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Optimal timber management decisions in the face of future uncertainties 

 

Abstract 

This study develops a global model of climate change impacts on optimal forest management.  The model 
integrates a global dynamic vegetation model with a global dynamic forestry model and examines the 
impacts on forests of future income, population, and climate change across the Shared Socio-economic 
Pathways (SSPs) presented by the Intergovernmental Panel on Climate Change. Special attention is 
devoted to decisions over how much to invest in forest management, a decision that can only be reversed 
by harvesting and replanting. To address this, a min-max-regret analysis is conducted whereby the 
modelers calculate a robust path of management investments in commercial forests that factors in key 
uncertainties.  The results suggest that while climate change can have important consequences for forests, 
economic growth has the strongest impact on forested ecosystems in the future. Total forest area increases 
in some scenarios and decreases in others, although large areas of natural forests are converted to 
agricultural uses and commercial forests.  The area of forests decreases in the north, and increases in the 
south.  Similarly, investments in forests increase in the south and decrease in the north.  The impacts of 
climate change occur sufficiently far in the future that foresters can continue making decisions without 
considering climate change through the middle of the century, but over the second half of the century will 
need to start adjusting management to account for climate change. 

  



Introduction 

Climate change is expected to have far-reaching impacts on the world's forests.  The IPCC (2014) 
suggests changes along three dimensions in response to rising CO2 concentrations and changing 
temperature and precipitation: shifts in forest growth rates, shifts in where species can grow, and changes 
in disturbance regime. For example, ecosystem models have shown potentially large scale movements in 
forested ecosystems over the next century, and large growth responses (e.g., Kim et al., 2017).  

A number of economic models have integrated ecosystem impacts and examined how the ecological 
changes could influence timber production and management.  One of the first studies, Joyce et al. (1995) 
found that forest growth would likely increase with climate change, leading to increased timber 
production and lower prices. That study did not consider the effects of changes in forest disturbance and 
the movement of ecosystems across the landscape as climate changes. Sohngen and Mendelsohn (1998) 
illustrated the importance of modeling the full dynamic adjustment pathway to measure welfare effects of 
climate change on forests.  Guo and Costello (2013) also use a dynamic approach and show how 
adaptation strategies will rely heavily on the extensive margins, finding that much of the effort on 
adaptation will occur when forests are harvested and regenerated rather than through management or the 
timing of harvests.  Sohngen et al. (2001), Perez Garcia et al. (2001) and Tian et al. (2016) use global 
models to account for the price effects of large-scale shifts in ecosystem productivity.   

None of the existing models of climate change impacts in forestry have explicitly factored in the impact 
of uncertainty on forest management decisions.  Uncertainty is important for a number of reasons. First, 
we do not know the future path of carbon emissions, and thus do not know the climate forcing factors that 
will affect ecosystems.  Second, we do not know exactly how ecosystems will respond to changes in 
climate.  Forest dieback, for instance, is currently an important source of uncertainty for forest managers.  
It could increase or decrease with climate change, depending on relative changes in temperature versus 
precipitation and other factors, making future decisions about when to harvest trees and what to replant 
substantially more complex.  Third, timber prices are uncertain.  Nearly all studies in forestry that have 
considered uncertain timber prices, however, have treated prices as a function of some exogenous 
process, typically unrelated to climate change.  With climate change, however, prices must be determined 
endogenously with climate change impacts and uncertainty unfolding in multiple regions.  

To address these issues, we develop a global dynamic forward looking model of land use with detailed 
representation of forests, building on work documented in Sohngen et al. (1999, 2001) and Tian et al. 
(2016), and apply a Min-Max Regret (MMR) criterion (Lempert et al. 2006, Cai and Sanstad 2016) which 
allows us to find optimal intensity of investments in forest management in the 21st century in the face of 
future uncertainties. . The MMR approach allows us to determine a set of intertemporal forest 
management decisions that minimizes the potential adverse welfare consequences of assuming one future 
but experiencing another. Regrets are the welfare consequences of making decisions consistent with one 
scenario while in fact the world follows a different pathIn this paper we focus on just one element of the 
set of management decisions in forestry – biome specific intensity of investments in forest management 
over time. 

