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Abstract

We empirically investigate the impact of aggregated county risk pools , used as proxy

for a county with limited data, on premium rates and reinsurance needs for crop revenue

insurance in the U.S. To quantify systemic risk, we employ nested Archimedean copula-based

models which relaxes the exchangeability restriction and less prune to curse of dimensionality

inherent in copula-based models. In the first stage of our analysis, employing irrigated and

non-irrigated cotton yields from seven counties in Texas, we derive ‘true’ county-level rates

using ‘unlimited’ data. In the second stage, we derive rates based on proxy data aggregated

over county risk pools. Finally we compare the ‘true’ rates with those based on proxy

data using root mean squared error (rmse) and diversification effect (DE). The results show

substantial differences in systemic risk across risk pools. The risk pool use in practice was

found to be far less efficient resulting to significantly high premiums rates and subsidies

levels.

Key words: Proxy yields, Efficiency, Crop insurance, Systemic risk, Cotton.

JEL classification: G22, Q14.
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1 Introduction

Agriculture is highly vulnerable to a variety of weather risks such as droughts, floods, hail,

freezes, and windstorms. In developed countries, and increasingly in emerging economies,

multi-peril and single peril crop insurance are major tools to manage farm risk. Unlike

commercial insurance products such as life and auto, most crop insurance programs benefit

from government subsidies to encourage participation.

In the U.S., crop insurance is administered by the Risk Management Agency (RMA) of

the United State Department of Agriculture (USDA), with the main objective “to maximize

participation in the Federal crop insurance program and to ensure equity for producers.” The

RMA heavily subsidizes premiums and fully covers the program’s administration, operating,

and reinsurance costs. Since inception in 1938, and the subsequent passage of the Crop

Insurance Reform Act in 1994 and the Agricultural Risk Protection Act in 2000, total

liabilities and subsidies for the program have increased substantially. In 2014, 295 millions

acres were insured for a total liabilities and subsidies amounting to $123 billion and $7.3

billion, respectively, making it the most expensive agricultural commodity program (RMA.,

2014) and a key fixture of U.S. agricultural policy.

The 2014 Agricultural Act further expands the program; extends coverage to many

previously unserved counties with little or no historical data and authorizes several new

county-level triggered insurance policies such as the Agricultural Risk Coverage (ARC) and

Supplemental Coverage Option (SCO). The SCO is an optional policy that covers up to

20% deductible of a companion policy allowing growers to obtain close to full coverage from

purchasing the two policies. Stacked Income Protection Plan (STAX) is a SCO that covers

only upland cotton growers which unlike SCO can also be use as a stand alone policy. These

insurances insure county-level revenues which can be triggered by low yields, low prices or a

combination of the two.

While SCO/STAX cover county-level revenues “the geographical area that the expected

and final area yields are based on, designated generally as a county, but may be a smaller or
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larger geographical area.” In practice, data from nearby counties are aggregated to produce

the require data for rating counties with limited historical yield data. In fact, 76% of the

counties in the top five cotton producing states in the U.S. where STAX was available in 2015,

data was aggregated from several (2 to 41) nearby counties to produce the require data for

rating the counties; in Texas, data was aggregated from 2 to 24 counties to produce require

data for 140 of the 176 counties; in Georgia, data was aggregated from 2 to 28 counties

to produce require data for 80 of the 100 counties; in Arkansas, data was aggregated from

2 to 7 counties to produce require data for 11 of the 25 counties; in Mississippi, data was

aggregated from 2 to 41 counties to produce require data for 55 of the 62 counties; and in

North Carolina, data was aggregated from 2 to 15 counties to produce require data for 33 of

the 58 counties.

Considering the extensive use of pooled data from nearby counties to rate premiums for

a given county with limited data, it is fair to ask: (1) How accurate are the pooled data? (2)

What effect does the current method have on price and participation? (3) Is there a better

method for setting crop insurance rates? Several alternative pools with different sizes and

spatial dependence are possible for any given county with insufficient data, and each with

potentially different effects on premiums. In this case, selecting the most representative pool

to be used as a proxy for the county will be central in obtaining accurate rates, and ensuring

reasonable subsidy levels.

High premium rates and the inability of private insurers to compete in crop insurance

markets is largely attributed to systemic risk inherent in agriculture (Miranda and Glauber,

1997) which is known to vary depending on the type of adverse weather condition, degree of

severity, and the size of geographical area. Goodwin (2001) showed that correlation in crop

yields tend to be stronger during years with severe drought than ones with normal weather,

indicating a non-linear spatial dependence. Wang and Zhang (2003) using spatial analysis

found that on average yields for wheat, soybeans, and corn in the U.S. are uncorrelated

beyond 570 miles from one another. It is therefore likely that different county risk pools over
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which data are aggregated will be heterogenous in the degree of systemic risk. Thus, correctly

quantifying systemic risk present in each pool is a sine qua non for obtaining reliable rates

and selecting an optimal proxy risk pool for a county with insufficient data.

Until recently, Gaussian copulas were widely use in quantifying multiple dependent risks

including rating revenue insurance by the the RMA. This copula assumes linear correlation

with zero tail dependence, and tends to underestimate risk in the tails of a distribution

resulting in lower premium rates. Goodwin and Hungerforth (2015) in a recent empirical

study highlighted the importance of quantifying systemic risk in agriculture using non-Gaussian

copulas. The authors found that average premium rates for corn and soybean in the U.S.

differ between the D-vine copula and the Gaussian copula by −0.6% at the 95% coverage

level, and 50% at the 75% coverage level.1

In this study, we investigate the impact of aggregated risk pools, used as proxy for a

county with limited data, on premium rates and reinsurance of county-level revenue insurance

in the U.S. Specifically, using Dickens county in Texas and six surrounding counties as an

example, we empirically investigate systemic risk in upland cotton yield profiles obtained

by aggregating data over 2 to 7 neighboring counties (including Dickens) and their effect on

premium rates, subsidies, and reinsurance needs for Dickens county. To properly quantify

cotton revenue (i.e., multiple dependent) risks, we employ Nested Archimedean Copula

(NAC) models which relaxes the exchangeability restriction and circumvent the curse of

dimensionality inherent in copula-based models. In the first step, we derive ‘true’ premium

rates for cotton revenue insurance in Dickens county using ‘unlimited’ data. In the second

step, we derive rates for Dickens county based on proxy data from potential county risk

pools, including that used by RMA in rating 2015 SCO/STAX contracts. In the third step,

we compare the ‘true’ rates in Dickens county with those derived with proxy data from

risk pools using root mean squared error (rmse). To further gauge the degree to which the

proxy pools are suitable, we estimate and compare the diversification effects (DE) of the

1Estimates derived using vine copula are not invariant with respect to the factoring (ordering of individual
variables) of the multivariate density, thus resulting to a curse of dimensionality.
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alternative risk pools used as proxy for Dickens. Finally, based on estimates of rmse and

DE, we determined optimal risk pools for rating premiums in Dickens county.

