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Abstract: Agricultural producers have imperfect knowledge of the health risks posed by many 

agricultural inputs.  This paper explores the effects of information on demand for substitutes or 

new risk-mitigating technologies using a randomized controlled trial in Zambia.  Information had 

an insignificant effect on demand for personal protective equipment, but a significant effect on 

demand for substitutes, lower toxicity pesticides. The treatment group was greater than three times 

more likely to substitute a high toxicity pesticide for a low toxicity pesticide after receiving 

training. What farmers do not know can hurt them through lower demand for less risky substitutes.  
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I. Introduction 

 

A large empirical literature demonstrates that what you don’t know can hurt you. Both 

consumers and producers shift demand for commodities and inputs in response to changes in health 

or safety knowledge.  Empirical applications on the consumer demand side include automobile 

demand (Peltzman, 1975; Winston and Mannering, 1984; McCarthy, 1996; among others), food 

demand (Piggott and Marsh, 2004, and Lusk and Coble, 2005, among others), and safe sex (Gong, 

2014), among others.  An equally robust literature among producers includes applications for 

pollution (Zivin and Neidell, 2012), mining (von der Goltz and Barnwal, 2014), and fertilizer 

application (Conway and Pretty, 1988).   

 

One area of growing importance where health risks and information may play important 

roles in demand is pesticide use in developing countries. Pesticide use in developing countries is 

increasing (Williamson et al., 2008) and Sheahan and Barret (2017) show that pesticide use in SSA 

is higher than previously expected. Pesticides offer large benefits in agricultural pest control 

(Crissman et al., 1994; Pingali et al., 1994). They also present potentially large environmental and 

human health costs (Tilman et al., 2001; Tilman et al., 2002) including long-term health risks like 

cancers, Parkinson’s disease (Gorell et al., 1998), and neuropsychological effects (Savage et al., 

1988). 

 

No population faces larger health risks than small-scale farmers that work directly with the 

chemicals. The risks they face have two primary inputs: personal protective equipment (PPE) and 

toxicity. PPE (e.g., rubber boots or gloves) can reduce health risks by limiting or preventing 

pesticide exposure. Toxicity represents the potential hazard or harm of a chemical (WHO, 2010) 

and farmers can decrease their health risks by using less toxic pesticides.  Pesticide related illnesses 

are a real health risk for farmers in developing countries (Sheahan et al., 2016; WHO, 1990; 

Crissman et al., 1994; Pingali et al., 1994), many of whom apply highly toxic class Ib1 pesticides 

that have very serious health risks from exposure (WHO, 1990), and use incomplete PPE (Maumbe 

and Swinton, 2003; Ntow et al., 2006; Negatu et al., 2016; Matthews et al., 2003; Dasgupta et al., 

2007). 

 

In response to changes in health information, two behavioral responses have been well-

documented in the literature including substituting to lower risk products or adopting risk-

mitigating technologies.  Despite potentially large benefits in preventing illnesses, previous 

research shows generally low adoption of health inputs (Dupas, 2011) including slow uptake by 

at-risk households of preventative repeated use health inputs like bed nets (Dupas, 2014) and water 

treatment methods (Ashraf et al., 2010). These inputs provide large health benefits in preventing 

malaria and diarrhea, yet those benefits are fully achieved only after an upfront investment and 

consistent use. One possible explanation for low adoption is a lack of health risk information, 

which may be especially important for new, complicated technologies (Jack, 2013). 

 

However, previous research shows mixed evidence of information’s impacts on health 

demand. Madajewicz et al. (2007) find that information on water safety and the potential health 

                                                 
1 Throughout this paper, we use World Health Organization (WHO) human health risk classifications of toxicity 

(WHO, 2010). 



effects from unclean water led to safer water behaviors. Fitzsimmons et al. (2012) find that 

information on infant nutrition and health can improve infant feeding practices. There is also 

evidence that the effects of information are stronger when individuals have priors that are 

substantially different from the message presented by new information. Dillon et al. (2014) find 

significant effects of health information on labor productivity, especially for farmers that are 

surprised by the information. Gong (2014) shows that HIV test result information has stronger 

effects on behavior when people are surprised by them.  

 

Yet, other studies show little effect of information on health behaviors. Meredith et al. 

(2013) conduct a series of controlled experiments and conclude that information by itself does not 

impact household investment in preventative health goods. Dupas (2011) offers a selected review 

of health behavior literature in developing countries. She notes that although households often 

spend a large share of their income on health, they do not often invest in preventative goods, and 

she mentions that information can impact behavior, but information alone is not always enough. 

 

 This paper uses a block randomized control trial among tomato producers to estimate 

demand for personal protective equipment after experiencing a pesticide training course.  We also 

estimate willingness to pay for different types of pesticides, varying toxicity using contingent 

demand data that was collected at the baseline and endline of the randomized control trial.  

Information had an insignificant effect on demand for personal protective equipment, but a 

significant effect on demand for substitutes, lower toxicity pesticides. The treatment group was 

greater than three times more likely to substitute a high toxicity pesticide for a low toxicity 

pesticide after receiving training. What farmers do not know can hurt them and lower demand for 

less risky substitutes. 

 

The paper is presented as follows. Section II presents background information about 

pesticide use and the Zambian context.  Section III outlines the data and experiment. Section IV 

presents the empirical strategy and main results for PPE.  Section V discusses the empirical 

strategy and main results for pesticide demand. Section VI concludes. 

 

II. Background 

Vegetable production, and tomato production in particular, is an important source of 

income for many smallholder farmers in Zambia, with gross margins more than 100 times that of 

maize, the dominant field crop (Hichaambwa et al., 2015). These higher returns come with 

nearly ubiquitous crop loss risks from pests; pest pressure was the leading reason cited for 

horticultural crop loss by a wide margin (Snyder et al., 2015). Two commonly reported pests are 

bollworms and nematodes, which can dramatically reduce the share of tomato production that 

meets the informal market standards for quality.  

To mitigate the risks of crop loss, Zambian farmers overwhelmingly turn to synthetic 

pesticides and, thus, subject themselves to large acute and chronic health risks. Zambian farmers 

have access to and often apply several extremely toxic pesticides including Monocrotophos, 

Methamidophos, and Umet, each classified by the World Health Organization (WHO) as toxicity 

class Ib. Importantly, farmers also have access to and regularly apply pesticides that are unlikely 

to be toxic in regular use (WHO class U products). The available WHO class U products are 



labelled for controlling the same pests as the WHO class Ib products, thus substitution across 

toxicity classes is feasible for most pests without meaningful decreases in pest control efficacy. 

The potential health risks from pesticide use are realized only when farmers become 

exposed to pesticides, and using PPE such as rubber boots, gloves, a cotton work suit, and a dust 

mask can greatly reduce the probability of acute poisoning. Keifer (2000) reviewed 17 small 

sample studies of pesticide exposure and found PPE items to decrease pesticide exposure in 

uncontrolled field environments. Yet, in Zambia, and in much of SSA, complete protection from 

pesticide exposure through PPE use is exceedingly rare. There may be several reasons for the 

low PPE use rates including lack of PPE availability and high prices (Matthews et al., 2008), and 

cultural and social norms (Feola and Binder, 2013). Information may also be important 

constraint. The literature is mostly unified in its recommendation to improve farmer safety 

practices by providing farmers with information through trainings (Matthews et al., 2003; 

Hashemi et al., 2011; Ntow et al., 2006; Tijani et al., 2006). 

