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1 Introduction

Efforts to stabilize domestic food markets are pervasive in the developing world where both
importing and exporting countries modify their trade policies to reduce the transmission of
world price fluctuations into their domestic markets (Anderson, 2012). The simultaneous
implementation of price insulation policies by many countries further exacerbates market
volatility forcing governments to escalate interventions, thus eliminating the positive results
of price stabilization sought by policy makers in the first place (Martin and Anderson, 2012).

The causes of food price fluctuations are complex; however, it is clear that events that
simultaneously reduce food supply in several parts of the world, especially when grain stocks

are low, can send prices spiraling upward (Anderson, 2012; Wright, 2011). El Nino Southern
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Oscillation (ENSO) is an event that can trigger such effects as it induces spatial correlation
in the world climates making them teleconnected (Need to explain teleconnections).

However, although there is evidence that ENSO induces simultaneous negative and pos-
itive supply shocks in different parts of the world, the systemic effects of climate teleconnec-
tions in world food supply remains largely unexplored. So, a first objective of this paper is to
to identify the extent to which ENSO induces synchrony in the global harvest of rice, maize,
sorghum, and wheat with a particular focus on the geographic pattern of such correlation.
ENSO is also predictable with moderately good reliability six to nine months in advance
(e.g. Latif et al., 1998; Kirtman and Schopf, 1998; Ubilava and Helmers, 2013), in principle
some of its effects can be attenuated with early warnings. In further stages of this work, we
will use ENSOs global reach and predictability to investigate the effects of variable trade
policies in mitigating the price fluctuation effects of extreme climate events affecting many
regions of the world at the same time.

As reported in this preliminary version of the paper, we find that ENSO does indeed
induce synchrony in the global production of cereals. Our preliminary results also indicate
that ENSO is responsible for increasing food prices in some regions of the world. Our work in
progress also indicates that obstructing markets when supply shocks are correlated further
increase prices and diminishes the effectiveness of mitigation policies. Although ENSOs
predictability can only partially explain otherwise unpredictable extreme weather events,
these results offer a new perspective on the interactions between climate mitigation and
trade policies, two of the main mechanisms available to policy makers to cope with the

prospects of a more variable climate.



2 Literature Review

Grasping the global effects of ENSO on global agriculture is a daunting task due to the
existence of a rich literature highly fragmented in terms of regional and focus crops. Two
exceptions are lizumi et al. (2013), who focus on crop impacts and Chen et al. (2002), who
focus on global economic impacts. In this section we survey some of this literature. In
order to keep the task manageable we concentrate on a subset of studies with an explicit
economic focus on cereal agriculture; for a more comprehensive review, see Rosenzweig and
Hillel (2008).

A number of studies examine the effect of ENSO on agriculture by comparing the devi-
ations in crop yield/production during the “anomalous” years with those in the “normal”
years, using simulation methods. Hansen et al. (1998) examine the ENSO impacts on mul-
tiple crops, including maize, in the Southeastern U.S. Their analysis suggested increase of
maize yield during the La Nina episodes and decrease in yields during the EI Nino Episodes.
Legler et al. (1999) examine ENSO impacts on the U.S. maize, wheat, sorghum, and rice
yields, among other crops. They find negative effects of La Nina on all crops but maize, and
negative impact of El nifio on all crops but winter wheat. The magnitude of the effects are
more pronounced and heterogeneous at the regional level. Phillips et al. (1999) investigate
the role of ENSO in maize yield variability in the U.S. corn belt using simulation methods.
They report 5 percent yield decrease during the La Nina episodes based on observed data,
and about 18 percent yield decrease based on simulation results. They conclude that the
key source of low yields is water stress, along with the high temperatures, during the maize
growing season. Chen and McCarl (2000) examine effects of ENSO phases on crop pro-
duction in the major crop producing countries using stochastic model coupled with global
trade model. They find negative aggregate effect of both El Nino and La Nina episodes