The results show substantial differences in systemic risk across risk pools and agricultural

practices (irrigated and non-irrigated cotton). The risk pool used by RMA in rating SCO/STAX

contracts for Dickens county administered in 2015 was found to be far less reliable, with

premium rates up to 56% (169%) higher that the ‘true’ rate for a 90% (70%) coverage level.

The rate differential based on RMA’s total liability for Dickens county in 2015 implies that

premiums for 90% (70%) coverage level are $35,041 ($25,607) higher than the true cost. On

average, based on all counties rated with proxy data in 2015, this amounts to total premium

excesses of $14,752,130 and $10,780,404 for the 90% and 70% coverage levels, respectively.

We found alternative county risk pools significantly more efficient than the risk pool used in

practce - producing rates that are only 1.5% lower than the ‘true’ rates and with minimum

mean squared error.

The remainder of the paper is organized as follows. In the next section, we present

the empirical strategy for our study. This includes trend estimation and detrending yields,

specifying and estimating the Nested Archimedean Copula-based model, simulations, and

premium rating. Section 3 presents an application of the empirical framework developed to

quantify systemic risk in upland cotton production in the U.S. Finally, we conclude with

main findings, implications on county-level revenue insurance and opportunities for future

research.

2 Empirical Strategy

Indemnities for revenue insurance can be triggered by multiple dependent sources of risk;

low yields, low prices or a combination of the two. Our empirical strategy is to estimate the

joint distribution of yields and prices that allows us to generate revenue losses and calculate

premium rates. We achieve this by employing Archimedean copula models. Copula-based
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models have widely been applied in risk management, insurance and finance literature and

over the recent years gained strong appeal in rating crop insurance contracts due to its

ability to capture nonlinear correlation in yields across space (and prices in the case of

revenue insurance) in the wake of severe weather events.

A copula is multivariate distribution function with continuous marginal distribution

uniformly distributed on [0,1].2 A d-dimensional copula (C(u1, u2, ..., ud)) is given as

C(u1, u2, ..., ud) = G(G−1
1 (u1), G

−1
2 (u2), ..., G

−1
d (ud)), (1)

where G is the joint distribution and Gj, jϵ1, ..., d is the marginal distribution. If the

d-dimensional copula and the d marginal distributions (G1(x1), G2(x2)..., Gd(xd)) are given,

we can conveniently derive the corresponding density function g(x1, x2, ..., xd) as

g(x1, ..., xd) = c(G1(x1), G2(x2), ..., Gd(xd))
d∏

i=1

gi(xi), (2)

where gi is the marginal density function and c(.) is the density of the copula. The later can

be derived as:

c(u1, u2, ..., ud) =
G(G−1

1 (u1), G
−1
2 (u2), ..., G

−1
d (ud))∏d

i=1 gi(G
−1
i (ui))

. (3)

Elliptical and Archimedean are two main parametric families of copulas with extensive

practical applications. Unlike elliptical copula (e.g., Gaussian), Archimedean copulas have

explicit generating functions and are able to capture the dependency structure in the upper

tail, lower tail or both tails of the distributions with a single parameter, allowing us to

quantify systemic risk. A d-dimensional Archimedean copula with parameter θ can be

specified as

C(u1, u2, ..., ud; θ) = ϕ(ϕ−1(u1), ϕ
−1(u2), ..., ϕ

−1(ud)), (4)

where ϕ is a continuous, decreasing function on [0,∞] with ϕ(0) = 1, ϕ(∞) = 0, with

2For a more background on copula, please see Joe (1996) and Nelsen (2006).
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derivatives up to the order d− 2 satisfying (−1)k dk

dtk
ϕ(t) ≥ 0 for all kϵ{0, ..., d− 2}, tϵ(0,∞)

(Kimberling, 1974; McNeil and Neslehova, 2009).

While copulas present a more flexible technique for multivariate analysis, the exchangeability

feature inherent in an Archimedean copula implies that all margins of the same dimension are

equal. This presents increasingly stronger assumption with increase in the dimension of the

copula. To address this problems, more flexible approaches based on the Archimedean copula

have been developed to handle high dimensional data without sacrificing the multivariate

dependency structure. This includes Fischer copulas (Fischer and Kock, 2012), vine copulas

(Kurowicka and Joe, 2011) and nested Archimedean copulas (Savu and Trede, 2010; McNeil and Neslehova,

2009; McNeil, 2008; Okrin et al., 2009). The later can either be fully nested or partially

nested. This study employs a partially nested Archimedean copula (PNAC) where the

multivariate dependency structure is modeled following a hierarchical structure in which an

Archimedean copula is used as an entry for another at each level of hierarchy. If such entry

is used alongside one additional dimension at a time, the resulting structure is fully nested.

For an d-dimensional copula for which d ≥ 3, if

C(u1, u2, ..., ud; θ0, ..., θn−2) = ϕ0(ϕ
−1
0 (u1) + ϕ−1

0 (u2, ..., ud; θ1, ..., θd−2)), (5)

then C is a fully nested Archimedean copula with d− 1 nesting hierarchies. Otherwise, the

resulting structure is partially nested. For example, for a 3-dimensional copula specified as

C(u1, u2, u3) = C(u1, C(u2, u3; θ1); θ0), The copula generated by θ1 is nested in the copula

generated by θ0. McNeil (2008) showed that in order for a NAC structure to be a proper

cumulative distribution function, all nodes in the structure (of the form ϕ−1
i ×ϕj) must have a

completely monotone derivatives up to the order n. As illustrated by Savu and Trede (2010),

this condition is met if the degree of dependency diminishes with increase in dimension of

the copula from nesting a copula as an argument into another. This sufficient condition

is easily met if all generators within the nested structure come from the same parametric
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family. We follow suit in this study, and use the same parametric family in all the margins.

3 Empirical Application

We apply the nested copula model developed above in rating county-level cotton revenue

insurance, analogous to the Group Risk Income Protection (GRIP) available since 1999

and the Stacked Income Protection Plan (STAX) newly introduced and available this year

(2015). We investigate two categories of revenue insurance; one based on the projected price

of cotton (harvest price exclusion) and another based on the higher of the projected or harvest

price. The demand for revenue insurance had significantly increase over the last decade and

currently accounts for about 70% of the total liability of the Federal Crop Insurance program.

As indicated above, indemnities for this insurance can be triggered by low yields, low prices

or a combination of the two.

Annual county-level yield data for irrigated and non-irrigated upland cotton was obtained

from the USDA’s National Agricultural Statistics Service (NASS) databases while cotton

prices were obtained from the New York Board of Trade (NYBT). Projected prices are taken

as average daily (opening, high, low and closing) stock prices of December futures during

the month of February and the harvest prices taken as average daily (opening, high, low and

closing) stock prices of December futures during the month of November.

