to 

develop economic models that consistently estimate the price responsiveness of urban land 

conversion.  

In this paper, we link an instrumental variable land use model with a watershed model of 

local nutrient pollution to examine how price-induced changes in residential development patterns 

impact nitrogen and sediment loading in the Baltimore metro region. The objectives of this study are 

to (1) econometrically identify the responsiveness of residential development to changes in housing 

prices; (2) combine the results from an econometric land use model with a model of water quality 

and develop a simulation framework suitable for analyzing price-based land use policy; and (3) use 

the simulation framework to analyze the most common real-world policies used to manage growth 

and water quality outcomes. A number of recent studies have combined econometric modeling and 

land use simulation to look at issues related to water use (Bigelow et al. 2017), open-space 

conservation (Newburn et al. 2006; Lewis et al. 2009; Lewis et al. 2011), forest conservation 

(Newburn and Ferris, 2017), property taxes and sprawl (Wrenn and Klaiber, 2017), and regulatory 

costs (Wrenn and Irwin, 2015). Our paper builds on this research and advances the literature by 

examining how incentive-based policies force policymakers to make tradeoffs between local water 

quality and the location and amount of residential development.  

Urban land use in most areas is influenced by a combination of land use restrictions (e.g., 

urban growth boundaries and minimum-lot zoning) and incentive-based policy approaches (e.g., 

impact fees and taxes on residential development). In our Baltimore study region, land use 



4 

 

regulations have been used extensively to manage growth. Historically, most of these regulations 

have been either minimum-lot zoning laws or urban growth boundaries. In 1997, Maryland 

established priority funding areas (PFAs), which combined urban-growth restrictions with an 

incentive-based tax policy – i.e., the state made infrastructure funding for each county contingent on 

the maintenance of PFAs (urban growth areas) designed to contain the urban footprint. More 

recently, the state implemented a price-based storm-water management fee designed to influence 

development and reduce the impact of land use change on water quality outcomes. Based this brief 

policy background it’s clear that planners in Maryland are moving toward incentive-based (price-

based) policies for managing both growth – a trend taking place in many other urban areas in the 

U.S. We contribute to this debate by examining several of the most common price-based policies 

used by planners in U.S. to determine their effectiveness at managing growth and limiting its impact 

on local water quality. Specifically, we are concerned with the types of tradeoffs that exist between 

policies designed to contain urban spatial expansion and those designed to limit development 

impacts on water quality outcomes.  

To address these questions, we combine a unique data set on historical subdivision 

development with a parcel-level duration model capable of addressing price endogeneity. Our data 

are generated by combining detailed GIS shapefiles with subdivision plat maps to produce a 

complete history of residential development activity in the Baltimore region from 1994-2007. These 

data include information on the size and location of the original land parcel for each subdivision as 

well as information on the number of building lots created, zoning restrictions, land characteristics, 

and information on existing land cover. Our duration model accounts for changes in pre-existing 

land use following the creation of each residential development; it also handles price endogeneity to 

produce a consistent estimate of the price elasticity of land conversion. To instrument for price, we 

use a control function methodology appropriate for instrumentation in a nonlinear probability 

model with instruments based on demand-side drivers of housing consumption in distant 

neighborhoods (Petrin and Train, 2010; Klaiber and Kuminoff, 2014; Wrenn et al. 2017). Following 

estimation, we combine the parameters from our econometric model with our land use data and data 

on local loading rates for nitrogen and sediment taken from the Chesapeake Bay Program’s (CBP) 

watershed model in a land use simulation to analyze three specific policies designed to limit growth 
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and/or manage water quality.1 While there are numerous land use policies that could be analyzed in 

the context of our study region, we focus on three policy scenarios which are both relevant to the 

Baltimore region and general enough to be used by planners in other urban areas. 

In the first scenario (Scenario 1), we implement a uniform (one-size-fits-all) property tax on 

all parcels in the data. This scenario is designed to imitate the manner in which property taxes 

policies are implemented. In the second scenario (Scenario 2), we raise taxes on parcels in areas 

without public sewer and reduce taxes (implement a subsidy) on parcels in areas with public sewer.2 

This scenario is designed based on policies similar to Maryland’s PFA legislation, which uses tax 

incentives and growth boundaries to concentrate growth in areas with public utility access. In our 

third scenario (Scenario 3), we implement a tax or subsidy based on a parcel’s pre-existing land cover 

– i.e., based on the baseline loading-rate values for nitrogen and sediment from CBP model, we seek 

to limit the conversion of parcels with significant forest cover and encourage the conversion of 

parcels with significant cropland agriculture. Our specific policy is to implement a tax on parcels 

with more than 50% forest cover and provide a subsidy on parcels with greater than 50% cropland 

agriculture. This last scenario is focused on enhancing water quality outcomes and ecosystem 

services, as opposed to managing urban spatial expansion. We compare the results from this policy 

scenario, and the other two scenarios, to a baseline simulation where prices remain unchanged. In 

each scenario, we vary the tax and subsidy values from 2% to 10% in 2% increments. 

The results from our land use simulations provide a number of important insights. First, we 

show that failure to account for price endogeneity produces biased and inconsistent elasticity values 

and leads to incorrect conclusions about the effectiveness of price-based policies. Using our 

preferred duration model, we find that the elasticity values in our IV model are 2.6 times larger than 

those in our non-IV model. This result suggests that not accounting for price endogeneity has 

important implications for determining the effectiveness of price-based policies. Second, we find 

that a uniform property tax (Scenario 1) leads to a large overall reduction in the number of 

residential developments created. Interestingly, however, this policy actually leads to an increase in 

average distance traveled to the center of Baltimore across all developments. Third, we find that a 

policy that attempts to limit urban spatial expansion and concentrate development in areas with 

                                                           
1 The CBP’s watershed model is the most policy relevant model in our study area as it is used by the EPA and all 
jurisdictions in the watershed to evaluate compliance with the Chesapeake Bay total maximum daily load (TMDL) 
requirements.  
2 We assume that the areas in our study region covered by public sewer and water are exogenously determined by land 
use planners and individual developers take them as given.  
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public sewer (Scenario 2) leads to a decrease in average travel distance and an increase in loading 

rates for nitrogen and sediment. This counterintuitive result stems from the fact that discouraging 

development in areas without public sewer, and pushing it toward areas with public sewer, leads to a 

reduction in the number of cropland farms parcels taken out of production and increases the 

number of high-density parcels with large amounts of impervious surface, both of which result in 

increased nitrogen and sediment loading. Finally, in Scenario 3, where we attempt to protect parcels 

with large amounts of forest cover, we find that nitrogen and sediment loading decrease, average 

travel distances increase, and the number of subdivisions created increases, albeit by only a small 

amount. This result stems from the fact that in Scenario 3 we replace cropland agriculture with low-

density, low-impervious residential which has lower nitrogen and sediment loading per acre, 

compared to agriculture, and we protect forest cover, which reduces nitrogen and sediment loading. 

Hence, our simulations indicate that price-based policies which limit forest loss and remove 

cropland agriculture from production are the most effective for mitigating the water quality impacts 

from residential development in our study region. However, this policy appears to come at a cost as 

it increases the overall average travel distance from the city center for the development that is 

created which suggests an increase in urban spatial expansion.3  

The rest of the paper is structured as follows. In the next section, we provide an overview of 

our study region and a description of our data and variables. In Section 3, we present our 

econometric model along with our control function approach to handling price endogeneity. Section 

4 presents our main results, and Section 5 presents our land use simulations and policy analysis. 

Section 6 concludes. 