Within our global timber model, the management decisions that affect adaptation include choosing the 
optimal age class of harvesting trees, the intensity of investments in forest management at replanting time 
(which are fixed for the life of the tree), the type of trees to grow in a given area, the area of forests to 
manage for timber production, the area of forests to leave in a natural state, and the overall area of forest 
cover. In the model, the global land endowment is split into biomes, and competition for land among 
agriculture and forests (both managed and unmanaged) differs across biomes.  Representation of forests is 



based on the deterministic analysis and data in Tian et al. (2016). Climate impacts are derived from the 
MC2 model (Kim et al., 2017). Scenarios from the MC2 model have been linked to temperature and 
atmospheric carbon dioxide concentrations in the Shared Socioeconomic Pathways (SSPs) database 
(IIASA 2015). Thus, we examine impacts across the five SSPs, characterized by SSP specific global 
population, income, change in global surface temperature and carbon dioxide concentrations, and then use 
the MMR approach to determine biome specific paths of intensity of investments in forest management 
that minimize the maximum regret across these scenarios. 

The results illustrate that investments in forest management should continue to increase in most regions of 
the world over the next 25-40 years. They are expected to increase most rapidly for the fastest growing 
forest types, for example Southern Pine in the US and other non-indigenous species in other regions of 
the world, with investments in forestry management in these types growing at roughly 3% per year.  
Investments in management in slower growing species also increase, but less rapidly at 1.6% per year.  
Beyond 2050, our model projects that investments in forest management slow down and decline in the 
US, while they continue to grow in other regions.  One reason for the slow-down in the US is the large 
increase in forest fire activity that occurs in this region, making investments in the US substantially more 
risky in the longer run.  

 

Methods 

We start with the per capita utility of consumption of wood, Qt, and all other products, Yt,1 

(1)  U(Qt, Yt) 

In the context of a forestry model, Πt Qt is the total volume of wood harvested from amongst the age 
classes of trees in various forest types that are harvested: 

(2)  Πt Qt = ∑ ∑ 𝐻𝐻𝑎𝑎,𝑡𝑡
𝑖𝑖𝐴𝐴

𝑎𝑎=1 𝑉𝑉𝑎𝑎,𝑡𝑡
𝑖𝑖𝐼𝐼

𝑖𝑖=1  

where 𝐻𝐻𝑎𝑎,𝑡𝑡
𝑖𝑖  are the hectares harvested and 𝑉𝑉𝑎𝑎,𝑡𝑡

𝑖𝑖  is the volume per hectare, and subscript a and i denote age 
class of trees and types of forests harvested (biomes). Π t  denotes global population. 

The volume of timber per hectare, 𝑉𝑉𝑎𝑎,𝑡𝑡 ,
𝑖𝑖  is the product of a logistic function, 𝐺𝐺𝑎𝑎,𝑡𝑡

𝑖𝑖 , which adjusts as forests 
age according to 

(3)      𝐺𝐺𝑎𝑎,𝑡𝑡
𝑖𝑖 = exp (𝛼𝛼𝑖𝑖 − 𝛽𝛽𝑖𝑖 

𝑎𝑎
) 

and a timber management intensity function, 𝑓𝑓𝑖𝑖(𝑍𝑍𝑎𝑎,𝑡𝑡
𝑖𝑖 ), which is controlled by management inputs. 𝑉𝑉𝑎𝑎,𝑡𝑡

𝑖𝑖  is 
thus:   

(4)  𝑉𝑉𝑎𝑎,𝑡𝑡
𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝑍𝑍𝑎𝑎,𝑡𝑡

𝑖𝑖 )𝐺𝐺𝑎𝑎,𝑡𝑡
𝑖𝑖  

The intensity function, f(Z), has the following properties: 

                                                           
1 In the model, the consumption bundle include wood products, crop-based food, livestock-based food, energy that 
includes bioenergy, and other goods and services. The representation of the consumption bundle adopted in this 
paper is a simplification for easier exposition. 