To investigate the impact of size of geographical area or county pool on the rates and

viability of the program, we based our application on a clusters of 7 counties from three

agricultural districts (Northern high plains, Northern low plains and Southern high plains)

in Texas; Crosby, Dickens, Floyd, Garza, Hale, Lubbock, and Lynn. Texas is the number

one cotton producing state in the U.S. followed by Georgia, Arkansas, Mississippi and North

Carolina, and five (Crosby, Floyd, Hale, Lubbock, and Lynn) of the seven counties considered

in this study are among the top 9 upland cotton producing counties in Texas. In addition,

STAX/SCO was available to all 7 counties in 2015. However, due to missing data in Dickens
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for the recent 5 years, rates for Dickens county were based on data aggregated over Crosby

and Dickens.

Our analysis aim to determine (1) the effect of using data aggregated over Dickens and

nearby counties (including Crosby) on premium rates, and (2) which county pool gives the

least biased rate estimate for Dickens county. To accomplish this, we utilize upland cotton

yields in the 7 counties and price data from 1996 to 2009 during which period no data was

missing.

In the first stage of our analysis, we estimate the joint distribution of irrigated upland

cotton, non-irrigated upland cotton, projected price, and harvest price, and proceeded

to simulate data and calculate premiums for each county. Prior to estimating the joint

distribution with copula-based models, we adjust for the general upward trend in yields

associated to improved technology. To accommodate outliers present in the data, we follow

Goodwin and Hungerforth (2015) and estimate a quadratic trend nonparametrically using a

local regression and then recenter the yields on 2009 by adding the deviations to the 2009

predicted yields using equation (6) and equation (7), respectively.

yt = h(t) + ϵt, (6)

ŷt = ŷ2009 + ϵt. (7)

Figure 1 presents the regression estimates along with 95% confidence band.

We transform detrended yields into uniformly distributed variates on [0,1] for fitting

copula structure, using the empirical distribution of the detrended yield and price data.

As highlighted by Goodwin and Hungerforth (2015), this approach is preferred to using

estimated cumulative distribution function (CDF) because the asymptotic distribution of

the copula estimates are not affected by limitations in fitting the parametric marginal

distribution (Chen and Fan, 2006) resulting to less variation around parameter estimates
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(Charpentier et al., 2011). The 16-dimensional NAC structure was estimated using maximum

likelihood.3 To capture dependency in both tails of the distribution and for comparison

purposes, we investigate three types of Archimedean copulas; Frank, Gumbel and Clayton.

The later captures lower tail dependency and thus suitable in estimating the joint losses

in this study. On the contrary, Gumbel exhibits upper tail dependency while Frank exhibit

radial symmetry. Figure 1 presents the 16-dimension nested Clayton copula structure derived

with upland cotton yields and price data from the 7 counties in Texas. This include irrigated

cotton yields from 7 counties, non-irrigated cotton yields from 7 counties, projected price,

and harvest price for cotton. The parameter estimates of the copula structure are depicted

in table 4.

Next, we separately estimate parametric marginal distributions for each yield and price

data, known to provide a more explicit representation than non-parametric yield distributions.

For simplicity and based on results in past studies, we fitted a Weibull distribution on

irrigated and non-irrigated cotton yields and a lognormal distribution on projected and

harvest prices.

With the estimated structure of NAC and estimates of parametric marginal distributions

of each yield and price data, we proceed to simulate the joint distribution of yields and prices

and estimate premium rates. First, using the estimated 16-dimension copula structure, we

draw 10,000 correlated uniform variates , and next use each simulated draw (as probabilities)

with the corresponding (estimated) parametric distribution to derived quantiles of the distributions.

With the simulated yields for county i and cotton type j (yij, i = 1, ..., 7 and j = 1, 2)

and prices (Pk, k = 1, 2)), we proceeded to derive corresponding revenue distributions,

Rijk = yij ×Pk, and expected revenue, R̂ijk = E(Rijk), where E is the expectation operator.

The losses (Lijk) for a given coverage level (c) are obtained as

Lijk = max(R̂ijk × c−Rijk, 0), (8)

3 Estimation was done in R using the “copula” package (Hofert et al., 2015). For more details on its
application see Hofert and Machler (2011).
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and actuarially fair premium rates at coverage level c in each county are derive as

PRijk =
E(Lijk)

R̂ijk × c
. (9)

In the second stage, we randomly select and delete 5 observations in Dicken county

between 2009 and 1989, creating missing data for the county. Next, we replace the whole

data in Dickens county with data aggregated over the county and one or more neighboring

counties and repeated the analysis. Based on the number of counties considered in this

study, we investigated all possible aggregated county risk pools (ranging from 1 to six nearby

counties) and conducted the analysis for each. We repeated the second step 500 times, in

each case, creating a different series of missing values and replacing the data with a different

aggregated data from the risk pools, and estimating new rates. Finally, we compare the

rates generated in the second stage with those in the first stage, assumed to be the ‘true’

rates, using root mean squared error (rmse).

Note that the above analysis do not include the loading surcharge usually added on to

the fair premium rates to enable insurers cover large losses. Acknowledging that this value

can vary across the risk pool, we further investigate the degree to which the tail risk in the

aggregated risk pools differ from that in the individual county risk profiles which constitute

the pool, by estimating and comparing the diversification effects (DE) of the county risk pools

using ‘unlimited’ data (without any missing) as in the first stage. Following Wang and Zhang

(2003), the DE from aggregating n counties is

DE =
BL∗

n

n−1(
∑n

i=1BLi)
, (10)

where BLi is the buffer load for county i and BL∗
n is the buffer load based on the entire

geographical area created from pooling n counties. The BL is a derivative of the Buffer fund
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(BF), the value at risk (VaR) of total net losses given as

BF = inf{lεR : p(
n∑

i=1

wi.(Lijk − ψijk) ≥ l) = 1 − λ}, (11)

where Lijk is the indemnity, ψijk is the corresponding actuarially fair premiums, wi the weight

of the the ith insurance policy and 1−λ is the ruin probability.4 With the above information

and ignoring loading associated with administration cost without lost of generality, BL =

BF/n. We expect risk pools with tail risk similar to those of the individual counties in the

pool to have a DE close to 1 and vice versa.

3.1 Results and Discussion

Table 2 reports 90% and 70% premium rates with projected price and higher of projected/harvest

price for irrigated cotton in each county. Table 3 presents similar results for non-irrigated

cotton.

Results show higher variation in rates for irrigated cotton compared to non-irrigated

cotton. For example under Clayton copula, irrigated cotton rates for 90% (70%) coverage

range from 4.6% (0.7%) in Lynn county to 34.8% (23.1%) in Floyd while rates for 90% (70%)

coverage for non-irrigated cotton range from 9.2% (3.2%) in Lynn to 14.0% (6.4%) in Garza.

Results also show that 90% (70%) premium rates for Crosby county is about 32% (52%)

higher than rates in Dickens suggesting that the risk profiles for the two counties differ from

one another, thus less likely to be a good proxy pool for Dickens. Recall that data was

aggregated over Crosby and Dickens to rate 2015 STAX/SCO premiums for Dickens county.