III. Data and Experimental Design 

Three Agricultural Camps2 in Mkushi District, Zambia were selected as our study area for 

the region’s high concentration of tomato farmers who regularly use highly toxic pesticides. We 

identified 711 farmers tomato farmers that grew and sold tomatoes in the year prior to the baseline 

survey. To facilitate a village-level intervention, 32 Enumeration Areas (EAs) were created using 

spatial data and natural delineations (e.g., rivers and hills) as boundaries EAs whenever possible3. 

Sixteen farmers were randomly selected within each EA yielding a total sample of 512 farmers. 

There are potentially large selection challenges to overcome when assessing the impact of 

information on behavior. Individuals may choose what production information to attend to and 

learn from (Hanna et al., 2014) and individuals are more likely to accept greater search costs to 

acquire information they care deeply about. Thus, for a particular good, the information one has 

(and their subsequent knowledge) is likely correlated with demand through unobservable 

preferences. In our case, a farmer’s choice to acquire information is likely related to their health 

preferences which also affect demand for PPE and pesticides by toxicity classes. To address the 

identification challenge posed by unobservable farmer preferences, farmers were randomly 

assigned – at the enumeration area (EA) level – to receive pesticide safety information, thus 

making it completely exogenous to the farmers’ behaviors4.  

To improve sample balance and to increase statistical power in our effect estimates, we 

first stratified the EAs into pairs by their mean pesticide knowledge scored over twelve true/false 

questions (Bruhn and McKenzie, 2009). The impact of new information likely depends on what 

farmers already know and how well they know it, thus baseline knowledge is an important 

                                                 
2 To allocate resources, the Zambian government divides each district into multiple Agricultural Camps. 
3 We could not use existing village structures as the unit of randomization due to variations in size and inconsistent 

farmer definitions of what a “village” was. Many farmers defined their “village” as their household compound 

consisting mostly of family members, and many insisted that they were not part of a broader village structure 

containing many households. 
4 This design has the added benefit of controlling for other possible mechanisms through which knowledge may be 

endogenous to demand. For instance, a farmer’s unobservable cognitive ability may affect their knowledge as well 

as their demand for a good. 



determinant of any information effects. Further, pesticide knowledge at the EA level is likely 

correlated with access to information, which is, in turn, likely to be associated with health beliefs 

and behaviors. Thus, blocking over pesticide knowledge prior to randomization likely reduces 

across-EA variance between the treatment and control groups in farmer information sets.  

Detailed interviews were conducted both before (baseline) and after (endline) the 

information intervention. We developed the baseline questionnaire after (i) 40 semi-structured 

interviews that focused on pesticide purchasing behaviors, mixing and application techniques, and 

information sources; (ii) four observations of in-field pesticide applications; and (iii) visits to 16 

pesticide retail outlets to catalogue available pesticides and to talk with agronomists and 

salespeople. We obtained information on household and farmer demographics, pesticide purchases 

and knowledge, extension and information sources, acute symptoms experienced from pesticide 

use, and pesticide choices from two contingent demand experiments (described below in section 

V.D). Approximately three months after the baseline (and approximately two months after the 

information intervention for the treatment group) we conducted an endline survey that closely 

mirrored the baseline, but included two additional modules to assess farmer WTP for protective 

equipment (described in section IV.A below).  

A. Sample balance 

The sample for analysis is a panel of 413 tomato farmers, which reflects 7 observations of 

attrition, 28 observations trimmed for outlying data5, and 64 observations (4 EAs or two blocks) 

trimmed for large imbalances between treatment and control groups. The attrition observations are 

statistically similar to the non-attrition farmers and well balanced over treatment and control 

groups. Table A1 in the appendix highlights the improved sample balance after trimming. The 

control group had significantly more farmers with business income prior to trimming, which is 

potentially problematic as income will affect demand for PPE and pesticide choices. Further, 

business income may be correlated with access to certain types of information and access to 

pesticides and PPE, which could impact farmer knowledge and familiarity with products, and 

therefore affect demand. To help correct for these potential problems, we trimmed our sample to 

exclude the two blocks (4 EAs, 13% of our sample) with the largest differences in business income 

between treatment and control groups. After trimming, there are no longer significant differences 

in business income and the number of advice sources between treatment and control groups. For 

the remainder of this paper we present results using the trimmed sample of 413 farmers. Key full 

sample results are included in the appendix section 2 as a robustness check, and we note any 

meaningful differences between the two samples in the text.  

B. Information intervention 

The overarching goal of the information intervention was to improve pesticide risk 

knowledge. Semi-structured interviews and field observations conducted prior to the baseline 

revealed two key risky pesticide behaviors that became the primary focal points of the information 

intervention. First, most farmers used little to no PPE when working with pesticides. Many farmers 

had experienced acute illnesses from pesticides and some mentioned “being careful” when 

                                                 
5 Outliers are defined as three times the standard deviation from the mean in the following potentially important 

variables affecting demand; first principal component of 12 durable assets owned, BDM bids for gloves or masks, 

the area of tomatoes planted, or the number of pesticides applied. 



working with pesticides, but PPE use was low even for those farmers. Second, farmers did not 

understand pesticide toxicity labels and many did not differentiate products by health risks. More 

than one farmer said, “poison is poison,” implying a flat risk perception where all pesticides are 

perceived to be equally toxic. Thus, our two main points of emphasis in the information 

intervention were (i) to teach farmers about pesticide toxicity and how to identify toxicity labels, 

and (ii) to emphasize the importance of PPE in reducing pesticide exposure and to teach farmers 

how to effectively protect themselves while working with pesticides. A secondary goal was to 

better acquaint farmers with a subset of the locally available pesticides, particularly class U (low 

toxicity) options. 

Information volunteered by farmers during baseline interviews suggested that many 

farmers perceived a positive relationship between a pesticide’s price and its efficacy in controlling 

pests – i.e., higher priced pesticides were perceived to be stronger, more effective products. The 

literature documents similar price-quality perceptions for products unrelated to pesticides 

(Zeithaml, 1988; Wolinsky, 1983; Bagwell and Riordan, 1988), and shows that better product 

information weakens the quality signal indicated by price (Zeithaml, 1988; Bagwell and Riordan, 

1988). Therefore, we included a third training objective to combat this apparent flaw in farmer 

pesticide knowledge with information refuting a relationship between pesticide prices and 

efficacies. 

Pesticide safety information was delivered through a farmer-to-farmer training program 

and a personalized letter. Farmer-to-farmer training programs are a common, low-cost extension 

method that can significantly increase farmer knowledge and technology adoption (BenYishay et 

al., 2016). Programs typically rely on existing social networks to share information within a 

community. Beaman and Dillon (2016) test the diffusion of information through social networks 

by randomly assigning farmers to receive information on composting. They find that farmers in 

treatment villages have significantly higher composting knowledge after the information was 

distributed, and that social connectivity matters in information diffusion as farmers with shorter 

social distance to the trained farmers learned more (Beaman and Dillon, 2016). We designed the 

experiment to test the combined impact of both information interventions on PPE demand, and we 

cannot test the impacts of each mechanism separately. We combined the two interventions into a 

single treatment to increase the expected impact, and subsequently increase power. The final 

sample and design had a minimum detectable effect size of 0.3 for gloves and 0.4 for masks6 at a 

power level of 0.8 and a significance level of 0.05. 