on maize and sorghum production, while the effects on wheat varies across different wheat



varieties, indicating spatio-temporal differences in ENSO impacts. Their findings highlight
benefits of incorporating the magnitude of ENSO events in the analysis, as there appears to
be economically valuable information in ENSO variable used as more than just a categorical
variable. Chen et al. (2002) examine economic value of more refined ENSO information on
the U.S. and global agriculture. Their analysis incorporates maize, wheat, and sorghum,
among other field crops. They find economic benefits in more complete ENSO information
on the U.S. and world agriculture. Amissah-Arthur et al. (2002) consider effects of ENSO
on Kenya weather and maize yields. They use 20-years of data from 1979-1998 to find that
the effects of El Nifio are inconclusive. Even so, they find that all major positive deviations
in maize yield from the trend-adjusted mean yields happened during the non-El Nino years.
Martinez et al. (2008) investigate relationships between climate anomaly indices (including
ENSO) and maize yields in the states of Alabama, Florida, and Georgia, U.S. They find
negative correlation between ENSO and local weather and yields, meaning that cooler and
wetter winter and spring conditions associated with El Nino result in reduced yields.
Another set of studies apply regression-based approach to directly estimate the ENSO
impact on crop production. Naylor et al. (2001) examine relationship between ENSO and
rice production in Indonesia. They find that much of the impacts of ENSO on rice pro-
duction is through its effects on planting both in terms of timing and the area planted®.
Falcon et al. (2004) examine ENSO effects on Indonesian rice production, area harvested,
and yields. They find the significant effect of ENSO on rice production, which is true both
on national level, and more disaggregated provincial levels. They also identify an evidence
of ENSO impact on lower quality rice prices — a causal linkage that likely exists due to the
ENSO effects on Indonesian rice production. Roberts et al. (2009) investigate the ENSO
impact on precipitation and rice production in Luzon, Philippines. They find that both

irrigated and rain-fed regions are affected by El Nifio (1 degree positive deviation), resulting
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in 3.7 percent and 13.7 percent reduction in production, respectively. The impacts on total
production are evident in the dry growing season, during which ENSO explains approxi-
mately 29 percent of variation in rice production, much of which is driven by area changes
rather than yield changes. Deng et al. (2010) examine ENSO impacts on rice production in
selected rice-producing regions in China. Contrary to the aforementioned studies, they find
no evidence of the ENSO impact on rice yields. They conclude that the strongest ENSO-
weather relationship occurs outside of the rice growing season, and also, much of China’s
rice is irrigated and, thus, is less sensitive to climate shocks.

Several studies further extend the analysis of ENSO — agriculture relationship by cal-
culating the welfare effects of ENSO shocks. Adams et al. (1999) investigate economic
consequences of extreme ENSO events on the U.S. agricultural sector using stochastic eco-
nomic model of the U.S. agricultural sector. Their analysis incorporates maize, wheat, and
sorghum, along with other five field crops. They estimate losses associated with both El Nino
and La Nina to range between US$1.5 — US$1.7 billion and US$2.2 — US$6.5 billion, respec-
tively. Podestd et al. (2002) examine economic benefits of ENSO forecasts on agricultural
decision making in Argentina. They note that the usefulness of ENSO signals are mitigated
by the fact that large variability of the precipitation is present in each of the ENSO phases.
Selvaraju (2003) examines ENSO impact on cereal production in India. He finds strong
negative correlation between ENSO anomalies and field crop production, with correlation
coefficients being equal to -0.41, -0.36, and -0.21 for rice, wheat, and sorghum, respectively.
He also finds that the production decrease during El Nino is larger in magnitude than pro-
duction increase during La Nina. These translate to US$773 million losses during the El
Nino episodes, and US$437 million gains during the La Nina episodes. Chen et al. (2008)
analyze the impact of strong ENSO events on international rice market. They find that
on average La Nina events result in poorer production levels (up to 10 percent reduction)

compared to long-run mean, while the effect of El Nino events are less pronounced (up to 5



percent reduction). They also find little-to-no effect of ENSO on total amount of rice traded.
However, they did find overwhelming evidence of region-specific impacts of ENSO shocks on
trade. The total welfare impacts of El Nino and La Nifia are estimated to be around US$0.7
and US$2.1 billion, respectively.