(5)  𝑑𝑑𝑓𝑓
𝑑𝑑𝑍𝑍� ≥ 0    𝑎𝑎𝑎𝑎𝑑𝑑 𝑑𝑑

2𝑓𝑓
𝑑𝑑𝑍𝑍2� ≤ 0 

The intensity decision (optimal Z) is made at the time the forest is planted, as this dictates the way the 
forest will grow.  Higher intensity of planting will increase yields in the future at harvest time, but the 
benefits of increasing Z are diminishing. With climate change, the volume per hectare will shift due to 
changing temperature and precipitation levels.  The shift in timber biomass growth per period is given as 
γt, which adjusts the growth of trees.  The cumulative effect of biomass growth, combined with the 
impacts of climate change, is the timber yield, given as the volume per hectare 𝑉𝑉𝑎𝑎,𝑡𝑡

𝑐𝑐,𝑖𝑖: 

(6)        𝑉𝑉𝑎𝑎,𝑡𝑡
𝑐𝑐,𝑖𝑖 = 𝑉𝑉𝑎𝑎−1,𝑡𝑡−1

𝑐𝑐,𝑖𝑖 + (1 + 𝛾𝛾𝑡𝑡𝑖𝑖)(𝑉𝑉𝑎𝑎,𝑡𝑡
𝑖𝑖 − 𝑉𝑉𝑎𝑎−1,𝑡𝑡−1

𝑖𝑖 )  

Over time, the stock of trees evolves as 

(7)  𝑋𝑋𝑎𝑎+1,𝑡𝑡+1
𝑖𝑖 = 𝑋𝑋𝑎𝑎,𝑡𝑡

𝑖𝑖 − 𝐻𝐻𝑎𝑎,𝑡𝑡
𝑖𝑖 − 𝛿𝛿𝑡𝑡𝑖𝑖𝑋𝑋𝑎𝑎,𝑡𝑡

𝑖𝑖  

𝑋𝑋1,𝑡𝑡
𝑖𝑖 = 𝑁𝑁𝑡𝑡𝑖𝑖 

where N represents the replanted hectares. 

In the equation of motion above, the parameter δt represents dieback from forest fires and other 
disturbances that affect trees.  

and the stock of management evolves as 

(8) 𝑍𝑍𝑎𝑎+1,𝑡𝑡+1
𝑖𝑖 = 𝑍𝑍𝑎𝑎,𝑡𝑡

𝑖𝑖  

𝑍𝑍1,𝑡𝑡
𝑖𝑖 = 𝑚𝑚𝑡𝑡

𝑖𝑖  

The deterministic forestry problem involves maximizing global welfare for each SSP scenario k: 
∑ ρ𝑡𝑡Π𝑡𝑡U(Q𝑡𝑡, Y𝑡𝑡)∞
𝑡𝑡=1 , subject to equations (7) and (8), as well as resource availability and other 

constraints, to find paths of resource allocation variables X,  Hi
a Ni, mi, as well as land conversions from 

natural state to commercial use and among commercial uses Δ. Given uncertainty over the path of 
population, income, carbon concentrations and global surface temperature change, the deterministic 
problem taken alone is unlikely to yield a satisfactory outcome. For instance, we assume the effect of 
climate change on shifts in forest growth is largely controlled by carbon concentrations, so we can 
express γt as a function of carbon concentrations, Pt, such that γ = γ(Pt).  Dieback in contrast is a function 
of temperature, τt, so that δ = δ(τt). Similar to dieback, the change in biome size is modeled as a function 
of temperature. Carbon concentrations and temperatures, of course, are a function of population, income 
and technology choices. For consistent representation of the future in terms of population, income and 
climate in the model, we use SSPs developed to cover the broad range of economic and climate futures 
(O’Neill et al. 2014, IIASA 2015). These scenarios are presented in Figure 1 and demonstrate that 
development of population, income, and climate change is very uncertain in the 21st century. Absent 
multi-variable probability distributions, and also probability of each scenario, we employ MMR approach 
to determine optimal response to future uncertainties. First, we compute: 