2. DATA AND CONSTRUCTION OF VARIABLES 

Our data cover the Baltimore, Maryland metro region for the years 1994 through 2007. Our study 

area, shown in Figure 1, covers the counties of Baltimore, Carroll and Hartford, which account for 

much of the residential development in this region, both in terms of land area and in terms of 

population during this time period.  

To produce our subdivision data, we obtained GIS parcel data from each of the three 

counties, and manually matched individual housing units and other land parcels with scanned images 

                                                           
3 A similar counterintuitive result was found in a recent paper analyzing urban land conversions and water usage in 
Oregon (Bigelow et al. 2017). In this paper, replacing cropland agriculture with low-density residential actually led to a 
reduction in overall consumptive water use under certain policy scenarios.  



7 

 

of the subdivision plat maps for the years 1994-2007.4 The plat maps were obtained from the 

Maryland Department of Planning by direct download or by manual scanning. The matching 

process allowed us to group observations on individual housing units into their underlying 

subdivisions (parent parcels) as well as put them in the original land parcels and time periods (years) 

from which they were created. From this process, we also obtained information on the number of 

lots created and the original size of the raw land parcel. 

 In addition to the creation of our subdivision data, we obtained historical information on 

zoning boundaries and public sewer availability for each county. Using these zoning data, we derive 

the number of building lots permitted on each parcel of land, which in turn allow us to manually 

construct a micro-level land use data set that reflects the potential for development on each parcel 

and establishes a panel of parcels that are eligible for a residential subdivision development from 

1994 through 2007. For our model, we define subdivision eligibility as any land parcel that can, 

according to zoning, accommodate a residential development of two or more building lots. 

Combining our subdivision data with our method of determining subdivision eligibility results in a 

data set of 15,015 parcels that were subdivision eligible as of 1994. Among these, 2,394 experienced 

a residential subdivision event during our study period. The balance remained undeveloped, or 

censored, at the end of 2007.  

 To develop an empirical strategy for handling price endogeneity, we begin by adopting the 

intuition underlying the urban location choice literature whereby households, or housing units, are 

nested within larger neighborhoods (Tiebout, 1956; Epple and Sieg, 1999; Bayer et al. 2007; Klaiber 

and Phaneuf, 2010). We assume that each of the 15,015 land parcels in our data are nested within 

one of 667 neighborhoods, where neighborhoods in our context are defined based on Census 2000 

block-group boundaries. Figure 1 provides the basic intuition for this process. As with the urban 

location choice literature, we assume that factors varying at both the parcel and neighborhood level 

impact the probably of converting to a residential development in each time period. 

Summary statistics for the variables used in our model are given in Table 1. The variables are 

separated based on their level of spatial variation. The top portion of the table lists the variables that 

control for parcel-level characteristics. First, to control for the locational attributes of the parcel, we 

include the distance, in kilometers, to the center of Baltimore City (Dist), which reflects accessibility 

to the largest employment center in the region. We also include the distance to the closest major 

                                                           
4 Plat maps are a kind of architectural drawing, which reflect the location and boundaries of each subdivision as well as 
other important information about each development, such year of initiation, size, and number of building lots. 
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highway (DistMajRoad) as a measure of accessibility to transportation infrastructure. Both of these 

variables are expected to decrease the value of the parcel and its propensity to develop the farther 

the parcel is to the central business district (CBD) or major highway.  

 Zoning is also expected to play a role in determining the likelihood of conversion as the 

more densely zoned a parcel is the greater the number of building lots allowed. We obtained historic 

zoning maps for each of our counties from the Maryland archives and overlaid these maps with our 

parcel data. The variable ZndLots captures the zoned lot capacity for each parcel based on parcel 

size, zoning type, and maximum density regulations. While zoning did change slightly in Baltimore 

County during our study period, these changes were relatively small with most zoning in the region 

established in the mid-1970s. To account for the slight changes in zoning during out study period, 

we obtained historic zoning boundary maps for Baltimore County that enabled us to accurately 

calculate the zoned capacity for each parcel and each year in our data. We expect that parcels that 

have more development rights are likely more valuable and more likely to develop.  

The final set of variables control for the physical features of the parcel. These include 

variables for the size of each parcel and soil quality characteristics derived from the SSURGO data 

provided by the Natural Resource Conservation Service (NRCS). We expect larger parcels are more 

likely to develop due to economies of scale. The NRCS soil classifications capture the hydrology, 

slope, percolation rate, and permeability of the soil. By combining these factors, we are able to 

determine variables for development suitability on each parcel. First, to proxy for the ability of a 

parcel to install residential septic systems and basements, we develop a septic suitability indicator 

(SepticSuit) based on soil permeability and percolation. We expect that parcels with a value of one 

will be more likely to develop as the soils on the parcel are more suitable for installation of septic 

systems and basements. Second, we use the slope classification for each parcel to develop an 

indicator (Slope) for whether the majority of the parcel has a slope of more than 15%. We also 

intersect our parcel data with maps for 100-year floodplains from the Federal Emergency 

Management Agency (FEMA), and create an indicator variable for whether or not the parcel is 

located in a floodplain zone (FloodPlain). We expect that parcels with steeper slopes or those 

located in floodplains are less likely to develop due to development limitations. Third, we use sewer 

boundary maps for each county and create an indicator variable (Sewer) for parcels with municipal 

sewer services. Finally, we include an indicator variable for whether the parcel has an existing 

structure (ExHouse) as well as variable for percentage of the parcel with forest cover (ForestPrcnt).  
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 Our neighborhood variables comprise time-varying factors most likely to influence the 

probability of development in each neighborhood and year. First, we develop measures of the 

percentage of land in each neighborhood that is either preserved, or restricted from development 

(Preservation), and the percentage that remained undeveloped and developable. Each of these 

measures is obtained using detailed land use maps outlining the evolution of land development in 

our study region. Second, we capture competitive effects among developers using a one-year lag of 

subdivision activity (total lot approvals) at the neighborhood level (ApprvLots). And finally, we 

estimate neighborhood land (LandPrice) and housing (HousePrice) prices using auxiliary regressions. 

Both our land and house-price variables are created by estimating a series of yearly hedonic models 

on arms-length land and housing transactions obtained from a statewide database of sales provided 

in the Maryland Property View (MDPV) database. Each model includes, among other controls, a set 

of block-group fixed effects which serve as our quality adjusted neighborhood land and housing-

price indices (Sieg et al. 2002). The details of the data and estimation procedures for our housing and 

land-price variables are given in the Appendix 1.5 It is the housing-price variable produced from this 

process that is the focus of our model and our subsequent simulations. 

3. ECONOMETRIC MODEL 

Housing supply outcomes impacting ecosystem functioning and water quality are a result of many 

individual decisions made by landowners linked through market processes. As an individual 

landowner decides to convert previously undeveloped parcels to residential use, they consider not 

only attributes of their own parcel but also the likely prices and subsequent revenues this conversion 

with provide (Capozza and Helsley, 1989). Housing prices are spatially varying equilibrium outcomes 

arising from many individual transactions. Econometrically, the inclusion of prices in housing 

demand and supply estimation is challenging due to the potential for omitted variables to create 

endogeneity concerns. In nonlinear models, handling these types of endogenous attributes is a 

longstanding challenge.  