We worked with Ministry of Agriculture and Livestock (MAL) representatives to 

implement the training program as follows. Farmers in each EA voted privately for one farmer to 

represent them as “lead farmers” and the majority vote recipient attended a two-day pesticide 

safety training led by MAL in a nearby town. Lead farmers were compensated for their travel and 

time at the training. Upon completing the training, the lead farmers returned home to conduct local 

trainings of the same content for the other farmers in their EAs. We gave lead farmers a cash 

stipend to serve a meal at their local trainings to encourage training attendance. Lead farmers also 

                                                 
6 Gloves and mask bids varied in their intra-class correlation coefficients, hence the difference in their minimum 

detectable effect sizes. 



received sample pesticides and protective equipment so they could easily demonstrate toxicity 

labels and PPE use. 

In addition to the local trainings, lead farmers were directed to send letters through the 

informal mail system to each of the farmers in their EAs. We provided all necessary materials for 

the letters, including a one-page color summary of pesticide safety content in English (shown in 

Figure A2 in the appendix) and the local language, and materials to write personalized notes. Lead 

farmers were directed to include a brief, handwritten note to each individual encouraging them to 

consider carefully the information within. The intervention was largely successful in reaching 

targeted farmers; seventy eight percent of the treatment group received information at the training 

or through the letter, though only 30% received information from both sources7. The experimental 

design effectively limited spillover as just 10 control group farmers received information directly 

from the training or letter.  

IV. Protective Equipment Demand 

A. Eliciting demand for protective equipment: Becker-DeGroot-Marschak mechanisms 

Two Becker-DeGroot-Marschak (BDM) mechanisms were implemented at the conclusion 

of the endline survey to elicit demand for PPE: one for protective gloves and one for dust masks. 

BDM mechanisms reveal a point estimate of willingness-to-pay (WTP) for each farmer and Davis 

and Holt (1993 p 461) emphasize that they are incentive compatible experiments for expected 

utility maximizers.  

The BDM mechanism procedures closely followed Berry et al. (2015) but were modified 

to our study context and according to pretesting results. Farmers played a practice round of the 

BDM mechanism for a bar of soap before playing for the two protective items. We randomly 

assigned the order in which farmers saw PPE items: half of the sample played the BDM mechanism 

for gloves first and the other half played the BDM mechanism for a dust mask first. Each item had 

the same script and procedure (a sample script and pictures of the gloves and masks are included 

in appendix Figure A1). To begin each BDM mechanism round, we allowed the farmer to hold 

and interact with the relevant item in its original packaging and asked them to report the maximum 

price they were willing to pay. After the farmer offered their bid 𝑏, the interviewer reviewed 

possible outcomes to confirm that the farmer understood the game, and gave the farmer the 

opportunity to adjust their bid if they so desired. When the farmer settled on their best WTP bid, 

the farmer drew a price card 𝑑 from the relevant card deck8. If 𝑏 > 𝑑 (i.e., the farmer had a 

“winning” bid), then the transaction took place immediately. 

                                                 
7 Figure A3 in the appendix shows a detailed breakdown of information receipt.  
8 Each item had its own price distribution and corresponding card deck. We chose the price distributions based on 

bids offered during pretest interviews. We used uniform distributions in one Zambian Kwacha (ZMW) increments. 

For masks, the distribution was 1 to 10 ZMW and for gloves, the distribution was 1 to 15 ZMW. We deliberately left 

0 ZMW out of the distributions to eliminate the possibility of a farmer winning an item for free. We were concerned 

that word of ‘free’ items might spread quickly through our research area and adversely affect future BDM 

mechanism bids, while requiring farmers to pay even one kwacha would greatly reduce that risk. The next section 

contains robustness checks on random price draws.  



B. Empirical model 

The first empirical objective is to identify the causal effect of pesticide safety information 

on WTP for PPE. To avoid the potential endogeneity problems of information receipt discussed in 

section III we rely on the random assignment of pesticide information to identify the causal effects 

of information on WTP by estimating intention-to-treat (ITT) regressions. There may be variation 

in treatment effects across observable characteristics. Therefore, we test for heterogeneous effects 

of information with the following specification:  

  

𝑊𝑇𝑃𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑖𝑗 + 𝛽2𝐶𝑜𝑣𝑖 + 𝛽3[𝑇𝑟𝑒𝑎𝑡𝑖𝑗 ∗ 𝐶𝑜𝑣𝑖] + ∑ 𝛿𝑙𝑋𝑙𝑖𝑙 + 𝐵𝑘 + 𝜀𝑖𝑗 (1) 

 where 𝑊𝑇𝑃𝑖𝑗 is the willingness-to-pay bid for a PPE item for farmer i in EA j in block k. 𝑇𝑟𝑒𝑎𝑡𝑖𝑗 

is the random treatment assignment variable and 𝐶𝑜𝑣𝑖 is the covariate across which we test for 

heterogeneous effects. We estimated (1) five times, once for each of the following covariates: an 

indicator variable for low (i.e., bottom 30th percentile) knowledge of PPE benefits, an education 

indicator variable equal to one if the farmer completed grade seven9, a tomato experience variable 

defined as the number of years in the last 10 that a farmer grew tomatoes, the number of class Ib 

pesticides applied at baseline, and the number of class U pesticides applied at baseline. To increase 

precision of the treatment effect estimates we included block k fixed effect 𝐵𝑘 (Bruhn and 

McKenzie, 2009) that controls for baseline EA-level mean knowledge and partial variation in other 

variables correlated to that knowledge (discussed in section III). We also included five control 

variables 𝑋𝑙𝑖 which are the first principal component of 17 asset ownership variables and land 

ownership, a farmer age variable, a sex indicator variable equal to one if female, a tomato 

experience variable defined as the number of years in the last 10 that a farmer grew tomatoes, and 

a control variable for the randomized order in which the BDM games were played (equal to one if 

masks were first). 

As is common in RCT analysis, we assume the error term 𝜀𝑖𝑗 is correlated within EAs – 

our level of randomization – but uncorrelated across EAs. Therefore, we present cluster robust 

standard errors at the EA level that provide more accurate inference of treatment effects as 

discussed by Bertrand et al. (2004) and employed by Keskin et al. (2016). Equation (1) is estimated 

by linear projection model; however, there are a nontrivial share of corner solution bids equal to 

zero (approximately 20% of the bids for each item). While imperfect in the face of corner solution 

data, linear projection models can still provide good estimates of the average partial effects of 

explanatory variables (Wooldridge, 2010 p 668)10. 