(9) 𝑊𝑊(𝑚𝑚,𝐻𝐻,𝑁𝑁,∆,𝑋𝑋; 𝑘𝑘) ≜ ∑ 𝜌𝜌𝑡𝑡 Π𝑡𝑡,𝑘𝑘𝑈𝑈(𝑄𝑄𝑡𝑡,𝑘𝑘 , Y𝑡𝑡,𝑘𝑘)∞
𝑡𝑡=0  

where W is global welfare associated with policy path m, H, N, Δ, X, and SSP scenario k. We then solve: 

 



(10)  𝐹𝐹(𝑘𝑘) ≜ max
𝑚𝑚,𝐻𝐻,𝑁𝑁,Δ,𝑋𝑋

𝑊𝑊(𝑚𝑚,𝐻𝐻,𝑁𝑁,Δ,𝑋𝑋;𝑘𝑘). 

That is, for each SSP we solve the model to find intensity of investments in forest management, as well as 
other decision variables, that maximize global welfare. Then, the regret function is defined: 

(11) 𝑅𝑅(𝑚𝑚;𝑘𝑘) ≜ 𝐹𝐹(𝑘𝑘) − max
𝐻𝐻,𝑁𝑁,Δ,𝑋𝑋

𝑊𝑊(𝑚𝑚,𝐻𝐻,𝑁𝑁,Δ,𝑋𝑋; 𝑘𝑘) 

for a given matrix of forest management intensities m and scenario k. That is, for the k-th realized SSP 
scenario, the regret is difference between (a) wealth attained when we can choose both optimal m and 
other decision variables and (b) wealth attained when m is given. The optimization problem which 
minimizes the maximum regret R associated with several possible outcomes k is then formulated as: 

(12) min
𝑚𝑚

max
𝑘𝑘

𝑅𝑅(𝑚𝑚; 𝑘𝑘) 

For this problem, we consider the five SSP scenarios presented by the IPCC. These scenarios imply 
different growth rates for population, income, energy consumption, emissions, and climate forcing.  We 
map the forcing to changes in forest yields, dieback, and potential changes in biome areas using results 
from the MC2 dynamic global vegetation model.   

 

Figure 1. SSP scenarios of population (in billions), income (in trill USD), their associated per capita 
income (in 1000 USD per capita), CO2 concentration, and changes in global surface temperature (in 
Celsius) relative to the beginning of the 21st century. Source: https://tntcat.iiasa.ac.at/SspDb 

 

  

 



  

 

Analysis 

The underlying forestry data are obtained from the Global Timber Model described in Sohngen et al. 
(1999). The data have been updated and recently utilized to assess climate change impacts on over 250 
forest types around the world in Tian et al. (2016). For the purposes of this study, we aggregate these 
forest types into 4 forest types within the United States and 4 forest types for the rest of the world.  The 
forest types in the US are: southern pine, southern hardwoods, northern hardwoods, and western pine. The 
forest types in the rest of the world represent key forest types that are important for timber production in 
temperate, boreal and tropical regions.  

Forests in this model are further allocated into commercial and natural regions. Commercial forests are 
those where active timber production occurs and natural forests are those that are too expensive to harvest 
due to accessibility constraints, climate and growth conditions, or other factors.  We incorporate a set of 
access cost functions into the model, so that natural forests can become commercial forest over time if 
timber prices are rising, or they can shift into agricultural uses.  

All timber that is harvested is aggregated and consumed by a single global demand function. This means 
that timber is deemed homogeneous in quality, and freely traded across regions. This assumption abstracts 
from the more complicated trade relationships that currently exist, but our focus in this paper is on 
adaptation to long term changes in forest productivity due to climate change, not short-term market 
fluctuations that may arise from changes in trade policies. Over the long run, we believe that the current 
geography of timber trade will adjust to reflect changing comparative advantage. 