Duration models are frequently used to capture the housing supply decision in a reduced 

form setting (Irwin and Bockstael, 2002; McConnell et al. 2006; Newburn and Berck, 2006; 

Cunningham, 2007; Lewis et al. 2009). Operating at parcel levels, these models easily accommodate 

micro-level land use features that vary spatially as well as temporally, such as prices. We extend the 

standard duration modeling framework by combining a nonlinear instrumental variable technique to 

                                                           
5 This method of estimating prices is commonly used in the urban demand and supply literature (Walsh, 2007). 
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instrument for price using a control function methodology (Rivers and Vuong, 1988; Papke and 

Wooldridge, 2008; Petrin and Train, 2010; Wrenn et al. 2017). The instruments used in this control 

function model are formed from equilibrium relationships – a method commonly used in structural 

models of housing demand (Bayer et al. 2007; Walsh, 2007; Klaiber and Phaneuf, 2010).  

The duration model we develop assumes that in each period 𝑡 the owner of an undeveloped 

parcel 𝑖 located in neighborhood 𝑗 decides whether or not to convert his parcel to a residential 

subdivision. Conversion decisions depend on parcel level attributes, 𝐼𝑖𝑡 and neighborhood level 

attributes,  𝑋𝑗𝑡, where we define neighborhoods as Census 2000 block groups. We use discrete 

annual time-steps to define the time dimension of our duration model consistent with much of the 

existing housing supply literature. We can capture a reduced-form latent profit function underlying 

the duration model as  

 Π𝑖𝑡
∗ = 𝐼𝑖𝑡

′ 𝛽 + 𝑋𝑗𝑡
′ 𝛼 + 𝑃𝑗𝑡

′ 𝛾 + 𝑢𝑖𝑡 (1) 

where Π𝑖𝑡
∗  is the latent profitability on parcel 𝑖, 𝐼𝑖𝑡 and 𝑋𝑗𝑡 are parcel and neighborhood 

characteristics affecting profitability, respectively, 𝑃𝑗𝑡 is the price of housing services at the 

neighborhood level, and 𝑢𝑖𝑡 is an idiosyncratic error term. Based on equation (1), the parametric 

proportional hazard we adopt is 

 ℎ(𝑡) = ℎ0(𝑡)ℎ(𝐼𝑖𝑡
′ 𝛽 + 𝑋𝑗𝑡

′ 𝛼 + 𝑃𝑗𝑡
′ 𝛾) (2) 

where ℎ0(𝑡) is the baseline hazard, which is shifted proportionally by changes in the variables in the 

model. To empirically implement the model in equation (2), we use the discrete-time specification 

presented in Beck et al. (1998). We use the discrete-time duration framework in this paper as our 

subdivision events are only observed at yearly time steps. 

We adopt a control function approach to address price endogeneity. This approach uses a 

two-step estimation procedure to instrument for endogenous variables using residual variation 

derived from a first-stage regression that includes exclusionary instrumental variables, 𝑍𝑗𝑡 that 

control for the correlation between the price and the error term. Based on this method, we can write 

our first-stage OLS regression as 

 𝑃𝑗𝑡 = 𝑋𝑗𝑡
′ 𝛽 + 𝑍𝑗𝑡

′ 𝛿 + 𝑣𝑗𝑡 (3) 
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where the exogenous neighborhood variables, 𝑍𝑗𝑡 are a set of excluded variables that affect price, 

but not latent profit Π𝑖𝑡
∗ , and 𝑣𝑗𝑡 is an idiosyncratic error term.6 

 In the presence of endogeneity, the error term from equation (1) is given as 

 𝑢𝑖𝑡 = 𝑣𝑗𝑡
′ 𝜃 + 𝑒𝑖𝑡 (4) 

Assuming joint normality between 𝑢𝑖𝑡 and 𝑣𝑗𝑡 , the residual vector, 𝑣𝑗𝑡 from the first stage is added 

to the second-stage duration model as an additional covariate. Assuming that the instruments in the 

first stage are valid, we rewrite equation (1) as  

 Π𝑖𝑡
∗ = 𝐼𝑖𝑡

′ 𝛽 + 𝑋𝑗𝑡
′ 𝛼 + 𝑃𝑗𝑡

′ 𝛾 + 𝑣𝑗𝑡
′ 𝜃 + 𝑒𝑖𝑡 (5) 

where assuming joint normality between the errors in both stages, results in a discrete-time duration 

model as  

 
𝑃(Π𝑖𝑡

∗ = 1|𝐼𝑖𝑡, 𝑋𝑗𝑡, 𝑃𝑗𝑡 , 𝑣𝑗𝑡) = Φ [
𝐼𝑖𝑡

′ 𝛽 + 𝑋𝑗𝑡
′ 𝛼 + 𝑃𝑗𝑡

′ 𝛾 + 𝑣𝑗𝑡
′ 𝜃 + 𝜏𝑡−𝑡0

√1 − 𝜌2
] (6) 

where a set of time fixed effects 𝜏𝑡−𝑡0
 are included to model the baseline hazard.  

To estimate the two-stage control function approach, it is necessary to obtain instruments. 

The price instruments we construct borrow from the structural urban demand models of location 

choice. These models use the logic of Nash equilibrium to form instruments in a residential sorting 

context. The primary insight from this literature is that distant attributes impact prices in focal 

neighborhoods through spatial equilibrium. By isolating these distant, exogenous attributes it is 

possible to form instruments that are uncorrelated with unobservables in the focal neighborhood. 

We adopt this same methodology in the Baltimore metro region.  

To highlight the intuition of this process, Figure 1 shows a map of our study region 

displaying both county and neighborhood (2000 census block group) boundaries. This figure depicts 

a single focal neighborhood with a seven-mile distance ring drawn around a given focal 

neighborhood. Our instrumentation strategy uses variation in exogenous attributes from 

neighborhoods located outside the distance boundary defined by this ring as a means of controlling 

for price endogeneity. To establish the extent of “local” vs “distant” neighborhoods, we use a series 

of statistical tests to examine the validity of our distance thresholds. To do this, we exclude an 

increasing number of local neighborhoods around each focal neighborhood and create an IV matrix, 

𝑍𝑗𝑡
𝑛  that consists of area-weighted average values of exogenous attributes from neighborhoods 

                                                           
6 As is the case in a standard 2SLS IV model, identification depends on having at least as many excluded variables in the 

first stage (𝑍𝑗𝑡) as there are endogenous regressors in the main model. 
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outside of the boundaries defined by these local neighborhoods, where the superscript 𝑛 indexes the 

distance cutoff used in forming the 𝑍 matrix. We add these area-weighted instrumental variables to 

the right-hand side of equation (3) and estimate 

 𝑃𝑗𝑡 = 𝑋𝑗𝑡
′ 𝛽 + 𝑍𝑗𝑡

𝑛𝛿 + 𝑣𝑗𝑡 (7) 

For each of these models, we use over identification tests and choose the optimal model (optimal 

distance cutoff used in forming our instruments) based on the Chi-squared values from these tests 

(Stock et al. 2002; Wooldridge, 2010). By increasing the distance used in forming our instruments, 

we are able to net out local sources of variation, while retaining the power of the instrument, a result 

that is predicted by urban spatial theory (Bayer and Timmins, 2007). 

4. ECONOMETRIC RESULTS 

4.1 Control Function Estimation 

The control function residual in our duration model is obtained by estimating a pooled OLS 

regression in the first stage based on equation (7). This first-stage regression includes all exogenous 

neighborhood characteristics, time and county fixed effects, and a set of instrumental variables based 

on average values of exogenous attributes from distant neighborhoods. The excluded instruments 

used include the percentage of land in each neighborhood that is preserved or restricted from 

development (PreservationAvg), the percentage of land that remains undeveloped 

(UndevelopedAvg), and a measure of neighborhood income obtained from mortgage data collected 

through the Home Mortgage Disclosure Act (HMDA) (HHIncomeAvg). Each of these variables 

serves a role similar to a standard a demand-side exclusionary restriction – i.e., we expect each to 

impact the location choices of households, but not directly impact developer decision-making. Using 

equation (7), we generate neighborhood-level residuals based on different distance bands and 

include them as additional variables in our duration model. To account for any nonlinear impacts 

associated with our control function, we also include a quadratic term for the residual in the model 

(Papke and Wooldridge, 2008). 