The effects of information on WTP are captured by the estimators 𝛽1̂ and 𝛽3̂. The common 

literature recommendation that information is needed to improve pesticide safety behaviors 

                                                 
9 Grade 7 is a natural cut-off in education in Zambia, as there is a national level examination at the end of grade 7 

that pupils must pass to advance to grade 8. 
10 As a robustness check to OLS, we also estimate (1) by Tobit maximum likelihood estimation that explicitly 

accounts for the corner solution bids where 𝑊𝑇𝑃𝑖𝑗 = 0. Greene (2002) found that Tobit fixed effects estimates were 

generally consistent thus the incidental parameters problem is not a concern. Given the large share of corner solution 

responses, we also create an indicator variable equal to one if 𝑊𝑇𝑃𝑖𝑗 > 0 to test whether treatment assignment 

affected the probability that a farmer offered a positive bid (Table A3 in the appendix). 



implicitly expects a positive effect of information. However, when accounting for possible health 

input substitution between PPE and pesticide toxicity, there is no clear expected sign for 

information effects on WTP. If PPE and pesticide toxicity are substitutes in health production, then 

information on relative pesticide toxicity may have negative effects on WTP for PPE through a 

risk substitution effect. If farmers hold priors that all pesticides are highly toxic, then improved 

knowledge of relative pesticide health risks could engender a substitution to low toxicity pesticides 

and lower demand for PPE. To test for evidence of risk substitution, we estimate the causal impact 

of relative toxicity knowledge on WTP for gloves and masks using the following two-stage least 

squares specification to control possible endogenous knowledge: 

 

𝐾𝑖𝑗𝑘
𝑡𝑜𝑥 = 𝛾0 + 𝛾1𝑇𝑟𝑒𝑎𝑡𝑖𝑗 + ∑ 𝜌𝑙𝑋𝑙𝑖𝑙 + 𝐵𝑘 + 𝑣𝑖𝑗  (2) 

𝑊𝑇𝑃𝑖𝑗𝑘 = 𝛼0 + 𝛼1𝐾𝑖𝑗𝑘
𝑡𝑜𝑥̂ + ∑ 𝛿𝑙𝑋𝑙𝑖

𝑙

+ 𝐵𝑘 + 𝑢𝑖𝑗  (3) 

where 𝐾𝑖𝑗
𝑡𝑜𝑥 is the farmer’s relative toxicity knowledge defined as equal to one if the farmer 

correctly identified the health risks of a WHO class Ib pesticide and a WHO class U pesticide11. 

In the first stage (2), we regress our excluded instrument 𝑇𝑟𝑒𝑎𝑡𝑖𝑗, included instruments 𝑋𝑙𝑖 that 

control for several household, farmer, tomato production, and health risk characteristics that might 

affect WTP, and block fixed effects 𝐵𝑗 on 𝐾𝑖𝑗
𝑡𝑜𝑥. The predicted values of relative toxicity 

knowledge 𝐾𝑖
𝑡𝑜𝑥̂ are then regressed against 𝑊𝑇𝑃𝑖𝑗 in the second stage (3). Valid identification in 

(3) requires an excluded instrument that is correlated with 𝐾𝑖𝑗
𝑡𝑜𝑥 and only correlated to 𝑊𝑇𝑃𝑖𝑗𝑘 

through 𝐾𝑖𝑗
𝑡𝑜𝑥. Treatment assignment 𝑇𝑟𝑒𝑎𝑡𝑖𝑗 meets these requirements. It affects a farmer’s 

relative toxicity knowledge and is randomly assigned and not directly correlated with 𝑊𝑇𝑃𝑖𝑗𝑘. We 

also test for evidence that 𝐾𝑖𝑗𝑘
𝑡𝑜𝑥 is endogenous using a regression based Hausman specification test 

outlined by Wooldridge (2003, pg. 483). 

C. Results 

a. PPE demand 

PPE ownership and use is low but within the range reported by previous research in 

Southern Africa. The median number of PPE items owned is only one (shown in Table A2 in the 

appendix). Each PPE item was available for sale in the nearby town of Mkushi, so the low 

ownership and use does not reflect a complete lack of access to any item. Low PPE ownership 

together with the use of highly hazardous pesticides imply large health risks for tomato farmers in 

our study. In the year prior to the baseline interview, 84% of the sample reported experiencing an 

acute illness symptom shortly after applying a pesticide, and the average number of symptoms 

experienced was 2.8 for those that experienced one. Thirty nine percent of our sample lost at least 

                                                 
11 We showed farmers a sample pesticide in each toxicity class and asked them to identify the toxicity of each. We 

somewhat generously code correct responses for the class Ib pesticide as either “extremely toxic” or “highly toxic” 

and correct responses for the class U pesticide as either “not very toxic” or “not toxic.” Responses of “I don’t know” 

to either pesticide are coded as incorrect knowledge (we include robustness checks on this decision in the Appendix 

Table A7). 



one work day from these acute illnesses and nearly one quarter visited a health clinic for treatment 

of their symptoms.  

The BDM mechanisms provide WTP bids for each farmer, which allow us to map demand 

curves using the share of farmers that bid greater than or equal to a range of prices – shown in 

Figure 1. We make four observations from these demand curves. First, about 20% of the bids for 

each item were 0 ZMW. Farmers were not limited in their bid amounts, and could bid as low as 

0.5 ZMW (approximately $0.05). This observation is consistent with previous literature that shows 

large decreases in demand for non-durable health goods when a positive price is charged relative 

to when the goods or services are offered for free. Kremer and Miguel (2007) show that charging 

a small fee reduced adoption of a deworming treatment by 58 percentage points in Kenya. Kremer 

et al. (2009) show a large increase in use of a chlorine water treatment when households received 

the treatment for free and an insignificant effect of a 50% subsidy relative to control group. The 

goods in both of these examples are non-durable health inputs similar to protective gloves and 

masks. Masks and gloves are only likely to last a single tomato cycle if they are used regularly.  

Our second observation is that the demand curve for gloves is higher than the demand curve 

for masks at every price. We expect this difference as gloves offer better protection from potential 

pesticide exposure, and, therefore, greater health benefits if used properly, particularly when 

mixing pesticides prior to application. Further, gloves are slightly more durable and, therefore, 

offer protection for a longer period of time, though both items are not likely to last more than one 

growing season if used regularly.  

The fact that these inputs are non-durable may contribute to the observed low demand for 

each item relative to the market price despite the potential savings in transportation and transaction 

costs associated with purchasing the items at a farmer’s home instead of in the market, which is 

our third observation. Farmers may be reluctant to invest in health goods with short-term benefits, 

and repeated capital investments may be unattractive12. Bohm et al. (1997) suggest that the market 

price for a commodity is a logical upper bound for BDM game bids, but we observe a large gap 

between market prices and bid means. Retail outlets in the nearest major market sold gloves for 

20 ZMW per pair, and the observed median and mean bids for gloves were only 5 ZMW and 7.2 

ZMW, respectively, while only 17 farmers (3.6% of our sample) offered bids greater than or equal 

to the market price. Retail outlets sold masks for 9 ZMW a piece, and the median and mean mask 

bids were 4 ZMW and 4.7 ZMW, respectively, while only 75 farmers (16% of our sample) bid at 

least the market price. This result suggests that any intervention without a subsidy needs to have 

large effects to increase observed market demands for PPE.  

The fourth observation from Figure 1 is that demand is inelastic at low prices for both 

gloves and masks, but elasticity increases with price for both items13. Berry et al. (2015) show a 

very similar elasticity relationship to price in demand for water filters in Ghana. However, there is 

evidence of the opposite relationship as well. In reviewing the literature on water safety, Ahuja et 

                                                 
12 We also acknowledge that our research was a foreign-funded project, which may have caused some farmers to bid 

0 (or lower than they otherwise would have) in the hopes that they would receive the items for free (or at a 

discount).   
13 We estimated the price elasticity of demand for gloves and masks by using a local polynomial regression to 

smooth the demand curves and calculating the point elasticities between each price and a 1 ZMW decrease in price. 