The data on climate change impacts are obtained from the MC2 dynamic global vegetation model 
(DGVM) of Kim et al. (2017), which in turn employs emission scenarios documented in Paltsev et al. 
(2015). The MC2 model provides data on the impacts of climate change on forested ecosystems.  
Specifically, we use the MC2 model to obtain estimates of the parameters γ and δ.  The parameter γ 
accounts for perturbations in annual forest growth due to climate change and carbon fertilization. To 
model changes in forest growth, we utilize changes in net primary productivity (NPP) of forested 
ecosystems to adjust changes in forest growth.  NPP is the net carbon flux remaining from photosynthesis 
after accounting for plant respiration, or in other words, the maintenance and growth of the existing plant. 

At the ecosystem level, where our model actually accounts for the growth effects of climate change, 
additional processes could affect the net amount of plant growth each year. For instance, forest fires and 
other mortality processes reduce carbon annually.  Thus, applying NPP across forested ecosystems to 
measure climate change impacts, as suggested above, could overestimate those impacts.  To account for 
this, we model dieback directly, through δ above.  The term δ in our model is measured as the amount of 
vegetation carbon burned by forest fires in the MC2 model. 



The MC2 model was recently run under several representative carbon concentration pathways that cover a 
range of potential future concentration pathways up to warming potential of 9.0 watts per m2 2110 (see 
Kim et al., 2017).  For the purposes of this economic analysis, we express γ as a function of CO2 
concentration. Thus, starting with CO2 concentrations in the climate model used to perturb MC2, we link 
CO2 concentrations to the predicted NPP changes from the MC2 model for the forest types of interest.  
We then calibrate a function to the resulting data points. Similarly, we link δ, dieback, and biome area to 
the temperature change in the climate model.   

Figure 2A: relationship between CO2 concentration and θ 

 

 

 

 



Figure 2B: relationship between temperature and δ. 

 

  



Figure 2C. Relationship between change in global surface temperature and biome area ratio 

 

 

The functions that relate γ to CO2 concentration, δ to temperature and biome area to temperature differ 
for the 8 ecosystem types included in the model (Figures 2).  In general, higher CO2 concentrations lead 
to increased NPP, or forest growth, in each region, but the increases attenuate at higher levels of CO2, and 
the relationship varies by forest type.  In contrast, forest dieback appears to strengthen in most regions as 
temperature increases.  These results suggest that while climate change may increase overall productivity 
of forests over a range of CO2 and temperature change, the effects at increasingly large CO2 changes may 
turn negative. 

To model climate change in our analysis, we utilize the Shared Socio-economic Pathways (SSP) of the 
Intergovernmental Panel on Climate Change (Nakicenovic et al., 2013) to synthesize economic drivers, 
carbon concentrations and temperature and precipitation changes.  We then project future changes in each 



variable and use those as drivers in the optimization model of global forestry.  In the deterministic case, 
these results provide information on the potential impacts of climate change without uncertainty. Given 
that there is large uncertainty over which set of economic and climate drivers will prevail, we then 
conduct the uncertainty analysis to determine which set of actions in the model will minimize the 
maximum regret. 

 

Results 

We begin by looking at results from the five deterministic models, each taking a different SSP as ‘truth’. 
These suggest that timber outputs increase in all of the SSPs (Figure 3). Outputs double or more than 
double in the US and globally over the next century.  It is reassuring that given the large potential 
increases in income and population shown in the SSPs, timber production can expand.  Within the US, 
SSP3 yields the lowest increase in outputs in the US, and SSP5 the greatest.  SSP3 has great population 
growth, but constrained income per capita, which limits consumption growth for timber.  SSP5 in contrast 
has relatively high income per capita, and thus relatively large increases in consumption over time.     

Figure 3: US and rest of world timber output (m3/yr) across the SSPs, without MMR. 