Finally, a number of studies investigate economic benefits of early ENSO warnings in the
agricultural sector. Solow et al. (1998) analyze economic gains from improved ENSO predic-
tion in the U.S. agricultural sector. Using simulation methods they find the expected value
of ENSO prediction to range between US$240 — US$323 million, depending on the quality
of ENSO forecasts. Phillips et al. (1998) examine the economic value of ENSO forecasts
on maize yields and production management in Zimbabwe using simulation methods. They
find that the usefulness of ENSO information varies across different regions of the country,
depending on soil characteristics and other weather characteristics. Messina et al. (1999)
investigate ENSO effects on crop production in the Pampas region of Argentina. They con-
sider economic benefits land reallocation between several crops (including maize and wheat)
conditional on ENSO forecasts. They find that optimal land allocation in response to ENSO
phases increased net farm income by up to US$5 — US$15 per hectare. Jones et al. (2000)
investigate the relationship between ENSO on crop yields, and calculate the economic value
of ENSO forecasts in the Coastal Plain of the state of Georgia in the U.S., and Pampas
region in Argentina. They report per hectare values of optimal maize management using
ENSO forecasts to be US$3 — US$5 in Georgia, U.S., and US$11 — US$35 in the Pampas,
Argentina. Adams et al. (2003) examine effects of information on approaching ENSO anoma-
lies on Mexican agriculture. Their analysis incorporates maize, wheat, and sorghum, along
with other field crops. An estimate of the average economic benefit of ENSO knowledge is
measured in the order of US$10 million annually. Stige et al. (2006) address the effects of
climate anomalies on field crop production in Africa. They find strong an negative impact

of El Nino on maize and rice production in almost all considered regions, but positive, al-



though less pronounced, impact on sorghum production, suggesting a possibility of adaptive
rotation between maize and sorghum, if the ENSO-related information is available prior to

the planting period.

3 Attribution of Changes in ENSO to Changes in Global
Food Production

We now employ regression analysis to formally examine the hypothesis that ENSO telecon-
nections result in simultaneous crop productivity shocks across countries in the world. The
parameter estimates of the ENSO-induced productivity changes also produce a set of globally
consistent shocks that will be employed later to understand the interplay between adaptation
to climate extremes and trade policy. Our method of choice is to pool the country-level time
series of crop yields and SSTA measures and use panel data techniques to infer the effects

of changes in the SSTA on changes in agricultural yields.

3.1 Regression Analysis

We treat each country-crop combination as the unit of observation. The regression models
relate the natural log of detrended yields in country-crop pair i at time ¢, log(y;;), to the sea
surface temperature anomaly (SSTA, described below) annualized over country i’s growing
season, SST A;;. Additionally, we allow for asymmetries between the SSTA phases by allow-
ing for different slopes in the warming and cold phases of ENSO. Time invariant factors that

may condition the response of different countries to ENSO are controlled for by the use of



detrended yields. Formally:

P P
log(yu) = Bo + ByDy + > BSSTAY, + Y~ B,nSST AL Dy+

p=1 p=1

K P K P
SN BuSSTAL Ik =]+ > BunSSTAL Ik =i]Dy + €. (1)

k=1 p=1 k=1 p=1

where 3y is an overall intercept. The term Dy is an indicator variable that takes the value
of 1 when SSTA > 0 (and zero otherwise); this implies that Sy is an additional intercept
that captures the mean log of detrended yields during years in which SSTA > 0. The
subindex p denotes the degree of the polynomial allowed for the SSTA variable so that S,
is the coefficient for SST A, (3, for SST A?, and so forth. The coefficients 3,y are the slopes
on the SST A polynomial terms when SSTA > 0. The last two terms of equation (1) allow
for country-crop specific slopes for the i country: when SSTA < 0 the slope is is By
and when SSTA > 0 the slope is ,; + Bpen. Finally, € is an error term assumed to be
independent and homokedastic across time and cross-sectional units, centered around zero,
and more importantly, uncorrelated with SST A;;.