Table A4 in the appendix shows the results. 



al. (2010) state the Kremer et al. (2009) find “evidence for very elastic demand going from zero 

price to a low positive price and inelastic demand as price increases.” Importantly, demand is 

highly elastic (greater than 5) near the market price for each item, suggesting that small discounts 

or subsidies could increase PPE demand. The demand curve shows that a 5 ZMW discount from 

market prices nearly triples demand for both items. Approximately 16% of farmers offered a WTP 

bid of 9 ZMW (the market price for masks) or greater for masks, but more than 50% of farmers 

offered had a WTP of 4 ZMW or greater. For gloves, only 4% had WTP greater than or equal to 

20 ZMW (the market price for gloves), but 12% offered a bid of at least 15 ZMW. 

b. Pesticide knowledge 

Information likely impacts PPE demand only through knowledge. Thus, an important first 

step in our analysis is to determine the impacts of the information intervention on knowledge. We 

identify these effects using ITT regressions for the two main knowledge outcomes of the training 

(Table 2). Our metric for knowledge of PPE benefits 𝑘𝑃𝑃𝐸 is defined as the sum of correct 

responses to five true/false questions about PPE health benefits and exposure, and our metric for 

relative toxicity knowledge is 𝑘𝑡𝑜𝑥 (defined in IV.B above).  

The intervention had a strong significant effect on relative toxicity knowledge. Treatment 

group farmers were 25% more likely to correctly identify both the class Ib and class U pesticide 

and the result is significant at the 1% level (column 1). Relative toxicity knowledge is low in the 

absence of training as only 13% of the control group correctly identified the toxicity of both 

pesticides, suggesting that there is a large knowledge gap for relative toxicities. This gap is larger 

for the low toxicity pesticide than for the high toxicity pesticide. Only 25% of all farmers correctly 

stated that the class U pesticide was not toxic or of low toxicity, while 88% of all farmers correctly 

stated that the class Ib pesticide was extremely or highly toxic. Further, farmers appear to have 

relatively flat health risk perceptions for pesticides as 62% of control group farmers perceived both 

the class Ib and the class U pesticide to be highly or extremely toxic.   

Information did not have a significant effect on knowledge of PPE benefits (column 2). 

The mean knowledge of PPE benefits score for the control group was 4.1 out of 5. Thus, there was 

little room for information to improve farmer knowledge of PPE benefits as measured by our 

questions. This is an unexpected result based on observations of farmer practices and conversations 

during semi-structured interviews; however, there is evidence in the literature that some pesticide 

users are knowledgeable of PPE health benefits (see for example Yuantari et al., 2015). 

c. The effects of information on WTP 

Table 2 presents the intention to treat effects of information on WTP for PPE. The overall 

effects of being assigned to the treatment group on WTP are insignificant14 with p-values greater 

than 0.5. Further, we find little evidence that information had varying effects by covariates shown 

in Table 3. The interaction effect of treatment assignment and an indicator variable for low 

knowledge of PPE benefits (bottom 30% of all farmers) is insignificant for both gloves and masks 

                                                 
14 As a robustness check to our WTP estimates, we analyze market PPE purchases made between the baseline and 

endline surveys shown in Table A5 in the appendix. PPE purchase patterns are similar for the treatment and control 

groups and ITT regressions of the effect of information on the decision to purchase PPE show insignificant effects 

for each PPE item, confirming the null effect of the intervention on WTP revealed by the BDM mechanisms. 



in all specifications. Thus, information did not have a significant effect on WTP for PPE for the 

farmers with larger gaps in prior knowledge. We also observe insignificant heterogeneous effects 

of information by education and experience. 

The only significant heterogeneous effect is in the number of class U pesticides applied. 

Information had a negative effect on glove WTP for farmers that applied more class U pesticides 

(the effect is negative with a p-value of 0.213 for masks). This is potentially evidence of a risk 

substitution effect for relative toxicity knowledge. With better knowledge of the varied health risks 

of pesticides, farmers using less toxic pesticides may have less to gain from using PPE. Conversely, 

farmers using more toxic pesticides have more to gain from using PPE, and we find weak support 

of this idea. The number of class Ib pesticides used shows a positive heterogeneous effect p-values 

of 0.142 and 0.179 for masks and gloves, respectively. We now turn our attention to a more direct 

test of the potential risk substitution effects through relative toxicity knowledge. 

Columns 3 and 4 of Table 2 show the first and second stage estimates, respectively, of the 

two-stage least squares specification in equations (2) and (3). Assignment to treatment is a strong 

instrument for relative toxicity knowledge; the F-statistic of treatment assignment is 25.39, well 

above the rule-of-thumb value that F-statistics greater than ten are strong instruments. We find no 

evidence of a risk substitution effect in farmer demand for PPE; relative toxicity knowledge 

(predicted) has an insignificant effect on WTP for both masks and gloves – estimates of 𝛼1̂ in 

equation (3). However, we fail to reject the assumption of exogeneity for both the masks and gloves 

estimations with p-values of 0.982 and 0.444, respectively15.  

Given the lack of evidence that knowledge is endogenous, we also estimate the effect of 

knowledge on WTP for gloves and masks under the assumption of exogeneity as two-stage least 

squares estimations may be less efficient that OLS in the absence of endogeneity. To better 

understand the potentially competing effects of information on PPE benefits and pesticide toxicity 

information on demand, we include three knowledge variables in the following specification; 

𝑊𝑇𝑃𝑖𝑗 = 𝛼0 + 𝛼1𝑘𝑖
𝑃𝑃𝐸 + 𝛼2𝑘𝑖

𝑡𝑜𝑥 + 𝛼3(𝑘𝑖
𝑃𝑃𝐸 ∗ 𝑘𝑖

𝑡𝑜𝑥) + ∑ 𝛿𝑙𝑋𝑙𝑖

𝑙

+ 𝐵𝑘 + 𝑢𝑖𝑗  (4) 

where 𝑘𝑃𝑃𝐸 is knowledge of PPE health benefits as defined in section IV.C.b above, 𝑘𝑡𝑜𝑥 is relative 

toxicity knowledge as defined in section IV.B above, and (𝑘𝑃𝑃𝐸 ∗ 𝑘𝑡𝑜𝑥) is their interaction16. We 

used the same covariate controls 𝑋𝑙𝑖 and block fixed effects 𝐵𝑘 as in equation (1). Table 4 presents 

the average partial effects of knowledge of PPE benefits at each level of relative toxicity 

knowledge and vice versa.  

Knowledge of PPE benefits shows an overall positive and significant relationship to WTP 

for gloves and masks in each specification. A one unit increase in the knowledge of PPE benefits 

metric corresponds to a 0.545 and 0.775 ZMW increase in WTP for masks and gloves, 

respectively. The relationship between knowledge of PPE benefits and WTP is larger for the 

                                                 
15 Specification tests for the gloves estimations have power greater than 0.8 for the estimated effect sizes. Though 

mask specification tests have small effect estimates and a resulting power of less than 0.3. 
16 We lack the three strong instruments necessary to estimate the effects of these three knowledge variables with an 

IV approach. We also do not have a strong instrument for knowledge of PPE benefits alone as the intervention had 

insignificant effects on knowledge of PPE benefits.   



farmers with better knowledge of relative toxicity, suggesting that greater knowledge of each 

component of pesticide safety is correlated to an increased WTP for masks and gloves.  