Intuition for the exogeneity of our instruments is derived from the urban sorting and IO 

literature (Bayer et al. 2007; Petrin and Train, 2010). This literature establishes that variation in the 

instruments derived from distant locations influence prices in a focal neighborhood due to spatial 

equilibrium linkages arising from household sorting. Identification uses both spatial and temporal 

variation in excluded variables as they change over time and space. For robustness, we estimate 
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models based on omission of local neighborhoods falling within the distance cutoffs of five to seven 

miles. 

We report results from our control function estimates in Table 2. Based on our IV strategy, 

using more distant neighborhoods to generate instrumental variables in equation (7) should isolate 

plausibly exogenous competitive effects on price, while reducing the potential for direct price 

impacts from local neighborhoods. The remaining residual variation in the first-stage models 

introduced by our instrumental variables, after removing local effects, should serve as a plausible 

control function for endogeneity in competing risks model.  

The first column in Table 2 indicates the distance bands used to form the instrumental 

variables in the first-stage OLS models. In column (2), we present results for a set of joint 

hypothesis tests that the coefficients on our IVs are equal to zero in the first stage. Based on these 

F-statistics, it is clear that our instruments pass these exclusion tests for each of the distance bands 

in the duration models; F statistics easily exceed the rule-of-thumb exclusion threshold of 10 needed 

for inference based on the 2SLS estimator (Stock et al. 2002).  

We also conduct overidentification tests based on the methodology described in Wooldridge 

(2010) that is similar to a Hansen’s J overidentification statistic used in GMM models. Specifically, in 

addition to the residuals generated from the first-stage OLS model we add two of the three excluded 

IVs to the right-hand side of the competing risks model – we use the variable on percentage of 

preserved land area as our excluded instrument – and perform a series of Chi-squared joint 

hypothesis tests.  

Column (3) in Table 2 presents the results for our overidentification tests. For each model, 

the results are based on nonparametric block bootstrapped standard errors (300 replications) with 

clustering (bootstrapped samples drawn) at the parcel level.7 The overidentification tests show that 

we reject the null hypothesis that the excluded variables are correlated with the error terms in each 

of the models. Furthermore, as we continue to exclude additional neighborhoods in the first-stage 

regressions based on our distance cutoffs the p-values for these tests rise and become less 

significant. This result reflects the spatial equilibrium nature of our IV strategy – as more distant 

neighborhoods are used in constructing our instruments, the competitive impact of distant attributes 

                                                           
7 Because the residuals used as controls in the competing risks model are generated regressors – i.e., they are generated 
within a separate auxiliary model and added to the second stage – it is necessary to bootstrap the standard errors in order 
to obtain a consistent estimate of the variance-covariance matrix and standard errors (Wooldridge, 2010). Because our 
data is structured as a panel, we bootstrap the standard errors by sampling based on the parcel IDs.  
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on housing prices in a focal neighborhood are purged of local sources of variation that may directly 

impact prices in a focal neighborhood.  

Lastly, column (4) of Table 2 presents the control function residual, which has the expected 

negative sign. This indicates that failure to control for endogeneity of prices is likely to lead to an 

understated price elasticity of land conversion.8  

4.2 Duration Estimation 

Full results for both the non-IV and IV duration models are shown in Table 3. We separate the 

results into parcel and neighborhood characteristics. Standard errors are, once again, based on a 

nonparametric panel bootstrap procedure. Examining these results, we find similar signs and 

significance in models with and without instrumentation and the estimates have the expected signs. 

We now provide a brief review of the main findings in Table 3 followed by an analysis of the 

coefficients on price in each model.  

For the parcel characteristics, the coefficient estimate on zoning (ZndLots), which accounts 

for how many lots can be developed on a particular parcel based on the zoning designation of that 

parcel, is positive and significant in both models, which suggests that zoned capacity play a key role 

in determining development. Further, we see that the coefficient on land area (Area) is also positive 

and significant in both model; the coefficient of distance is positive, but insignificant in both models; 

and the coefficient for sewer is negative and significant in both models. Together, these results 

suggest the availability of sewer and parcel size play a significant role development decisions.  

 For our neighborhood characteristics, we find that an increase in the number of prior 

approvals at the neighborhood level has a positive impact, but only in the non-IV model. The 

coefficient on preservation is negative and significant, but only for the IV model. Finally, the 

coefficient on land price is negative and significant in both models, which is as expected if land 

serves as an input in the production of housing. 

 Turning attention to the coefficients on the housing-price variable, we first see that they are 

of the expected sign, positive, and significant in both the non-IV and IV models. Next, we see that 

the coefficients for the price residuals are negative and significant in all models indicating a 

                                                           
8 Table A3 in Appendix 2 reports results from our first-stage OLS models for each type of development. One indicator 
for the plausibility of our instruments is whether they have a differential, and potentially opposite effect, on price from 
those same variables in focal neighborhoods. Similar to Bayer et al. (2007), we find that the neighborhood level of 
preserved area in a focal neighborhood has a differential and opposite effect from the same characteristic based on 
values from distant neighborhoods, which suggests that our instrumental variables have a competitive effect on price, 
but do not directly affect latent profit in the focal neighborhood. 
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downward bias in price in models without instrumentation. Finally, we find that the price 

coefficients in the IV models are substantially larger in magnitude than those in the non-IV models, 

which suggests that not accounting for price endogeneity may significantly underestimate the impact 

of housing prices on the probably of conversion. To provide some intuition for both the sign and 

relative magnitude of our housing price coefficients, we convert these coefficients into elasticities in 

Table 4.9 Examining these values, we find that the price elasticity in the IV model 2.6 times larger 

than in the non-IV model.  

The results in Tables 3 and 4 demonstrate that accounting for price endogeneity is 

important. This result also has important policy implications in that it suggests that planners and 

policymakers interested in regulating development may be able to use targeted, price-based (market-

based) policies in achieving their objectives – i.e., targeted taxes based on location may provide 

planners with ability develop more focused land use policies. We explore these ideas further in the 

next section using the results from our duration model in a series land use simulations using the 

bootstrapped parameters estimates from our IV duration model. Based on the result in this section, 

we use the IV duration results in the remainder of the paper. 

5. POLICY SIMULATIONS AND WATER QUALITY OUTCOMES 

In this section, we present results from a series of land use simulations where we combine the 

parameter estimates and data from our duration model with data on nutrient loading rates from the 

CBP’s watershed model to examine how different price-based land use policies (taxes and subsidies), 

which alter development patterns, impact water quality outcomes. Specifically, we focus on how 

three policy scenarios, which differentially influence the location of residential development, impact 

loading rates for nitrogen and sediment. For each scenario, we compare simulation results based on 

five different tax levels with baseline results where we make no change to price. For each simulation, 

we employ a nested looping structure where the outer loop is over the parameter distribution from 

the duration model and the inner loop is over time (years). Each of the simulations proceeds as 

follows.  

In the first step, we use the data from our duration model and replace all of the parcels in all 

periods that dropped out as a result of development – i.e., we effectively produce a balanced panel 

data set, where each parcel is assumed to be available for development in each period. Second, we 

                                                           
9 The point estimates are the average elasticity values calculated at each point in the sample, and they represent the “price 
elasticity of residential land conversion” and reflect the long-run price elasticity of land supply in our three-county metro 
region for both low and high-density subdivision developments (Wooldridge, 2010). 