To fix ideas, for an equation with quadratic effects (p = 2), the equation for country s is:

log(yst) = Bo + Bn Dy + B1SST Ay, + 2 SST A+

BlsSSTAst + BQSSSTAgt + BlsNSSTAstDN + B2SNSSTA§,§DN + €st- (2)

For practical purposes, we are interested in the conditional expectation of changes in yields

given a value of the SSTA in country ¢ at time 7. After differencing 2, and using the



parameter estimates of 1 we obtain:

Eldlog(ys)|SST Ay = SSTAyr] =

SSTAg Bl + B\NDN + 5/1\3 + B\lsNDN + SST Ay (32 + st + BQSNDN)} . (3)

which gives a unique supply shock for each country s under the state of nature prevailing at

time T. Few cases of interest are normal times:
Eldlog(ys:)|SST As = 0] = 0; (4)
A La Nina episode with SSTA,T = —1:

Eldlog(y)|SST Ay = ~1] = (B = B1) + (Pos = Bus) (5)

where the first term on the right hand side (RHS) is common to all the crops and countries,
and the second term is a country-crop specific slope; and an El Nino episode with SSTA,T =
1:

Eldlog(ys:)|SST Ay = 1] = (B\N + 6+ 32) + (B\ls + Bron + Pas + Ezszv) : (6)

where as before, the first RHS term is an intercept common to all countries and crops, and
the second term is country-crop specific slope

In practice, the significance of E[dlog(ys:)|SST A is related to the significance of the
B coefficients. Three possible options for determining whether E|dlog(ys)|SST Ag] is sta-
tistically significant are described next. First, we could to use a test for multiple restric-
tions whereby one could use a F-test strategy to determiner whether omitting the particular
combination of parameters for a given country-crop and ENSO phase changes the overall

explanatory power of the regression—this test of joint significance would indicate whether



the marginal effects of the SSTA on yields is statistically different from zero at a given sig-
nificance level. Another option is to calculate standard errors for expressions such as (5) and
(6) using the delta method. Yet another option is to build confidence intervals based the
distribution of E[dlog(yst)|SST Ast] obtained from random draws of the parameter estimates
(and their covariances). Relative to F-tests and the delta method, the last option allows for
exploring the uncertainty around having negative or positive supply shocks without being
tied to a pre-specified significance level. This is particularly useful in the context of the mod-
eling exercises of the paper (still in progress) where we can use the empirical distribution of

Eldlog(yst)|SST As] to quantify the uncertainty in model outcomes.

3.2 Data Description

The dependent variable in the regressions discussed below are national yields of maize,
wheat, sorghum and rice during the period 1961-2009 sourced from FAOSTAT. We discarded
countries displaying constant yields for more than three consecutive years. In addition, to
facilitate the aggregation of the productivity shocks to the GTAP regions used in the policy
simulations, we kept only the countries included as disaggregated regions in the GTAP
regional classification (CITE). The final sample represents 99% of maize world production (74
countries), 98% of wheat production (59 countries), and 95% of sorghum and rice production
(45 and 61 countries, respectively).