On average, rates based on projected prices are 1% to 14.8% (6% - 11%) higher than those

based on higher of projected or harvest price for irrigated (non-irrigated) cotton. The rates

estimated based on the three copulas shows high degree of similarities.

Table 4 present summary of premium rate estimates for irrigated cotton derived with

4We investigate two types of weights (wi); first, we assume uniform weights across all regions and countries.
Second, we weighted each county based on the proportion of planted acreage in 2014.
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aggregated data from selected risk pools created by aggregating data over 2 to 7 counties.

Similar results for non-irrigated cotton are presented in table 5. Estimates from each pool

is a potential rate for Dickens county which had limited data.

Comparing the rates from each pool with the ‘true’ premium rate for Dickens county

in tables 2 and 3 reveals that most of the estimates are highly different from one another.

The mean rate for irrigated cotton based on the Crosby-Dickens pool (currently in effect)

and the projected price using the Clayton copula is 38% (119%) higher that the ‘true’ rate

at the 90% (70%) coverage level. Similar comparison using higher of projected/harvest

price shows the rate based on the Crosby-Dickens pooled data to be 56% (169%) higher

that the ‘true’ rate at the 90% (70%) coverage level. The county risk pool with the least

biased rate is the Dickens-Crosby-Garza-Lynn pool (with 6.7% and 1.7% rate for 90% and

70% coverage, respectively) followed by the Dickens-Garza-Lynn pool (with 6.4% and 1.5%

for 90% and 70% coverage, respectively). Similarly and for completeness, the mean rate

for non-irrigated cotton based on the Crosby-Dickens pool and the projected price using

the Clayton copula is 19% (26%) lower that the ‘true’ rate at the 90% (70%) coverage

level. Similar comparison using higher of projected/harvest price shows the rate to be

15% (21%) lower that the ‘true’ rate at the 90% (70%) coverage level. The non-irrigated

cotton risk pool with rate estimates apparently most similar to the the ‘true’ value is the

Dickens-Crosby-Garza-Floyd-Lubbock-Lynn pool with 11.8% and 5.1% premium rate for a

90% and 70% coverage, respectively which is 12%-15% lower than the ‘true’ rate.

To shed more light on the practical implications of the results, based on recently release

business summary by RMA, the total liability for STAX plans from its first year (2015)

of implementation in Dickens county, rated with pooled data from Crosby and Dickens,

amount to $1,347,719. Applying the rate differential implies that the 2015 STAX premiums

in Dickens county only for 90% and 70% coverage levels are $35,041 and $25,607 higher than

the ‘true’ cost, respectively. Considering these amounts to be the average differential in each

of the 421 counties in 2015 where SCO/STAX is administered, results to total premium
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excesses of $14,752,130 and $10,780,404 for 90% and 70% coverage levels, respectively, with

corresponding high levels of subsidies and reinsurance.

Estimates of root mean squared error under projected price (rmsepp) and higher of

projected/harvest price (rmsehp) based on the Clayton copula reported in table 6 indeed

confirm that for irrigated cotton the Dickens-Crosby-Garza-Lynn risk pool is the most

efficient at the 90% coverage (rmsepp=0.007, rmsehp=0.008) followed by the Dickens-Crosby-Garza-Lynn

pool (rmsepp=0.012, rmsehp=0.016). At the 70% coverage, the Dickens-Garza-Lynn pool

is the most efficient under the projected price (rmsepp=0.004, rmsehp=0.006) while the

Dickens-Crosby-Garza-Lynn risk pool leads under the higher of projected/harvest price

(rmsepp=0.005, rmsehp=0.003). On the other hand, rmse estimates based on non-irrigated

cotton reveal the Dickens-Crosby-Garza-Floyd-Lubbock-Lynn risk pool as the most efficient

both at the 90% and 70% coverage levels (90%: rmsepp=0.037, rmsehp=0.041; 70%: rmsepp=0.022,

rmsehp=0.025) followed by Dickens-Crosby-Garza-Floyd-Lynn pool (90%: rmsepp=0.042,

rmsehp=0.048; 70%: rmsepp=0.026, rmsehp=0.030). These results suggest that county risk

pools that are dynamic with respect to coverage level may well be needed as proxy for

irrigated cotton in a given county.

Overall, the results in tables 4 and 5 show stronger dependence in the left tail than the

center and right tail of the distribution, and an even greater strength in irrigated cotton

than non-irrigated cotton. On average, premium rate estimates for irrigated cotton at the

90% coverage are (slightly) 1.4% higher under Frank and 0.9% higher under Gumbel than

Clayton copula, whereas at the 70% coverage the rates based on Clayton copula are 10.8%

and 12% higher than those based on the Frank and Gumbel copula, respectively. On the

other hand, rate estimates for non-irrigated cotton at the 90% coverage are 2.4% higher under

Frank and 2.3% higher under Gumbel than Clayton copula, whereas at the 70% coverage

the rates based on Clayton copula are 4.8% and 5.7% higher than those based on the Frank

and Gumbel copula, respectively. These results show that irrigated cotton are more risky

under adverse weather conditions than non-irrigated cotton.
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Overall and contrary to the above results where the rates based on projected price are

generally higher, the mean premium rates based on projected price and higher of projected/harvest

price are very similar to one another.

Table 7 present 90% and 70% premium rates based on projected price and higher of

projected/harvest price and their corresponding diversification effects for selected aggregated

county pools for irrigated cotton. Table 8 report similar results for non-irrigated cotton.

The results show that the Dickens-Crosby risk pool, with the highest DE, has the tail risk

profile most similar to the two counties in the pool while the Dickens-Crosby-Garza-Floyd-Lubbock-Lynn

risk pool has the least similar tail risk profile compared to each county’s profile within

the pool. Note that the latter pool is the most diversified pool and would have been

preferred if this was a complete risk pool whereby each county in the pool is charged the

same rate derived with the pooled data. Risk pool 6 (Dickens-Crosby-Garza-Lynn) and

7 (Dickens-Crosby-Garza-Lynn) which on average produce the most efficient proxy rates

are respectively about 8.5% and 10.5% more diversified than risk pool 2 (Dickens-Crosby)

suggesting that adding the full loading in the above analysis, which is less likely the case

in practice, may produce different results. However, with non-irrigated cotton, risk pool

11 (Dickens-Crosby-Garza-Floyd-Lubbock-Lynn) selected above as the most efficient proxy

to Dickens county has high DE (0.97), which is only 1% more diversified than risk pool 2

(Dickens-Crosby). Thus indicating that the ruin probability and loading of the pool is very

similar to those of the constituents counties making it a more reliable proxy.