16 

 

begin the iteration of the outer loop by taking a draw from the parameter distribution from our 

econometric model and combine it with our land use data from the first step and a probit link 

function from the duration model to form a predicted probability of development for each parcel. 

The parameter draws for this steps are taken from the rows of the matrix of bootstrapped 

parameters – i.e., 1,000 𝑘𝑥1 parameter vectors from the bootstrap matrix. Next, we take a random 

draw from a uniform distribution for each parcel and compare it with the predicted probabilities 

produced in the previous step. We assume that a parcel is developed if the predicted probability of 

development for that parcel is larger than the draw from the uniform distribution. To replicate the 

dynamic nature of the development process in our original data, these probability comparisons take 

place sequentially – i.e., for each iteration of the outer loop (for each draw from the bootstrapped 

parameter matrix), we iterate (step) through time, make comparisons in each time period, and drop 

parcels from all subsequent time periods once they are assumed to be developed, which effectively 

replicates the terminal nature of the development process. Finally, we repeat this sequential inner-

loop 1,000 times for each parameter vector (row) of our bootstrapped parameter matrix. Each set of 

1,000 iterations, and the parcels predicted to develop within each iteration, represent a single land 

use simulation – i.e., 1,000 different sets of parcel IDs representing the predicted development 

outcomes for each iteration. We use the aforementioned simulation process for our baseline 

simulation – without a change in price – and for each policy scenario (tax and subsidy level).   

Following each simulation, we combine the results, which are the parcels predicted to 

develop within each iteration, with data on existing land cover, loading rates for nitrogen and 

sediment, and development density to generate measures for the change in loading rates following 

the implementation of a given land use policy. We assume our data on loading rates, taken from the 

CBP’s model, proxy for changes in water quality following this policy-induced change in land use. 

The details of this process are as follows.  

First, we take the GIS data used to estimate our duration model – the 15,015 parcels that 

were developable as of 1994 – and overlay them with 1992 USGS land cover data for the Baltimore 

region. This process allows us to determine the acreage of forest and cropland agriculture cover on 

each parcel at the beginning of our study period. Next, we use the GBP’s data on loading rates to 

determine the baseline loads on each parcel for nitrogen and sediment based on each parcel’s 

existing land cover. Specifically, we combine the loading rates in Table 5 for each county with the 

total acreage of each type of land cover (forest and agriculture) on each parcel to determine baseline 

loads for nitrogen and sediment. Lastly, we use the parcel IDs for the predicted subdivision 
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developments (produced within each iteration of the simulation) and generate another a set of 

loading rates based on the predicted density of development for each subdivision, where the loading 

rates for different densities are based on the values shown in the bottom of Table 5. Our duration 

model, while effective at modeling the optimal timing decision, does not explicitly model density. So, 

to assign a density to each simulated development, we use density values from our actual subdivision 

data. Specifically, we use our data on actual subdivision activity and generate average density values 

for in each year and county and for areas with and without public sewer; we use these average 

density values to assign development densities to each predicted subdivision development based the 

timing and location of the development. It is the comparison of the baseline loading rates on each 

parcel, based on forest and agriculture land cover, with the loading rates based on development 

density that we use in assessing the water-quality implications of each of our three policy scenarios. 

We now describe these policy scenarios in more detail. 

There are an endless number of price-based land use policies that we could analyze in our 

study region. However, our main interest is in running simulations that allow us to draw 

generalizable conclusions about the impacts of policies that have, or are most likely to be, 

implemented in the real world. Thus, we focus on three policy scenarios which we believe are both 

relevant to the Baltimore region and are general enough to be used in land use planning in other 

areas of the U.S.  

In Scenario 1, we implement a uniform property tax on all parcels in the data. This scenario 

is patterned after the manner in which most residential property taxes are implemented in the U.S. 

In Scenario 2, we increase property taxes on all parcels located in regions without public sewer and 

subsidize development on all parcels located in areas with public sewer. This scenario is designed to 

mimic the methods used by land use planners to control urban spatial expansion and sprawl – i.e., to 

concentrate growth in areas with public utility access. In Scenario 3, we implement a tax and subsidy 

policy based on the pre-existing land cover on each parcel and its ability to impact loading rates for 

nitrogen and sediment and thus local water quality – i.e., based on the loading rate values for 

nitrogen and sediment from CBP model (Table 5), we seek to limit the conversion of parcels with 

large amounts of forest cover and encourage the conversion of parcels with large amounts of 

cropland agriculture given the benefit that forest cover provides in managing runoff. Our specific 

policy is to implement a tax on parcels with greater than 50% forest cover and provide a subsidy to 

parcels with greater than 50% cropland agriculture. This last scenario is focused on enhancing water 

quality outcomes and ecosystem services, as opposed to managing urban spatial expansion. In all 
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three scenarios, we make comparisons between the simulation results following our taxed-induced 

price changes and results for a baseline simulation where we do not alter prices. In each scenario, we 

vary tax and subsidy values from 2% to 10% in 2% increments. 

Before turning to the results from our policy simulations, it is important to assess how well 

our simulation results match our actual data. To make this comparison, we run our baseline 

simulation – without a price change – and compare the distribution for the number of developments 

created with mean amount from the actual data (2,394 residential subdivision created from 1994 

through 2007). The distribution of developments created from this baseline simulation is shown in 

Table 6. As is apparent from these results, the mean value for the number of development created 

across all 1,000 iterations of our baseline simulation almost perfectly matches the actual mean from 

the data. Thus, we can are confident that our model and simulation fit the actual data very well. We 

now present the results from our policy simulations.  

   Our simulation results are presented in Table 7 and Figures 2 through 4. For each scenario, 

we present results for the number of developments created, the travel distance, in kilometers, from 

each development to the center of Baltimore City, and loading rates for nitrogen and sediment. For 

the development counts, we compare baseline totals for each iteration of the simulation with totals 

for each iteration after a policy change. For distance, we compare averages across predicted 

developments for each iteration of the baseline simulation with similar values following a policy 

change. Finally, for nitrogen and sediment, we generate average for changes in loading rates for each 

iteration of the baseline simulation and compare those values to each iteration of our policy 

simulations. The results in Table 7 are for the mean differences between the baseline simulation and 

each of the three policy simulations. Figures 2 through 4 present box-and-whisker plots for the 

distribution of these differences across all simulation iterations. Table 7 and three figures present 

results for each of the five different tax and subsidy levels listed above.  

Our policy simulations produce a number of interesting results. First, we find that the 

number of developments created is reduced in both Scenarios 1 and 2 and this reduction increases 

tax and subsidy rates increases. Conversely, in Scenario 3 we find a very limited impact from the 

policy on the number of developments created with developments actually increasing ever so slightly 

as taxes and subsidies increase. In terms of distance, we observe average increases for Scenarios 1 

and 3, but an average decrease for Scenario 2. This result is intuitive when we consider that both 

Scenario 1 and 3 favor lower-density, rural parcels, and Scenario 2 focuses on concentrating 

development in areas with public sewer and water with much of this land located closer to Baltimore 
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City. Finally, we observe a decrease in average loading rates for nitrogen and sediment for both 

Scenarios 1 and 3 and an increase in Scenario 2 with both increasing in absolute value as tax and 

subsidy rates increases. In addition, we observe the largest decrease in loading rates across all three 

scenarios is for Scenario 3, where, for example, a 2% tax-and-subsidy policy leads to an average 

reduction of 24 pounds per acre per year for nitrogen and an average reduction of 132 pounds per 

acre per year for sediment.  