Relative toxicity knowledge has insignificant overall average partial effects on WTP, yet 

there are significant average partial effects when knowledge of PPE benefits is low (less than 4). 

The effects are larger for gloves than for masks and when knowledge of PPE benefits is lower.  

When knowledge of PPE benefits is zero, a one unit increase in relative toxicity knowledge (i.e., 

a more accurate perceived toxicity difference between class U and class Ib pesticides) corresponds 

to a 4.2 ZMW and 4.6 ZMW lower WTP for masks and gloves, respectively: a large effect relative 

to the average bids of 4.5 ZMW and 6.8 ZMW for masks and gloves, respectively. The effect 

diminishes as knowledge of PPE benefits increases and is insignificant and close to zero when the 

knowledge of PPE benefits variable equals four. These results are largely robust to trimming 

(estimates shown in Table A11 in the appendix). 

Farmers with relative toxicity knowledge scores equal to one perceive the health risks from 

low toxicity pesticides to be less than those of high toxicity pesticides, and are better able to choose 

pesticides with lower health risks. They may, therefore, have a lower expected benefit from PPE 

use and a lower WTP. However, we observe relatively high knowledge of PPE benefits and that 

result is consistent with other studies (see for example Yuantari et al., 2015). Thus, the effect of 

relative toxicity knowledge insignificant on average. Note that we control for important covariates 

including farmer education, asset ownership, tomato experience, and sex, so these results do not 

stem from possible correlations between knowledge and these covariates.  

To summarize our findings on PPE demand; information had an overall insignificant effect 

on WTP for protective gloves and masks despite some significant knowledge increases from the 

intervention. Thus, information does not appear to be a constraint to PPE demand for our sample. 

Conceptually, PPE use and pesticide toxicity may be substitutes in a farmer’s health production 

function. Thus, farmers may be substituting risk reducing inputs in their health production 

functions by offering lower WTP bids for protective gloves and masks if they can reduce their 

health risks through their choices of pesticide toxicities. We find insignificant effects of relative 

toxicity knowledge on WTP for PPE using instrumental variables estimations, though we fail to 

reject the assumption of exogenous knowledge. When we treat knowledge as exogenous, we find 

evidence that farmers with higher knowledge of relative toxicity but lower knowledge of PPE 

health benefits have a lower WTP for both masks and gloves. These results are consistent with the 

literature that shows mixed evidence of risk compensation. For example, Peltzman (1975) finds 

evidence of risk compensating driving behaviors in response to mandatory seatbelt laws, but 

Cohen and Einav (2003) find no evidence.  

The null effect of information on WTP for protective equipment together with the evidence 

consistent with a risk substitution effect through relative toxicity knowledge place greater 

importance on the effect of information on farmer pesticide choices by toxicity class. These effects 

are explored in the next section.  



V. Pesticide Demand 

A. Eliciting farmer pesticide choices 

Using revealed preference data to analyze the impacts of information on farmer demand 

for pesticides by toxicity class has multiple drawbacks. While all farmers in our study area had 

similar access to more than 10 pesticide retail outlets, farmers do not visit each outlet prior to 

purchasing pesticides and each outlet carries different brands and different products with variation 

in products carried over a single growing season. Thus, it is unlikely that farmers observe the same 

choice sets of pesticides. Further, they self-select into different choice sets based on what retail 

outlets they visit. Because a farmer’s choice set may be related to unobservable farmer 

characteristics, we used contingent demand experiments to elicit farmer pesticide choices that 

allowed us to make pesticide choice sets consistent across EAs (and therefore across treatment 

group assignment) and orthogonal to farmer characteristics. The contingent demand experiments 

also allowed us to elicit farmer pesticide choices before and after our training, whereas the timing 

of data collection activities – during the dry season – did not guarantee that we would collect 

revealed pesticide demands for each farmer at both survey rounds. In addition, the experiments 

allowed us to focus on the main variables of interest – information, pesticide toxicity, and pesticide 

prices – by controlling for heterogeneity in farmer’s production techniques and pesticide choice 

sets. 

We designed the experiments to mimic the pesticide decision processes reported by tomato 

farmers in our semi-structured interviews and pre-testing, and we implemented experiments for 

the two pests for which farmers most often use WHO class Ib pesticides: nematodes and 

bollworms. To motivate each pesticide choice, we described a production scenario with pest 

pressure on a hypothetical tomato plot and showed farmers an icon array to aid comprehension of 

the pest level,17 which mirrors reality where farmers typically observe a pest in their plots prior 

pesticide purchase. We emphasized that the stated pest pressure was the only pest observed on 

their plots to draw a farmer’s focus to a specific pest and to minimize any perceived benefits from 

broad spectrum controls – i.e., controlling other pests beyond either bollworms or nematodes. The 

production scenarios held several key variables in the farmer’s tomato production functions 

constant, including plot size and history, plant variety, season, growth stage, weed pressure, crop 

health, and previous pesticide use. Immediately after each production scenario, we showed farmers 

a pesticide choice set of several locally available pesticides18. Farmers could choose not to 

purchase any pesticide if they so desired. We deliberately chose at least one pesticide from each 

available toxicity class (classes Ib, II, and U) and one product for each of the most prevalent active 

ingredients in the market. Lastly, each covered approximately the same area when mixed and 

applied as recommended.  

An experimental design of 16 choice scenarios for each pest was created in a way that 

minimized D-error subject to the design constraints using N-gene software. We created four blocks 

for each experiment meaning farmers responded to eight choice scenarios – four for the nematode 

experiment and four for the bollworm experiment. We updated the experimental design twice 

                                                 
17 Garcia-Retamaro and Galesic (2010) show that icon arrays can improve comprehension of numerical information.  

We present a sample icon array in Figure A4 in the appendix. 
18 Appendix Table A6 shows the products and price levels that composed the various choice sets. 



during data collection; in an update, the data collected to date were used to estimate models and 

update the priors used to generate the designs to further increase design efficiency.  

B. Empirical model 

We rely on the random treatment assignment to identity the causal effects of information 

on pesticide choices using two estimation methods. First, we use our unique contingent demand 

data to estimate choice-level ITT first-difference regressions on pesticide choice toxicities. The 

experimental design – specifically, the fact that each farmer responded to the exact same scenarios 

at the baseline and endline, and therefore the prices and pest pressures are the same for each farmer 

in each choice set at both interviews – allows us to compare pesticide toxicities for individual 

choice occasions. We assign a simple toxicity score to each pesticide choice defined as equal to 

one if the farmer’s choice is a class U pesticide (least toxic), three if the farmer’s choice is a class 

II pesticide (moderately toxic), and 4 if the farmer’s choice is a class Ib pesticide (highly toxic)19. 