Our exogenous variable is the Sea Surface Temperature (SST) from NOAA measured in
the region Nino 3.4. These data are monthly and are a direct measure of ENSO. As mentioned
above, a El Nino phenomenon is considered to occur if the average SSTA over a three
period month is greater or equal than 0.5°C for more than three consecutive, overlapping,
periods. La Nina, on the other hand, is considered to be occurring when the SSTA is
lower or equal than -0.5°C from more than three consecutive, overlapping, periods. Because

yields are measured annually and growing seasons differ across hemispheres, we calculated
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country-specific SSTA measures over the annual growing season. For this we used the global
information on pixel-level planting and harvesting dates for the focus crops provided by Sacks
et al. (2010) and constructed monthly weights whereby a low weight implies that in that
given month, only few pixels are already growing a specific crop. A weight of one implies that
a month is part of the growing season in the entire country. With these monthly weights,

we constructed weighted averages.

4 Results

We estimated (1) using a second-degree polynomial. Of course, including country-crop and
ENSO phase specific slopes by each polynomial term generates in excess of 1000 coefficients.
However, the real interest is on expressions such as 5 and 6, which capture the effects of
individual crops and countries. In order to get a better understanding of the model, in
figure 1 we display the marginal effects of the SSTA (in the horizontal axes) on maize yields
in the U.S., Argentina, India, and Zimbabwe. A glance at the figure reveals that the average
yield during the cold and war phase of ENSO is quite different in Argentina, to a lesser
degree in India and Zimbabwe, and practically the same in the U.S. Notice also how the
ENSO phase-specif slopes can be quite different, as in the case of India. Such difference in
slopes is verified in most countries.

A main interest of this paper is to determine whether the climate teleconnections result
in teleconnected supply responses. In order to investigate this, we calculate the ration of
1000 random simulated effects from the parameter estimates (and their covariance, assuming
a multivariate normal) that is negative. These shares are shown in figure 2, for year 1987
when there was a string Nio, with the value of the SSTA ranging from 0.9 to 1.2, depending
on the country. When all the effects are negative, the share is of course 1; conversely, if all the

effects are positive, the ratio is 0. These ratios give a sense of the statistical significance of the
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effects of ENSO on the log of detrended yields in the sense that countries for which, say, 90%
of the values are negative, would imply a 90% CI that does not include zero. Starting with
maize, in the upper-left panel of figure 2, it can be seen that for most countries in Eastern
and Southern Africa, the ratio of negative values on the total distribution of potential effects
as estimated in (1) is negative (countries in red).

This can be take as strong evidence that ENSO has a statistically significant negative
effects on the log of detrended maize yields in these countries. Similar effects are verified in
the western northern tip of South America (Colombia nd Ecuador) few countries in Central
America. Similarly, India, Nepal and Pakistan in South Asia also show negative effects.
Taken together, these effects suggest that there are indeed teleconnected supply shocks, in
the sense that yields are likely to be negatively affected in regions that are quite far from each
other. Notice also that a number of countries the share of either negative of positive effects
is close to 50% (countries in orange), which indicates quite imprecise confidence intervals,
or said otherwise, insignificant effects of El Nio on maize yields. Finally, some countries
in lower South America (Argentina, Chile and Uruguay) tend to be dominated by positive
effects, finding that coincides with ors in the literature.

In addition to maize, figure 2 also shows the ratio of effects for rice, sorghum, and wheat.
An interesting pattern is that the effects of ENSO differ by crop, which is important because
of the possibilities of substitution in both production and consumption. For instance, the
effects of ENSO in Eastern Africa are much less negative than those in maize. Likewise,
Brazil, shows a strong negative supply response, which contrasts with maize. India, is

among the countries that have negative effects in both maize and yields.
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5 Conclusions

The objective of this paper is to determine the patterns of cross-country teleconnections in
the supply responses of maize, wheat, rice and sorghum associated with ENSO. Our results
suggest that these patterns are discernible in the country-level data and that the diversity
of supply responses across crops and countries has important consequences for how markets

adjust to ENSO shocks. These consequences are part of our current work.
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Figure 1: Estimated effects of sea surface temperature anomalies on maize yields in selected
countries. The estimated model allows for asymmetric (different slopes and intercepts as
well as non-linear effects of the cold and warn phases of ENSO.
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