4 Conclusion

There has been substantial shift toward the demand of revenue insurance over the last

decade. These programs have further been expanded under the 2014 farm bill by extending

coverage to counties previously unserved with limited historical data and also introducing

new county-level plans which include Supplemental Coverage Options (SCO) and Stacked
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Income Protection Plan (STAX) for upland cotton growers. Due to insufficient data, premium

rates for most counties where SCO/STAX is currently available are derived using proxy

data, i.e., data aggregated over several counties. This study employs nested Archimedean

copula-based models to investigate systemic risk across aggregated county risk pools for

upland cotton in U.S and their suitability for serving as a proxy for an individual county

with limited data.

Our results show substantial differences in systemic risk and premium rates across county

risk pools with various geographical sizes. Premium rates based on the risk pool used

by RMA in rating irrigated upland cotton in Dickens county were found to be far less

reliable, with premium rates up to 56% (169%) higher that the ’true’ rate for a 90% (70%)

coverage level, costing about $35,000 ($26,000) more. Alternative county pools with larger

geographical areas were found to be more efficient producing rates that 1.5% lower than

the ’true’ rates and with minimum mean squared error. These results are mostly driven by

differences in systemic risk across risk pools and agricultural practices.
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Table 1: Parameter estimates of Nested Archimedean Copula

Parameter Clayton Frank Gumbel
θ0 0.103 0.457 1.000
θ1 0.220 0.897 1.110
θ2 2.333 6.483 2.167
θ3 3.056 8.048 2.528
θ4 4.067 10.172 3.033
θ5 7.100 16.371 4.550
θ6 11.000 24.235 6.500
θ7 13.167 28.588 7.583
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Figure 1: Local linear regression for cotton yields in Texas Counties

 l
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Table 2: County-level premium rates for irrigated cotton revenue insurance

Clayton Frank Gumbel

County PR90 PR70 PR90 PR70 PR90 PR70

Projected price

Crosby 0.099 0.036 0.099 0.034 0.100 0.035
Dickens 0.068 0.016 0.068 0.015 0.069 0.016
Floyd 0.348 0.231 0.351 0.233 0.356 0.236
Garza 0.064 0.014 0.065 0.014 0.061 0.012
Hale 0.220 0.127 0.225 0.129 0.226 0.128
Lubbock 0.237 0.140 0.241 0.142 0.243 0.142
Lynn 0.054 0.010 0.055 0.009 0.055 0.008

Higher of projected/harvest price

Crosby 0.092 0.032 0.092 0.030 0.091 0.030
Dickens 0.060 0.013 0.059 0.011 0.058 0.011
Floyd 0.345 0.228 0.347 0.230 0.350 0.231
Garza 0.057 0.012 0.057 0.010 0.052 0.009
Hale 0.216 0.123 0.219 0.125 0.219 0.124
Lubbock 0.233 0.137 0.236 0.138 0.237 0.138
Lynn 0.046 0.007 0.045 0.005 0.043 0.005

PR90 = Premium rate for 90% coverage, PR70 = Premium rate for 90% coverage
DE90 = Diversification effect for 90% coverage

21



Table 3: County-level premium rates for non-irrigated cotton revenue insurance

Clayton Frank Gumbel

County PR90 PR70 PR90 PR70 PR90 PR70

Projected price

Crosby 0.116 0.047 0.118 0.047 0.116 0.045
Dickens 0.134 0.060 0.136 0.060 0.138 0.061
Floyd 0.116 0.048 0.120 0.049 0.119 0.047
Garza 0.140 0.064 0.142 0.065 0.141 0.063
Hale 0.102 0.038 0.102 0.036 0.103 0.036
Lubbock 0.120 0.050 0.123 0.051 0.122 0.050
Lynn 0.099 0.036 0.100 0.035 0.099 0.034

Higher of projected/harvest price

Crosby 0.109 0.043 0.111 0.043 0.108 0.040
Dickens 0.128 0.056 0.129 0.055 0.129 0.056
Floyd 0.110 0.044 0.112 0.044 0.110 0.043
Garza 0.134 0.061 0.135 0.061 0.133 0.059
Hale 0.095 0.034 0.095 0.032 0.093 0.032
Lubbock 0.113 0.046 0.115 0.046 0.113 0.045
Lynn 0.092 0.032 0.093 0.031 0.091 0.029

PR90 = Premium rate for 90% coverage, PR70 = Premium rate for 90% coverage
DE90 = Diversification effect for 90% coverage
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Table 4: Summary of irrigated cotton premium rates by aggregated county risk pool

Clayton Frank Gumbel

Pool 90%: mean(std) 70%: mean(std) 90%: mean(std) 70%: mean(std) 90%: mean(std) 70%: mean(std)

Projected price

2 0.094 ( 0.025) 0.035 ( 0.016) 0.097 ( 0.028) 0.033 ( 0.017) 0.096 ( 0.027) 0.032 ( 0.017)
3 0.195 ( 0.063) 0.108 ( 0.049) 0.199 ( 0.064) 0.110 ( 0.050) 0.202 ( 0.066) 0.110 ( 0.052)
4 0.072 ( 0.006) 0.020 ( 0.004) 0.073 ( 0.007) 0.017 ( 0.004) 0.072 ( 0.007) 0.016 ( 0.004)
5 0.119 ( 0.031) 0.050 ( 0.021) 0.120 ( 0.030) 0.049 ( 0.022) 0.121 ( 0.030) 0.050 ( 0.022)
6 0.064 ( 0.004) 0.015 ( 0.002) 0.064 ( 0.004) 0.012 ( 0.002) 0.064 ( 0.004) 0.013 ( 0.002)
7 0.067 ( 0.003) 0.017 ( 0.002) 0.067 ( 0.004) 0.014 ( 0.002) 0.066 ( 0.004) 0.013 ( 0.002)
8 0.088 ( 0.005) 0.030 ( 0.003) 0.090 ( 0.007) 0.028 ( 0.004) 0.089 ( 0.006) 0.027 ( 0.004)
9 0.080 ( 0.004) 0.025 ( 0.002) 0.081 ( 0.004) 0.022 ( 0.003) 0.080 ( 0.005) 0.021 ( 0.002)
10 0.077 ( 0.003) 0.024 ( 0.002) 0.078 ( 0.003) 0.020 ( 0.002) 0.078 ( 0.003) 0.021 ( 0.002)
11 0.090 ( 0.004) 0.032 ( 0.003) 0.092 ( 0.005) 0.028 ( 0.003) 0.091 ( 0.005) 0.027 ( 0.003)
12 0.093 ( 0.004) 0.033 ( 0.003) 0.094 ( 0.004) 0.030 ( 0.003) 0.094 ( 0.004) 0.030 ( 0.003)
13 0.081 ( 0.003) 0.026 ( 0.002) 0.082 ( 0.004) 0.022 ( 0.002) 0.082 ( 0.003) 0.022 ( 0.002)