This allows us to estimate the following first difference regression with cluster robust standard 

errors at the enumeration area level by linear projection model (LPM) and ordered probit (OP): 

  

∆𝑇𝑜𝑥𝑖𝑗𝑐 = 𝛽0 + 𝛽1 𝑇𝑟𝑒𝑎𝑡𝑖 + 𝐵𝑗 + 𝜀𝑖𝑐 (5) 

where ∆𝑇𝑜𝑥𝑖𝑗𝑐 is the change in toxicity score from baseline to endline for farmer i in block 𝑗 choice 

occasion c and 𝑇𝑟𝑒𝑎𝑡𝑖 is an indicator variable for random assignment into treatment group. 𝐵𝑗 is a 

block 𝑗 fixed effect (fixed effects excluded from ordered probit estimation to avoid the incidental 

parameters problem). A benefit to the first-differenced specification over a difference-in-

difference specification is that any time invariant variables drop from the model including 

unobservable farmer level characteristics. LPM estimation of (5) shows how the exogenous 

assignment to receive information impacts choice toxicity changes, and OP estimation of (5) 

allows us to estimate the treatment assignment effects on probabilities of changing choices from 

one toxicity class to another.  

The second estimation strategy is to estimate conditional logit regressions based on a 

simple random utility model that compare treatment and control group choices at the baseline and 

endline. The conditional logit estimations also test the impacts of information on the price effect 

in a farmer’s choices. As outside researchers, we are unable to observe all the information farmers 

use in making their choices, so we assume that each individual’s utility from pesticide 𝐴 (denoted 

𝑈𝐴) can be split into a deterministic component 𝑉𝐴 derived from observable information and a 

stochastic component 𝜀𝐴 which is unobservable: 𝑈𝐴 = 𝑉𝐴 + 𝜀𝐴. The stochastic 𝜀𝐴 allows us to 

estimate the probabilities that each option will be selected. We assume 𝜀𝐴to be i.i.d. type 1 extreme 

value distribution (the usual assumption), and we can reduce the probabilities to a form estimated 

using a conditional logit with the following specification for pesticide 𝐴:

 

𝑉𝐴 = 𝛽1𝑝𝐴 + 𝛽2[𝑇𝑟𝑒𝑎𝑡 ∗ 𝑝𝐴] + 𝛽3𝐴𝑆𝐶𝐴 + 𝛽4[𝑇𝑟𝑒𝑎𝑡 ∗ 𝐴𝑆𝐶𝐴] + 𝜀𝐴 (6) 

                                                 
19 There were no WHO class III pesticides in either choice set so there is no 𝑇𝑜𝑥𝑖𝑐𝑡  value equal to two. As a 

robustness check we estimate the same regressions with class II coded as two, and class Ib coded as three. The 

results are not sensitive to the variable definition. 



where 𝑉𝐴 is indirect utility, and 𝑝𝐴 is the pesticide’s price. 𝐴𝑆𝐶𝐴 is an alternative-specific constant 

(ASC) for pesticide 𝐴. Packed in the ASC is the impact of product specific pesticide attributes 

other than price – e.g., brand, active ingredient, and toxicity (our focus). Because we randomly 

assigned farmers to receive toxicity information, we expect any effect on pesticide choices from 

other attributes to be balanced across treatment and control groups. We estimate (6) separately for 

each survey round (baseline, endline) and for each experiment (bollworms, nematodes). The 

estimator 𝛽̂2 will test differences across treatment assignment in the effect of price on choice 

probability across, and the estimator 𝛽̂4 will test differences across treatment assignment in choice 

probabilities by toxicity classes. 

C. Results 

a. The effect of information on pesticide choices 

Table 5 presents estimates of equation (5). The LPM estimates show negative and 

significant (at the 5% level) overall ITT effects on changes in choice toxicity. The treatment group 

was approximately 30 percentage points more likely to have decrease in choice toxicity for both 

experiments – approximately three to four times more likely to substitute a high toxicity pesticide 

for a low toxicity pesticide. Thus, information led farmers to select less toxic pesticides. The OP 

estimates show that the treatment group was between 1 and 4 percentage points more likely to 

have a negative toxicity change value and between 1 and 3 percentage points less likely to have a 

positive toxicity change value for both experiments (all results significant at the 5% level). This 

suggests a general movement away from higher toxicity pesticides towards low toxicity pesticides 

for the treatment group in both experiments20. This applies to choice changes from a class Ib to a 

class U, from a class Ib to a class II, and from a class II to a class U. Farmers that received 

information likely had a more accurate perceived ordering of pesticide toxicity health risks and 

perceived larger toxicity differences across each toxicity class. 

The conditional logit results presented in Table 6 also show a shift towards class U 

pesticides for the treatment group after the information intervention. At the baseline, there are no 

significant differences in choice probabilities between the treatment and control groups. However, 

at the endline – and after the information intervention – we see large and significant differences in 

choice probabilities. Treatment group farmers were 16 and 13 percentage points more likely to 

select the class U pesticide for the bollworm and nematode experiments, respectively (both 

significant at the 5% level). For the nematode experiment, treatment group farmers were 17 

percentage points less likely to select the class Ib pesticide (significant at the 1% level). These 

results are consistent with the choice-level toxicity difference regressions, and the full sample 

results are similar. 

Table 6 shows interesting impacts of information on the price effects. The control group 

estimates are of 𝛽̂1 in equation (6) and the treatment group estimates are of 𝛽̂2. Price has a positive 

and significant relationship to choice probability for the bollworm experiment at baseline, 

confirming our observation that many farmers perceived higher priced pesticides to be more 

effective at controlling pests. The baseline results for the bollworm experiment show a large and 

                                                 
20 The full sample estimates are similar, but show slightly larger effects with greater statistical significance across 

the table. 



significant (at 1%) positive price relationship21, while the nematode experiment shows a smaller 

and insignificant positive price relationship (although when estimated without the price-treatment 

interaction, the price coefficient is positive and significantly different than zero). 

The endline price estimates show large and significant differences between treatment and 

control groups for both samples and for each experiment. The control group has positive endline 

price coefficients of 0.013 and 0.053 for the nematode and bollworm experiments, respectively, 

but the treatment group has negative and significantly different price coefficients. The endline 

price coefficient for the treatment group in the nematode experiment is -0.029, while the same 

estimate for the bollworms experiment is -0.097 (both estimates significant at 5%). 

These results suggest that information against a price-efficacy relationship corrected the 

misperception that higher priced pesticides are more effective. Farmers in the treatment group were 

less likely to choose higher price pesticides after the information intervention, but control group 

farmers demonstrated a positive relationship between price and choice probability at both survey 

rounds. 

D. Revealed demand results 

As a robustness check for the contingent demand experiment results, we compare revealed 

pesticide demands by toxicity class across survey rounds and across group assignment. The 

comparisons across survey rounds are imperfect, but we make two data restrictions to make them 

more comparable. First, we limit our analysis to the subset of farmers that made pesticide 

purchases between the baseline and endline interviews. Second, we restrict the baseline purchase 

data to those pesticides applied on plots where tomatoes were transplanted between July and 

October to more closely match the timeframe of the endline data. This will help control for 

seasonal heterogeneity in the types of pests present on plots and the pesticide products available 

for purchase. 

Table 7 compares toxicity market shares of pesticide purchases for nematicides and 

bollworm controlling pesticides by treatment assignment and by survey round22. Consistent with 

our contingent demand experiments, we see larger increases in market shares for class U pesticides 

for the treatment group than for the control group for both pesticide types. The treatment group 

purchased 3 class U nematicides at the endline compared to 0 at the baseline, and 8 class U 

bollworm pesticides at the endline compared to just 2 at the baseline. In contrast, the control group 

farmers purchased 5 class U insecticides and 0 class U nematicides at the baseline, and 0 of each 

at the endline.  