Based on the results Table 7, it appears the policy in Scenario 3, which targets the 

preservation of forest cover and conversion of agriculture to residential development, produces the 

greatest benefit, in terms of reductions in nitrogen and sediment loading rates; it also leads to the 

smallest impact in terms lost development. Alternatively, we observe that in Scenario 2, which 

implements a tax and subsidy policy designed to limit urban spatial expansion and concentrate 

growth in areas with public sewer, that we actually have an increase in average loading rates for both 

nitrogen and sediment. This counterintuitive result stems from the fact that discouraging 

development in areas without sewer, and pushing it toward areas with sewer, leads to a reduction in 

the number of cropland farm parcels taken out of production and increases the number of high-

density parcels with large amounts of impervious surface, both of which result in increased nitrogen 

and sediment loading. Conversely, in Scenario 3, where we are replace cropland agriculture with low-

density, low-impervious residential development and protect forest cover, we get a significant 

reduction in nitrogen and sediment loading given the benefit provided by maintaining and protecting 

forest cover. Hence, our simulations indicate that price-based policies, which limit forest loss and 

remove cropland agriculture from production, are the most effective for mitigating the water quality 

impacts from residential development, at least in our simulations and study region. However, this 

benefit come at a cost as this policy (Scenario 3) leads to an increase the average travel distance, 

which suggests that it may also lead to an increase in urban spatial expansion. 

6. DISCUSSION AND CONCLUSIONS 

In this paper, we estimate an instrumental variable duration model of residential subdivision 

development in large metro region and link the econometric results with a model of water quality to 

analyze how different price-based land use policies, which differentially impact development 

patterns, impact loading rates for nitrogen and sediment. The linking process is achieved by running 

a series of land use simulations where we compare results from a baseline simulation in which we 

leave price unchanged with results from simulations based on three specific policy scenarios which 
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tax or subsidize land parcels based on location and land cover. The results from this process 

produce another of important results.  

First, we find that traditional, uniform property taxes lead to significant reductions in 

development and very little reduction in nitrogen and sediment loading rates. Thus, to the extent 

that uniform taxes may be proposed as a method to limit the water quality impacts of urban 

development, our results suggest otherwise. Second, we find that standard urban-growth policy, 

which attempts to limit urban sprawl and concentrate development in areas with public sewer and 

water, actually lead to increases in nitrogen and sediment loading relative to policies that specifically 

focus on reducing land use impacts on water quality outcomes. This result stems from the fact that 

they limit the amount of cropland agriculture taken out of production – a land use with significant 

impacts in terms of nutrient loading rates – and replace it with high-density, high-impervious 

development which also contributes relatively more to nutrient loading. Finally, we find that price-

based policies which limit forest loss and encourage the conversion of cropland agricultural parcels 

to low-density residential actually lead to significant reductions in nitrogen and sediment loading. 

The downside of this policy, however, is that may lead to an increase in the urban footprint and an 

increase in sprawl. 

The main result in this paper – that land use policies designed to manage or limit urban 

growth may lead to conflicting environmental outcomes – is not entirely original. A number of 

recent papers have examined the impact of land use restrictions on environmental outcomes in 

different contexts and found corresponding results. Glaeser and Kahn (2010) explore the impact 

that inter-urban heterogeneity in the restrictiveness of land use regulations have on emissions. Their 

results indicate that increased land use regulations, which lead to high housing prices in those cities, 

may lead to increased population growth in less-regulated, lower-priced cities. If these less-restrictive 

cities are also relatively warmer and produce energy using dirtier methods, then it is possible for land 

use regulations designed to reduce emissions in one urban area to lead to an overall increase in 

emissions.  

In a more recent paper similar in spirit to ours, Bigelow et al. (2017) use micro-scale 

econometric simulation methods to analyze how different land use policies impact consumptive 

water in three cities in Oregon. In one simulation scenario in their paper, increased urban expansion 

and residential development actually leads to a reduction in overall consumptive water use. That 

result stems from the fact that the increased residential development removes irrigated agricultural 

land from production, which uses relatively more water. This results is largely similar to ours – i.e., 
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we demonstrate that removing agricultural land from production, and replacing it with residential 

development, leads to a relative reduction in nitrogen and sediment loading albeit on land developed 

farther from the urban center.  

In conclusion, the results in our paper, and the papers listed above, indicate that there are a 

clear tradeoffs to be made by policymakers. Specifically, policymakers must recognize that reducing 

sprawl and urban spatial expansion may reduce certain environmental impacts – leapfrogging and 

fragmentation of the landscape – while increasing others – consumptive water use and local water 

pollution – based on interactions between existing land uses and new residential land use. Whether 

planners should target one type of environmental objective over the other is open question, which 

requires a more thorough welfare analysis – which we leave for future work.   
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Figures 

 

Figure 1. Map of the Baltimore metro study region. Neighborhoods are defined based on 2000 block group boundaries. The “local” 
neighborhoods in the figure are those that fall within the 7-mile distance cutoff drawn around the centroid of the “focal” neighborhood. 
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Figure 2. This figure displays results from a series of land use simulations under tax Scenario 1. In 
these simulations, a uniform tax is imposed on all parcels in the data with the different tax levels 

defined along the horizontal axis. Each simulation consists of 1,000 iterations, where each iteration 
combines land use and price data with a draw from the parameter distribution from the duration 

model and a probit link function to determine the likelihood of development for each parcel in each 
time period. The results for each tax simulation are compared with a baseline simulation, where 
prices are held at their original values and development outcomes are predicted. Part A. displays 

results for the change in the number of subdivision developments created; Part B. displays results 
for the change in the average commuting distance (in kilometers) for each of the developments in 

each iteration of the simulation; and Parts C. and D. display results for the change in average loading 
rates (lbs/acre) for nitrogen and sediment. 
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Figure 3. This figure displays results from a series of land use simulations under tax Scenario 2. In 

these simulations, a uniform tax is imposed on all parcels located in areas without public sewer and a 
uniform subsidy is imposed on all parcels with public sewer. The different tax/subsidy levels are 

defined along the horizontal axis. Each simulation consists of 1,000 iterations, where each iteration 
combines land use and price data with a draw from the parameter distribution from the duration 

model and a probit link function to determine the likelihood of development for each parcel in each 
time period. The results for each tax simulation are compared with a baseline simulation, where 
prices are held at their original values and development outcomes are predicted. Part A. displays 

results for the change in the number of subdivision developments created; Part B. displays results 
for the change in the average commuting distance (in kilometers) for each of the developments in 
each iteration of the simulation; and Parts C. and D. display results for the change in the average 

loading rates (lbs/acre) for nitrogen and sediment. 
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Figure 4. This figure displays results from a series of land use simulations under tax Scenario 3. In 
these simulations, a uniform tax is imposed on all parcels with greater than 50% forest cover and a 
uniform subsidy is imposed on all parcels with greater than 50% agricultural cover. The different 

tax/subsidy levels are defined along the horizontal axis. Each simulation consists of 1,000 iterations, 
where each iteration combines land use and price data with a draw from the parameter distribution 
from the duration model and a probit link function to determine the likelihood of development for 
each parcel in each time period. The results for each tax simulation are compared with a baseline 

simulation, where prices are held at their original values and development outcomes are predicted. 
Part A. displays results for the change in the number of subdivision developments created; Part B. 
displays results for the change in the average commuting distance (in kilometers) for each of the 

developments in each iteration of the simulation; and Parts C. and D. display results for the change 
in the average loading rates (lbs/acre) for nitrogen and sediment. 