 

Within the US, increased harvests are driven by gains of southern pines and hardwoods (Figure 4). Recent 
trends have already shifted US production towards southern pines and hardwoods, and the climate 
scenarios reinforce those trends. Globally, similar trends emerge, with tropical forest type generally 
gaining production over time and production from boreal and cool temperate types declining.  In recent 
decades, there have been strong shifts towards increased production in tropical regions, and these results 
suggest that climate change will reinforce those trends. By the end of the century, between 60 and 80% of 
timber harvested will come from tropical regions in the rest of the world.   

 

  



Figure 4: Harvest by region and across the SSPs 

  

 

To achieve these large increases in timber harvests globally, significant investments in forestry are made. 
The largest investments are made in US Southern Pine forests, with investments rising the most under 
SSP5 (Figure 5).  In the US in general, investments are highest under SSP5.  Our results suggest that 
foresters disinvest from Northern forests over time.  A similar pattern is observed in the rest of the world, 
where large investments are made in tropical and temperate warm forests, while investments increase 
initially in boreal and temperate cool forests, but ultimately decline. 

The investment results have important implications for land areas (Figure 6). In the US, we project that 
forest area increases in the South and declines in the North.  As temperatures continue to increase, 
northern forests become increasingly susceptible to dieback.  Thus, given their long time horizons, 
landowners begin to reduce investments in northern forests and instead focus on southern types.  In 
contrast, forest investments increase in the South.  The results are similar for the rest of the world, with a 
reduction in forest uses and an increase in agricultural uses of land in northern regions, and an increase in 
forest area and reduction in agricultural areas in the southern, tropical regions. The rationale is similar, 
although the differential in dieback between northern and southern regions in the ROW is larger. 

A large share of forestland in our model is initially set-aside for economic reasons, either because it is too 
remote and costly to be harvested, or because society has determined it should be reserved from other 
uses for environmental reasons (Table 1).  We call this land natural forestland in our model, and it 
amounts initially to 244 million ha in the US, or 83%, and 2.3 million ha globally (74%).  Over time, the 
increases in economic growth in all of the scenarios have consequences for these natural lands, reducing 
them by 11% (in the US) in SSP3 to 32% in the US or 48% in the ROW in SSP5 with its strong economic 
growth.  

 

 



Figure 5: Timberland investments in $/ha by forest type. 

Panel 5A: management intensity in US biomes  

 
 

Panel 5B: management intensity in Rest of World biomes 

 
 

 

 

  



Figure 76: Proportions of forest and agricultural land in northern and southern parts of the US and rest of 
world. 

Panel 6A: US Land area 

 
 

Panel 6B: Rest of World Land Areas 

 
 

 

  



 

Table 1: Forestland areas in commercial and natural type forests aggregated for the US and ROW regions. 

 Commercial Natural 
 2000 2100 Change (%) 2000 2100  Change (%) 
 Million hectares 
US        

SSP1 48.6 191.4 142.8 (294%) 244.5 190.8 -53.7 (-22%) 
SSP2 48.6 202.9 154.3 (317%) 244.5 197.2 -47.3 (-19%) 
SSP3 48.6 109.3 60.6 (125%) 244.5 217.0 -27.5 (-11%) 
SSP4 48.6 188.9 140.2 (288%) 244.5 205.2 -39.2 (-16%) 
SSP5 48.6 226.9 178.3 (367%) 244.5 165.2 -79.3 (-32%) 

ROW        
SSP1 829.4 1642.6 813.2 (98%) 2316.0 1642.6 -673.5 (-29%) 
SSP2 829.4 1496.2 666.8 (80%) 2316.0 1496.2 -819.9 (-35%) 
SSP3 829.4 1605.9 776.5 (94%) 2316.0 1605.9 -710.2 (-31%) 
SSP4 829.4 1660.5 831.2 (100%) 2316.0 1660.5 -655.5 (-28%) 
SSP5 829.4 1201.5 372.1 (45%) 2316.0 1201.5 -1114.6 (-48%) 