Higher of projected/harvest price

2 0.094 ( 0.025) 0.035 ( 0.015) 0.097 ( 0.026) 0.033 ( 0.016) 0.096 ( 0.025) 0.032 ( 0.015)
3 0.195 ( 0.065) 0.108 ( 0.050) 0.199 ( 0.065) 0.110 ( 0.051) 0.202 ( 0.067) 0.110 ( 0.052)
4 0.072 ( 0.006) 0.020 ( 0.004) 0.073 ( 0.007) 0.017 ( 0.004) 0.072 ( 0.007) 0.016 ( 0.003)
5 0.119 ( 0.032) 0.050 ( 0.022) 0.120 ( 0.033) 0.049 ( 0.022) 0.121 ( 0.033) 0.050 ( 0.023)
6 0.064 ( 0.002) 0.015 ( 0.001) 0.064 ( 0.003) 0.012 ( 0.001) 0.064 ( 0.002) 0.013 ( 0.001)
7 0.067 ( 0.003) 0.017 ( 0.002) 0.067 ( 0.003) 0.014 ( 0.001) 0.066 ( 0.004) 0.013 ( 0.002)
8 0.088 ( 0.005) 0.030 ( 0.003) 0.090 ( 0.006) 0.028 ( 0.004) 0.089 ( 0.006) 0.027 ( 0.004)
9 0.080 ( 0.004) 0.025 ( 0.003) 0.081 ( 0.004) 0.022 ( 0.002) 0.080 ( 0.004) 0.021 ( 0.002)
10 0.077 ( 0.003) 0.024 ( 0.002) 0.078 ( 0.003) 0.020 ( 0.002) 0.078 ( 0.003) 0.021 ( 0.001)
11 0.090 ( 0.004) 0.032 ( 0.003) 0.092 ( 0.005) 0.028 ( 0.003) 0.091 ( 0.005) 0.027 ( 0.003)
12 0.093 ( 0.004) 0.033 ( 0.003) 0.094 ( 0.005) 0.030 ( 0.003) 0.094 ( 0.005) 0.030 ( 0.003)
13 0.081 ( 0.003) 0.026 ( 0.002) 0.082 ( 0.004) 0.022 ( 0.002) 0.082 ( 0.003) 0.022 ( 0.002)

2=Dickens-Crosby, 3=Dickens-Floyd, 4=Dickens-Garza, 5=Dickens-Floyd-Hale,
6=Dickens-Garza-Lynn, 7=Dickens-Crosby-Garza-Lynn, 8=Dickens-Crosby-Lubbock-Hale,
9=Dickens-Crosby-Garza-Floyd-Lnn, 10=Dickens-Crosby-Lubbock-Lynn-Hale,
11=Dickens-Crosby-Garza-Floyd-Lubbock-Lynn, 12=Dickens-Crosby-Lubbock-Lynn-Hale-Floyd,
13=Dickens-Crosby-Lubbock-Lynn-Hale-Floyd-Garza, std = standard deviation.
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Table 5: Summary of non-irrigated cotton premium rates by aggregated county risk pool

Clayton Frank Gumbel

Pool 90%: mean(std) 70%: mean(std) 90%: mean(std) 70%: mean(std) 90%: mean(std) 70%: mean(std)

Projected price

2 0.108 ( 0.025) 0.044 ( 0.017) 0.112 ( 0.025) 0.042 ( 0.018) 0.111 ( 0.027) 0.042 ( 0.019)
3 0.112 ( 0.017) 0.045 ( 0.012) 0.114 ( 0.018) 0.044 ( 0.013) 0.114 ( 0.019) 0.044 ( 0.014)
4 0.115 ( 0.033) 0.049 ( 0.023) 0.118 ( 0.034) 0.048 ( 0.024) 0.119 ( 0.036) 0.048 ( 0.025)
5 0.079 ( 0.010) 0.023 ( 0.006) 0.079 ( 0.011) 0.022 ( 0.006) 0.080 ( 0.011) 0.022 ( 0.006)
6 0.110 ( 0.011) 0.045 ( 0.008) 0.113 ( 0.011) 0.044 ( 0.008) 0.114 ( 0.011) 0.043 ( 0.008)
7 0.114 ( 0.008) 0.048 ( 0.005) 0.117 ( 0.009) 0.046 ( 0.007) 0.117 ( 0.009) 0.045 ( 0.006)
8 0.091 ( 0.006) 0.032 ( 0.004) 0.094 ( 0.007) 0.030 ( 0.005) 0.093 ( 0.007) 0.029 ( 0.005)
9 0.116 ( 0.007) 0.049 ( 0.005) 0.118 ( 0.007) 0.047 ( 0.005) 0.119 ( 0.007) 0.047 ( 0.004)
10 0.093 ( 0.006) 0.034 ( 0.004) 0.095 ( 0.005) 0.031 ( 0.003) 0.095 ( 0.005) 0.031 ( 0.003)
11 0.118 ( 0.006) 0.051 ( 0.004) 0.123 ( 0.007) 0.049 ( 0.005) 0.121 ( 0.006) 0.048 ( 0.004)
12 0.099 ( 0.004) 0.037 ( 0.003) 0.101 ( 0.005) 0.035 ( 0.003) 0.101 ( 0.004) 0.034 ( 0.003)
13 0.104 ( 0.004) 0.041 ( 0.002) 0.106 ( 0.005) 0.038 ( 0.003) 0.106 ( 0.004) 0.038 ( 0.003)

Higher of projected/harvest price

2 0.108 ( 0.025) 0.044 ( 0.016) 0.112 ( 0.025) 0.042 ( 0.017) 0.111 ( 0.026) 0.042 ( 0.017)
3 0.112 ( 0.019) 0.045 ( 0.012) 0.114 ( 0.019) 0.044 ( 0.013) 0.114 ( 0.020) 0.044 ( 0.014)
4 0.115 ( 0.034) 0.049 ( 0.023) 0.118 ( 0.035) 0.048 ( 0.024) 0.119 ( 0.035) 0.048 ( 0.023)
5 0.079 ( 0.009) 0.023 ( 0.005) 0.079 ( 0.010) 0.022 ( 0.005) 0.080 ( 0.009) 0.022 ( 0.005)
6 0.110 ( 0.011) 0.045 ( 0.007) 0.113 ( 0.011) 0.044 ( 0.008) 0.114 ( 0.011) 0.043 ( 0.008)
7 0.114 ( 0.009) 0.048 ( 0.006) 0.117 ( 0.009) 0.046 ( 0.006) 0.117 ( 0.010) 0.045 ( 0.006)
8 0.091 ( 0.006) 0.032 ( 0.004) 0.094 ( 0.007) 0.030 ( 0.004) 0.093 ( 0.007) 0.029 ( 0.005)
9 0.116 ( 0.007) 0.049 ( 0.005) 0.118 ( 0.007) 0.047 ( 0.005) 0.119 ( 0.007) 0.047 ( 0.005)
10 0.093 ( 0.006) 0.034 ( 0.003) 0.095 ( 0.006) 0.031 ( 0.003) 0.095 ( 0.006) 0.031 ( 0.003)
11 0.118 ( 0.006) 0.051 ( 0.004) 0.123 ( 0.007) 0.049 ( 0.005) 0.121 ( 0.006) 0.048 ( 0.004)
12 0.099 ( 0.005) 0.037 ( 0.003) 0.101 ( 0.005) 0.035 ( 0.003) 0.101 ( 0.004) 0.034 ( 0.003)
13 0.104 ( 0.004) 0.041 ( 0.003) 0.106 ( 0.005) 0.038 ( 0.003) 0.106 ( 0.004) 0.038 ( 0.003)