 
 



29 

 

Tables 

Table 1. Descriptive statistics for parcel and neighborhood variables 

 

Variables Mean St. Dev. Min. Max.

Parcel

Dist Kilometers to Baltimore City 30.54 16.74 0.00 76.31

DistMajRoad Kilometers to closest major highway 0.71 0.72 0.00 5.34

Area Parcel area in acres 19.38 36.74 0.07 946.95

ZndLots Count of zoned lots allowed 9.71 32.20 0.00 1378.00

Sewer Indicator for municipal sewer service 0.46 0.50 0.00 1.00

FloodPlain Located in 100-year flood plain 0.18 0.38 0.00 1.00

SepticSuit Indicator for septic suitability 0.54 0.50 0.00 1.00

Slope % of parcel with slope > 15% 9.81 23.22 0.00 101.93

ExHouse Has an existing structure 0.54 0.50 0.00 1.00

ForestPrcnt % of parcel with forest cover 38.77 34.98 0.00 100.00

Neighborhood

Preservation % of neighborhood in preservation 5.76 10.23 0.00 88.18

UDArea % of neighborhood undeveloped 26.31 15.94 0.03 120.82

ApprvLots Count of lots approved - 1-year lag 25.96 40.86 0.00 519.00

LandPrice In $1,000s per acre 77.21 66.02 4.22 718.84

HousePrice In $1,000s 128.42 44.68 20.25 493.73

Baltimore Located in Baltimore County 0.58 0.47 0.00 1.00

Carroll Located in Carroll County 0.24 0.43 0.00 1.00

Harford Located in Harford County 0.19 0.39 0.00 1.00

Note - The statistics for the parcel variables are based on the 15,015 land parcels that were developable or developed during our study 

period (1994-2007). The statistics for the neighborhood variables are based on the 667 block groups (neighborhood boundaries) over the 

same time period.
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Table 2. Diagnostic tests of IV duration model  

(1) (2) (3) (4)

 IV Distance

First-Stage        

F-Statistic

OverID 

Statistic

5 Miles 1436.21 0.5530 -0.0027 ***

-2.3E-05 ***

6 Miles 1247.19 0.6429 -0.0030 ***

-2.3E-05 ***

7 Miles 1060.79 0.916 -0.0029 ***

-2.3E-05 ***

Note - This table presents a series statistical tests of the IV 

durationmodel. Column (2) is a first-stage weak instrument test (F-stat); 

column (3) is an overidentification test (p-value); and column (4) 

presents the coefficient values and significance levels for the control 

function variables in the main duration model - a direct test of price 

endogeneity. The results on each line are based on the distance cutoff 

(column (1)) used in forming the instruments in the first-stage OLS 

model. The residuals from each first-stage model are included as controls 

(Wooldridge, 2010) in the duration model. Al lresults are based of a 

bootstrapped models with 300 reps.

Control 

Function

* Significant at 10% level

** Significant at 5% level

*** Significant at 1% level
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Table 3. Results for the non-IV and IV duration models  

Coef. St. Err. Coef. St. Err.

Parcel Characteristics

Dist (km) 0.0017 0.0011 0.0011 0.0011

DistMajRoad (km) 0.0450 *** 0.0114 0.0484 *** 0.0114

Area (acres) 0.0007 *** 0.0002 0.0007 *** 0.0002

ZndLots 0.0021 *** 0.0002 0.0021 *** 0.0002

Sewer -0.0911 *** 0.0240 -0.0583 ** 0.0245

FloodPlain -0.0731 *** 0.0230 -0.0655 *** 0.0232

SepticSuit 0.0807 *** 0.0183 0.0499 ** 0.0192

Slope 0.0000 0.0004 -0.0001 0.0004

ExHouse -0.0122 0.0176 -0.0088 0.0177

ForestPrcnt -0.0018 *** 0.0002 -0.0019 *** 0.0002

Constant -2.4335 *** 0.0577 -2.7880 *** 0.0781

Neighborhood Characteristics

Preservation (%) -0.0013 0.0009 -0.0029 *** 0.0009

UDArea (%) -0.0027 *** 0.0008 -0.0029 *** 0.0008

ApprvLots 0.0007 *** 1.7E-04 0.0003 0.0002

LandPrice (1K) -0.0011 *** 0.0002 -0.0011 *** 0.0002

HousePrice (1K) 0.0022 *** 0.0002 0.0058 *** 0.0006

Residual -0.0029 *** 0.0008

ResidualSqrd -2.3E-05 *** 6.1E-06

Log-Likelihood

* Significant at 10% level; ** Significant at 5% level; *** Significant at 1% level

-12401.548 -12374.785

Non-IV Model IV Model

Note - The table presents results from the Non-IV and IV duration models. The IV results are produced 

using a control function methodology (Wooldridge, 2010). The residuals are generated using a 7-mile 

distance cutoff in forming the instruments. All models include time and county fixed effects. The 

standard errors are based on a block bootstrap procedure with 300 replications and clustered at the 
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Table 4. Price elasticity estimates 

 

 

 

 

 

 

 

 

 

 

 

 

Coef. St. Err.

Non-IV 0.7514 *** 0.0782

IV 1.9652 *** 0.2185

Note - The elasticity values are calculated using a 

marginal effects formula for probit model and 

represent the average percentage change in the 

probability of development (conversion) for a 

small change in price. The standard errors are 

calculated using the delta method and are based 

on the bootstrapped variance-covariance matrices 

from the duration model.

* Significant at 10% level;

** Significant at 5% level;

*** Significant at 1% level
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Table 5. Nutrient and sediment load rates for Baltimore region 

 

 

 

Farmland Forest Farmland Forest

Baseline Load 

(lbs/acre/year)

Baltimore 17.2 2.5 835.2 61.3

Carroll 26.7 5 464.0 129.2

Harford 18.1 3.7 816.5 124.3

Residential Loading Rates 

(lot size in acres)

2

1

0.5

0.25

0.125

0.0625

9.60 268.2

9.89 330.6

Nitrogen Sediment

9.45 235.2

10.86 526.4

Note - This table presents information on loading rates, in pounds per acre per year, for nitrogen and sediment 

across all three counties in the model. The top part of the table shows baseline loading rates for agriculture and 

forest land. The bottom part of the table shows loading rates for different residential density classes. All of 

these values come from the Chesapeake Bay Program's land use and water quality model. 

10.17 388.5

10.37 431.2
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Table 6. Predicted number of subdivisions created in baseline simulation using IV duration model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean St. Dev.

2396 60 2283 2518

95% CI

Number of Developments

Note - This table presents summary statistics for the 

predicted number of developments created across a 

series of simulations using the results from IV duration 

model. Each simulation (1000) is based on a draw from 

the matrix of bootstrapped parameter estimates from the 

model. The actual number of developments created in 

the data is 2,394.
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Table 7. Results from land use simulations 

 

 

 

 

 

 

2% 4% 6% 8% 10%

Scenario 1

Number of Developments -85 -167 -248 -326 -402

Distance to Baltimore (km) 0.05 0.09 0.11 0.15 0.20

Nitrogen (lbs/acre) -2.82 -4.33 -6.16 -7.09 -7.14

Sediment (lbs/acre) -6.16 -32.18 -47.25 -60.39 -57.51

Scenario 2

Number of Developments -29 -56 -82 -102 -121

Distance to Baltimore (km) -0.18 -0.39 -0.61 -0.82 -1.06

Nitrogen (lbs/acre) 8.03 23.39 35.89 49.19 65.38

Sediment (lbs/acre) 40.81 79.55 126.71 155.68 196.58

Scenario 3

Number of Developments -1 1 3 10 16

Distance to Baltimore (km) 0.14 0.26 0.40 0.53 0.67

Nitrogen (lbs/acre) -24.77 -43.99 -69.24 -92.96 -118.32

Sediment (lbs/acre) -132.66 -259.31 -415.97 -528.19 -660.52

Price Change

Note - This table presents results from a series of land use simulations using the results from the IV duration 

model. The columns represent the sequence of price changes imposed in each policy scenario ranging from a 2% 

tax/subsidy to a 10% tax/subsidy. The table presents results for three different policy scenarios: Scenario 1 - a 

uniform tax imposed on all parcels; Scenario 2 - a tax imposed on parcels in areas without public sewer and a 

subsidy imposed on parcels in areas with public sewer; and Scenario 3 - a tax imposed on parcels with more than 