 

In addition to assessing outputs over a range of SSP economic and climate drivers, we have conducted a 
robustness analysis using Min-Max Regret (MMR) routines.  The MMR routines focus on determining a 
robust set of management inputs to use given uncertainty about which future will evolve.  These results 
for management intensity are shown in the solid red lines of Figure 5 above. Under the given scenarios, 
the results suggest that management decisions need not change much in the near term to account for 
climate change.  In the US, the robust management level starts to deviate mid-century.  Interestingly, the 
robust decision suggests hedging towards lower levels of management in Southern softwoods and higher 
levels of management in hardwoods.  

 

Discussion 

The big driver on timber prices is the rate of economic growth.  Higher growth under SSP5 encourages 
strong increases in demand for timber and subsequently large increases in prices over time, while lower 
growth under SSP3 leads to lower overall increases in prices.  Timber production in the US and globally 
is relatively similar across the scenarios through 2060, but starts to deviate after that. In the US, timber 
production rises to its highest level under the stronger growth scenario and higher prices in SSP5, and it is 
lowest under SSP3. In the rest of the world, however, output increases the most under SSP3, which is 
somewhat surprising given that this scenario has fairly low economic growth. This is driven by strong 
increases in output in tropical forest types under SSP3, which is one of the more benign climate scenarios. 

Timberland investments in the northern US are low to begin with, but are projected to decline to 0 by the 
middle of the century. This is primarily due to the effects of increasing dieback in the northern US. 
Similar impacts occur in temperate cool forests in the ROW region, although the reductions occur later. 
Investments in warmer regions build over the century and continue climbing throughout, both in the US 



and globally.  These results mirror those in Sohngen et al. (2001) which suggested that investments in 
faster growing species would be prioritized if dieback becomes more prominent during climate change.  

When considering the robust management strategy, the results suggest that there are not large risks 
associated with using inputs that mirror the average across the scenarios for the next couple of decades.  
By the middle of the century, the results suggest that landowners should become more cautious, in 
particular in northern species.  Although dieback has important consequences for forests, it turns out that 
the near term consequences of dieback are not large enough to drive large changes in investment 
strategies. Over time, as warming becomes more pronounced, and dieback increases, there are stronger 
incentives to reduce management inputs.  
 

Conclusion 

This paper develops a dynamic global model of forestry that integrates the results of the MC2 dynamic 
global vegetation model (Kim et al., 2017) with a dynamic optimization model.  The model is used to 
illustrate how economic and climatic drivers potentially influence timber outputs, timber prices, forest 
areas, and forest stocks.  We then apply the Min-Max-Regret technique to determine robust management 
decisions in light of uncertainty about which future scenario will evolve.   

The results suggest that economic drivers dominate the results over prices and harvests.  That is, the large 
variation in outputs and timber prices across the SSP's derives mainly from the difference assumptions in 
the SSPs about population and income growth.  For example, under SSP5, with high income per capita 
and high levels of carbon in the atmosphere, prices are at their highest levels and in SSP3, with lower 
income per capita, prices and quantities are lowest.   

Although the economic drivers have the most important implications for forests, it is reassuring that even 
with very strong climate change in SSP5, society can expand timber production to meet demand.  Overall 
forest area does not change significantly over the century, reversing the trends of the last century which 
saw over 700 million ha of forestland converted to agricultural uses.  This particularly true in the US and 
ROW south, where forest area expands over the century.  This increase in forest area is driven in part by 
increasing productivity driven by climate change and the value of the resulting forest investments, but 
also by the movement of agricultural uses northward.   

There is a cost to large scale demand increases, namely the loss of natural forestland.  Although total 
forestland remains fairly stable over the century, natural forests are heavily converted to other uses, 
including agriculture and commercial forest.  The largest changes of course occur in the largest demand 
scenario (SSP5), with 79 million ha of natural forest (or 32%) in the US lost by 2100, and 1115 million ha 
in the ROW.   
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