2=Dickens-Crosby, 3=Dickens-Floyd, 4=Dickens-Garza, 5=Dickens-Floyd-Hale,
6=Dickens-Garza-Lynn, 7=Dickens-Crosby-Garza-Lynn, 8=Dickens-Crosby-Lubbock-Hale,
9=Dickens-Crosby-Garza-Floyd-Lnn, 10=Dickens-Crosby-Lubbock-Lynn-Hale,
11=Dickens-Crosby-Garza-Floyd-Lubbock-Lynn, 12=Dickens-Crosby-Lubbock-Lynn-Hale-Floyd,
13=Dickens-Crosby-Lubbock-Lynn-Hale-Floyd-Garza, std = standard deviation.
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Table 6: Root mean squared error premium rates by aggregated county risk pool

Clayton Frank Gumbel Clayton Frank Gumbel

Pool rmsepp 90% rmsepp 70% rmsepp 90% rmsepp 70% rmsepp 90% rmsepp 70% rmsehp 90% rmsehp 70% rmsehp 90% rmsehp 70% rmsehp 90% rmsehp 70%

Irrigated cotton

2 0.077 0.053 0.085 0.053 0.081 0.049 0.075 0.047 0.079 0.048 0.075 0.043
3 0.310 0.228 0.321 0.235 0.325 0.235 0.313 0.223 0.322 0.230 0.325 0.230
4 0.015 0.012 0.018 0.010 0.016 0.008 0.012 0.009 0.016 0.008 0.015 0.007
5 0.130 0.088 0.131 0.088 0.130 0.087 0.137 0.088 0.138 0.090 0.141 0.090
6 0.012 0.004 0.011 0.007 0.013 0.009 0.016 0.006 0.015 0.007 0.016 0.008
7 0.007 0.005 0.008 0.005 0.011 0.007 0.008 0.003 0.008 0.004 0.010 0.006
8 0.046 0.032 0.051 0.030 0.046 0.025 0.045 0.028 0.048 0.027 0.047 0.024
9 0.029 0.021 0.030 0.016 0.026 0.013 0.026 0.017 0.028 0.014 0.026 0.012
10 0.022 0.018 0.024 0.012 0.021 0.011 0.020 0.013 0.022 0.010 0.023 0.010
11 0.050 0.036 0.054 0.031 0.050 0.026 0.048 0.031 0.052 0.027 0.050 0.025
12 0.056 0.039 0.059 0.034 0.057 0.031 0.055 0.034 0.057 0.030 0.058 0.030
13 0.030 0.023 0.032 0.017 0.029 0.014 0.029 0.018 0.030 0.014 0.030 0.014

Non-irrigated cotton

2 0.077 0.049 0.074 0.053 0.080 0.056 0.081 0.052 0.080 0.053 0.087 0.059
3 0.061 0.041 0.062 0.044 0.066 0.047 0.066 0.044 0.068 0.045 0.073 0.051
4 0.078 0.053 0.080 0.056 0.084 0.057 0.082 0.054 0.083 0.055 0.084 0.057
5 0.125 0.084 0.129 0.086 0.132 0.089 0.125 0.081 0.131 0.083 0.131 0.086
6 0.058 0.038 0.055 0.040 0.058 0.043 0.068 0.044 0.064 0.044 0.068 0.049
7 0.047 0.029 0.046 0.034 0.050 0.038 0.054 0.034 0.052 0.035 0.053 0.039
8 0.096 0.062 0.096 0.068 0.102 0.072 0.101 0.065 0.103 0.069 0.106 0.074
9 0.042 0.026 0.042 0.031 0.045 0.033 0.048 0.030 0.047 0.033 0.048 0.036
10 0.093 0.059 0.092 0.066 0.097 0.068 0.100 0.063 0.098 0.067 0.099 0.070
11 0.037 0.022 0.032 0.026 0.039 0.030 0.041 0.025 0.038 0.027 0.043 0.033
12 0.078 0.051 0.079 0.057 0.083 0.060 0.084 0.054 0.086 0.058 0.086 0.062
13 0.067 0.043 0.067 0.050 0.072 0.052 0.074 0.046 0.075 0.051 0.075 0.054

rmsepp = Root mean squared error with projected price,
rmsehp = Root mean squared error with higher of projected/harvest price, 90% = 90% coverage, 70% = 70% coverage,
2=Dickens-Crosby, 3=Dickens-Floyd, 4=Dickens-Garza, 5=Dickens-Floyd-Hale,
6=Dickens-Garza-Lynn, 7=Dickens-Crosby-Garza-Lynn, 8=Dickens-Crosby-Lubbock-Hale,
9=Dickens-Crosby-Garza-Floyd-Lnn, 10=Dickens-Crosby-Lubbock-Lynn-Hale,
11=Dickens-Crosby-Garza-Floyd-Lubbock-Lynn, 12=Dickens-Crosby-Lubbock-Lynn-Hale-Floyd,
13=Dickens-Crosby-Lubbock-Lynn-Hale-Floyd-Garza, std = standard deviation.
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Table 7: Premium rates and diversification effect of county risk pools for irrigated cotton

Clayton Frank Gumbel

Pool PR90 DE90 PR70 DE70 PR90 DE90 PR70 DE70 PR90 DE90 PR70 DE70

Projected price

2 0.079 0.95 0.023 0.91 0.078 0.94 0.02 0.81 0.079 0.94 0.02 0.81
3 0.079 0.88 0.022 0.66 0.08 0.89 0.02 0.62 0.081 0.89 0.021 0.62
4 0.058 0.88 0.011 0.7 0.057 0.87 0.009 0.66 0.055 0.85 0.008 0.61
5 0.113 0.86 0.043 0.68 0.116 0.87 0.04 0.64 0.117 0.86 0.04 0.62
6 0.055 0.88 0.009 0.7 0.054 0.87 0.008 0.65 0.053 0.86 0.007 0.61
7 0.06 0.86 0.012 0.68 0.059 0.84 0.01 0.59 0.058 0.84 0.009 0.56
8 0.121 0.9 0.049 0.76 0.123 0.9 0.045 0.71 0.123 0.89 0.045 0.69
9 0.063 0.83 0.013 0.59 0.062 0.82 0.011 0.51 0.061 0.81 0.01 0.48
10 0.099 0.87 0.034 0.68 0.1 0.87 0.03 0.61 0.1 0.86 0.03 0.59
11 0.074 0.79 0.019 0.53 0.075 0.79 0.016 0.46 0.074 0.78 0.015 0.43
12 0.102 0.86 0.036 0.67 0.103 0.86 0.032 0.6 0.103 0.85 0.031 0.58
13 0.085 0.8 0.024 0.54 0.086 0.79 0.021 0.48 0.085 0.78 0.02 0.45