50% forest cover and subsidy imposed on parcels with more than 50% agricultural land cover. The baseline land 

cover values are taken from the USGS land cover data for the Baltimore region. For each scenario and price 

change, we present results for the change in the average number of developments created, the change in the 

average distance of those developments from Baltimore City (in kilometers), and the change in average reduction 

(pounds per acre) of nitrogen and sediment for those developments. All changes (comparisons) are made relative 

to a baseline land use simulation without a change in price.
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Appendix 

1. Creation of Housing and Land Price Variables 

1.1 Land Price Indices 

To create our land-price variable we select all arms-length land transactions from the MDPV 

databases that occur between 1994 and 2007. We further refine these data by excluding any parcels 

that already contained a farmland preservation easement on the property, which precludes it from 

being sold for development at full market value. We further exclude observations that were clearly 

not land sales based on the improvement value of the parcel. Finally, we exclude the top and bottom 

1% of the sample based on the sale price per acre of the parcel to reduce the potential influence of 

outliers. The final data set on land transactions includes 10,669 arms-length land sales from 1994 to 

2007.  

 To create our land price variable we estimate the following hedonic regression 

 𝑙𝑛 (𝑟𝑙𝑝𝑝𝑎𝑐𝑟𝑒𝑙𝑡) = 𝑃𝑎𝑟𝑙𝑡
′ 𝛽 + 𝛿𝑗 + 𝜏 + 𝑒𝑙𝑡 (A1) 

where 𝑟𝑙𝑝𝑝𝑎𝑐𝑟𝑒 is the real land price per acre in year 2000 for land parcel 𝑙, 𝑃𝑎𝑟𝑙𝑡 is a set of parcel-

level controls, and 𝛿 and 𝜏 are block group and year fixed effects, respectively. The set of parcel-

level controls includes the size of the parcel in acres as well as an indicator for whether the sale was 

for a previously subdivided lot, which controls for any differences in price between subdivided and 

unsubdivided parcels. We estimate the land price hedonic model using the pooled data set due to the 

limited number of land sales during our study period (Table A1 lists the number of arms-length land 

transactions for each year in our data). After controlling for land parcel characteristics, the year and 

block group fixed effects are used to construct an estimate of mean land price per acre in each 

neighborhood. For block groups and years without a sale we use a distanced weighted average of the 

values of the block group fixed effects for the closest five block groups in space in each year. Since 
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land is an input in the production of housing we expect land prices to negatively affect latent 

profitability. 

 

Table A1. Number of arms-length land transactions by year 

 

1.2 House Price Indices  

The data used to generate our house-price variable also comes from MDPV. Similar to the approach 

for the land price data, we use only arm’s-length single-family housing transactions between 1994 

and 2007. After excluding the top and bottom 1% of the sample to remove outliers and removing 

any transactions that do not appear to be of single-family dwellings, such as multi-family dwellings 

and commercial structures, the final sample for 1994-2007 has 187,497 individual transactions. We 

convert the nominal sale price of each house to year 2000 dollars using the consumer price index 

(CPI) for the Baltimore metropolitan area. 

 To construct our housing price indices we follow Sieg et al. (2002) and estimate a series of 

hedonic models that separate out the price of housing services at the neighborhood level from the 

Year Observations

1994 851

1995 754

1996 972

1997 922

1998 1047

1999 1035

2000 909

2001 795

2002 831

2003 617

2004 664

2005 572

2006 376

2007 354
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quantity index of housing determined by structural and lot-specific characteristics of the house. To 

do this we estimate the following house-price hedonic for each year  

 𝑙𝑛(𝑟𝑙ℎ𝑠𝑝𝑟ℎ) = 𝑃𝑗 + 𝐻ℎ
′ 𝛽 + 𝜖ℎ (A2) 

where 𝑟𝑙ℎ𝑠𝑝𝑟ℎ is the real transaction price for house ℎ in census tract 𝑗, 𝑃𝑗 is a fixed effect for the 

block group in which the house is located, and 𝐻ℎ
′  and 𝜖ℎ are the observable and unobservable 

attributes for house ℎ, respectively. We control for structure and lot-specific attributes of each house 

by combining our house price data with the tax assessor’s data for each house. As shown in Sieg et 

al. (2002), 𝑃𝑗 represents the price of housing services for each block group. Repeating the estimation 

process in equation (A2) for each of the 14 years in our data provides a value for the price of 

housing services for each block group and year in our model.10 This block group and year house 

price value is used in both our competing risks model and the first-stage regression as our measure 

of neighborhood house price. 

 One concern with the hedonic estimation strategy above is that by estimating yearly, instead 

of pooled, house price hedonics we implicitly assume that the quantity index is changing from year 

to year. However, estimating the quantity index (the coefficient on the housing characteristics) in 

each year comes at a price as sampling error is likely to increase statistical noise in the neighborhood 

fixed effects estimates. This extra noise is not likely to be a major issue in large samples, though it 

may affect the fixed effect estimates as yearly sample sizes decrease. Given that the sample sizes of 

our housing transactions data in each year are quite large (Table A2 lists the number of yearly arms-

length housing transactions in our data), we are able to run separate hedonic models for each year to 

generate our neighborhood-level house price indices. We did, however, run a pooled regression for 

                                                           
10 A similar method for estimating the price of housing services has been applied in other structural models (see Klaiber 
and Phaneuf (2010) and Walsh (2007), among others). 
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the land price hedonic model in the previous section due to the smaller number of land transactions 

over time. This is an important consideration in applying our method in other settings. 

 

Table A2. Number of arms-length housing transactions by year 

 

 

 

 

 

 

 

 

 

 

 

Year Observations

1994 11127

1995 11032

1996 12708

1997 12254

1998 13130

1999 14523

2000 12940

2001 13706

2002 14487

2003 14974

2004 16125

2005 14970

2006 14147

2007 11374
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2. Additional Results 

 

 

Table A3. First-stage OLS price regression 

 

 

 

 

 

 

 

 

Coef. St. Err.

Neighborhood Variable

PreservationArea (%) 0.6078 *** 0.0422

Undeveloped Area (%) 0.2291 *** 0.0231

Instrumental Variable

HHIncomeAvg -11.0758 *** 0.2242

PreservationAvg 18.7935 *** 1.9077

UndevelopedAvg -10.6843 *** 0.7569

N = 9,213

* Significant at 10% level; ** Significant at 5% level; *** Significant at 1% level

Note - This table presents results from the first-stage OLS price regressions. 

The dependent variable is the quality-adjusted hedonic price index for each 

"focal" neighborhood in each time period. The instrumental variables are area-

weighted average values of the variables specified in the table and are based 

on the values of those variables in "distant" neighborhoods, or in 

neighborhoods that are greater than the distance cutoff for contiguity to the 

"focal" neighborhood. The distance cutoff used here is 7 miles. All models 

include time and county fixed effects. 
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