Higher of projected/harvest price

2 0.071 0.95 0.02 0.9 0.069 0.93 0.015 0.77 0.068 0.93 0.015 0.75
3 0.071 0.87 0.018 0.61 0.071 0.88 0.015 0.55 0.07 0.87 0.015 0.54
4 0.049 0.84 0.008 0.64 0.048 0.83 0.006 0.53 0.044 0.8 0.005 0.48
5 0.107 0.86 0.039 0.65 0.108 0.86 0.035 0.59 0.107 0.85 0.034 0.57
6 0.046 0.85 0.007 0.63 0.044 0.83 0.004 0.5 0.041 0.81 0.004 0.45
7 0.052 0.83 0.009 0.61 0.05 0.81 0.006 0.45 0.047 0.79 0.005 0.41
8 0.114 0.89 0.045 0.74 0.115 0.89 0.041 0.68 0.113 0.88 0.039 0.65
9 0.054 0.8 0.01 0.52 0.053 0.78 0.007 0.39 0.05 0.76 0.006 0.35
10 0.092 0.86 0.03 0.64 0.092 0.86 0.025 0.55 0.089 0.84 0.023 0.52
11 0.066 0.77 0.015 0.47 0.066 0.76 0.011 0.36 0.063 0.74 0.01 0.32
12 0.095 0.85 0.031 0.63 0.095 0.85 0.027 0.54 0.093 0.83 0.025 0.51
13 0.077 0.77 0.02 0.49 0.077 0.77 0.016 0.4 0.074 0.75 0.014 0.36

PR90 = Premium rate for 90% coverage, PR70 = Premium rate for 90% coverage
DE90 = Diversification effect for 90% coverage, DE70 = Diversification effect for 70% coverage
2=Dickens-Crosby, 3=Dickens-Floyd, 4=Dickens-Garza, 5=Dickens-Floyd-Hale,
6=Dickens-Garza-Lynn, 7=Dickens-Crosby-Garza-Lynn, 8=Dickens-Crosby-Lubbock-Hale,
9=Dickens-Crosby-Garza-Floyd-Lnn, 10=Dickens-Crosby-Lubbock-Lynn-Hale,
11=Dickens-Crosby-Garza-Floyd-Lubbock-Lynn, 12=Dickens-Crosby-Lubbock-Lynn-Hale-Floyd,
13=Dickens-Crosby-Lubbock-Lynn-Hale-Floyd-Garza.
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Table 8: Premium rates and diversification effect of county risk pools for non-irrigated cotton

Clayton Frank Gumbel

Pool PR90 DE90 PR70 DE70 PR90 DE90 PR70 DE70 PR90 DE90 PR70 DE70

Projected price

2 0.121 0.98 0.052 0.97 0.123 0.97 0.05 0.93 0.122 0.97 0.049 0.92
3 0.121 0.97 0.051 0.97 0.123 0.97 0.05 0.94 0.123 0.97 0.049 0.92
4 0.133 0.97 0.06 0.97 0.135 0.97 0.059 0.94 0.135 0.97 0.058 0.92
5 0.096 0.83 0.034 0.7 0.098 0.83 0.031 0.64 0.097 0.81 0.03 0.62
6 0.117 0.96 0.049 0.95 0.119 0.96 0.046 0.89 0.118 0.95 0.045 0.87
7 0.116 0.96 0.048 0.95 0.118 0.96 0.045 0.9 0.116 0.95 0.044 0.88
8 0.1 0.85 0.036 0.75 0.102 0.85 0.033 0.68 0.1 0.84 0.032 0.67
9 0.115 0.97 0.048 0.96 0.117 0.96 0.045 0.9 0.116 0.95 0.043 0.88
10 0.098 0.87 0.035 0.77 0.1 0.86 0.032 0.7 0.098 0.85 0.031 0.68
11 0.116 0.97 0.048 0.96 0.118 0.96 0.045 0.91 0.116 0.96 0.044 0.88
12 0.101 0.88 0.037 0.8 0.102 0.88 0.034 0.74 0.101 0.87 0.033 0.72
13 0.104 0.89 0.039 0.82 0.106 0.89 0.037 0.76 0.104 0.88 0.035 0.74

Higher of projected/harvest price

2 0.115 0.97 0.048 0.97 0.116 0.97 0.045 0.92 0.113 0.96 0.043 0.9
3 0.115 0.97 0.048 0.97 0.116 0.97 0.045 0.92 0.114 0.96 0.044 0.9
4 0.128 0.97 0.057 0.97 0.128 0.97 0.054 0.93 0.126 0.96 0.052 0.91
5 0.089 0.81 0.03 0.67 0.089 0.8 0.026 0.59 0.086 0.78 0.024 0.56
6 0.111 0.96 0.045 0.94 0.111 0.96 0.042 0.88 0.109 0.94 0.039 0.85
7 0.11 0.96 0.044 0.95 0.11 0.96 0.041 0.88 0.107 0.94 0.038 0.86
8 0.093 0.83 0.032 0.72 0.093 0.83 0.028 0.64 0.09 0.81 0.026 0.61
9 0.109 0.96 0.044 0.95 0.11 0.96 0.041 0.89 0.107 0.95 0.038 0.86
10 0.091 0.85 0.031 0.75 0.091 0.85 0.027 0.65 0.088 0.83 0.025 0.62
11 0.109 0.97 0.044 0.96 0.11 0.96 0.041 0.89 0.107 0.95 0.038 0.87
12 0.094 0.87 0.033 0.78 0.094 0.87 0.029 0.7 0.091 0.85 0.027 0.66
13 0.097 0.88 0.036 0.8 0.098 0.88 0.032 0.72 0.095 0.86 0.029 0.69

PR90 = Premium rate for 90% coverage, PR70 = Premium rate for 90% coverage
DE90 = Diversification effect for 90% coverage, DE70 = Diversification effect for 70% coverage
2=Dickens-Crosby, 3=Dickens-Floyd, 4=Dickens-Garza, 5=Dickens-Floyd-Hale,
6=Dickens-Garza-Lynn, 7=Dickens-Crosby-Garza-Lynn, 8=Dickens-Crosby-Lubbock-Hale,
9=Dickens-Crosby-Garza-Floyd-Lnn, 10=Dickens-Crosby-Lubbock-Lynn-Hale,
11=Dickens-Crosby-Garza-Floyd-Lubbock-Lynn, 12=Dickens-Crosby-Lubbock-Lynn-Hale-Floyd,
13=Dickens-Crosby-Lubbock-Lynn-Hale-Floyd-Garza.

27