The revealed demand market shares for class U pesticides are lower than the stated choice 

shares in each experiment, though we argue that this is likely to be evidence of heterogeneity in 

the pesticide choice sets farmers face when making their revealed choices. We do not know a 

farmer’s choice set when making revealed demand purchases, and the class U bollworm pesticide 

and the class U nematicide used in the contingent demand scenarios were each relatively new 

(available for less than one year prior to baseline) and each was available at only one agricultural 

                                                 
21 For the untrimmed sample (Table A13 in the appendix), the baseline estimate shows the price effect to be 

statistically different for the control and treatment group (shown in the price-treatment interaction term). 
22 A comparable table for contingent demand choice shares can be found in Table A8 in the appendix. 



input dealer. Thus, it is likely that many farmers did not see these class U options when making 

revealed choices. The revealed demand results highlight the importance of having class U 

pesticides available in the market choice set to see demand shifts. 

The bollworm pesticide distributions for treatment and control groups are not significantly 

different at the baseline, but are significantly different at the endline. The nematicide distributions 

differences are insignificant at the endline, but we note that only two nematicides were purchased 

by the relevant subset of treatment group farmers at the baseline.  

Interestingly, we observe a large increase in the total number of nematicides purchased at 

the endline survey for the treatment group, but not the control group. Our training likely increased 

farmer awareness of nematode risks and made farmers more familiar with products designed to 

control them. The increase in nematicide use has important benefits for tomato production and 

may increase farmer profits. Additionally, reducing the perceived health risks for class U pesticides 

may encourage farmers to increase use, which may also lead to higher tomato production and 

increased profits. 

VI. Conclusion 

A wide body of literature shows that changes in health and safety knowledge can shift 

demand and behaviors. After receiving new risk information, consumers change behaviors relating 

to automobile safety, food demand, and safe sex, while producers shift activities related to mining 

and fertilizer application. However, the literature shows small or null effects of information in 

some contexts. One area where health risk information has been given considerable attention is 

pesticide safety, particularly in developing countries where pesticide use is increasing and more 

widespread than previously believed. Previous research has documented the large health risks 

faced by farmers in developing countries through use of highly toxic pesticides and little PPE. The 

literature also shows that farmers have generally low knowledge of how to avoid pesticide health 

risks, and, thus, concludes that farmers need better information to improve their pesticide safety 

behaviors.  

This paper explores the effects of information on demand for the two main risk mitigating 

behaviors available to rural farmers: (i) using less toxic pesticides and (ii) limiting exposure to 

those pesticides with PPE. We use a block randomized control trial in a population tomato farmers 

to test these effects. To assess demand for PPE, we use two BDM mechanisms and estimate the 

intention to treat effects of information on WTP for PPE. To measure changes in pesticide choice 

toxicity from new information, we use two pesticide choice experiments with variation in pesticide 

toxicity among the alternatives available for selection and estimate choice toxicity change 

differences between the treatment and control groups from baseline (before information was 

delivered) to endline (after information was delivered). 

We find that information had an insignificant effect on knowledge of PPE health benefits, 

likely due to high prior knowledge before information was disseminated. However, information 

did significantly improve farmer knowledge of pesticide toxicity, as treatment group farmers were 

XX times more likely to correctly identify the class U pesticide as being low toxicity. We also find 

that information did not significantly change farmer demand for PPE. Thus, information is unlikely 

to be a constraint to PPE adoption. However, we find interesting heterogeneous effects of 



information based on baseline pesticide use. Farmers that used more low toxicity (class U) 

pesticides stated significantly lower WTP after receiving information, while farmers that used 

more high toxicity (class Ib) pesticides offered significantly higher WTP bids after receiving 

information. The former result could be evidence of a risk-substitution effect whereby farmers that 

learn that their health risks are lower than they previously believed compensate by demanding 

lower levels of protection. These risk-substitution effects are also found in exogenous estimates of 

the effect of knowledge on WTP for PPE. For farmers with low knowledge of PPE health benefits, 

an increase in relative toxicity knowledge led to a significant decrease in WTP for PPE. 

Unlike PPE demand, information did have large and significant effects on pesticide choice 

toxicity. After receiving information, the treatment group farmers were three to four times more 

likely to select a less toxic pesticide than the control group. These results are consistent across 

LPM first-difference regressions, conditional logit estimations, and choice share observations as 

well as observed demands for pesticides. Thus, information on relative toxicity knowledge led to 

product substitution from high risk pesticides to lower risk pesticides. Our results suggest that 

pesticide safety interventions should focus on information relating to pesticide toxicity rather than 

PPE health benefits, and they show that, when it comes to pesticide safety, what farmers do not 

know can hurt them through a lower demand for less toxic pesticides. 
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Table 1. The effects of information on knowledge of relative toxicity and PPE benefits 

Dependent Variable Relative toxicity knowledge (0,1) knowledge of PPE benefits (0-5) 

Variables (1) (2) 

Treatment assignment 0.248*** 0.068 

  (0.058)  (0.184) 

   

Control group mean knowledge 0.13 4.06 

Observations 413 413 

R-squared 0.212 0.138 

Cluster robust standard errors at the EA level in parentheses. Block fixed effects included in each regression. 

Significance levels: *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 
Table 2. Effects of information on WTP for gloves and masks 

Model Linear projection model  Two-stage least squares 

    1st stage 2nd stage 

 Mask Gloves   Mask Gloves 

Variables (1) (2)   (3) (4) (5) 

Treatment assignment 0.189 0.315  0.242***   

  (0.570)  (0.767)  (0.056)   
Relative toxicity knowledge (IV)     0.78 -1.301 

     (2.236) (3.074) 

Observations 413 413  413 413 413 

R-squared 0.135 0.094  0.227 0.138 0.082 

F-statistic    18.45   
Endogeneity test (p-value)     0.921 0.605 

Cluster robust standard errors at the EA level in parentheses. Block fixed effects included in each regression. 

Significance levels: *** p<0.01, ** p<0.05, * p<0.1.  All covariates are from the baseline data. Results are robust to 

econometric specification: Tobit and LPM estimates show similar results.  Covariate controls included in estimation, 

but excluded from the table. 

 



Table 3. Heterogeneous effects of information on WTP for gloves and masks 

Dependent 

variable 

Low baseline 

knowledge 

(<median) 

Completed primary 

school 

Tomato 

experience 

# of class Ib 

pesticides used 

# of class U 

pesticides used 

 Mask Gloves Mask Gloves Mask Gloves Mask Gloves Mask Gloves 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Treatment 

assignment 0.251 -0.189 0.478 -0.079 0.307 -1.575 -0.177 -0.881 1.560 2.498 

  (0.591) (0.859)  (0.783)  (1.117) (0.906) (1.091) (0.627) (0.989) (1.435)  (1.811) 

Covariate 0.605 0.747 1.015* 0.471 0.076 0.039 -0.062 -0.082 0.275* 0.634** 

  (0.633) (1.067)  (0.509)  (1.072) (0.074) (0.122) (0.388) (0.556) (0.155)  (0.259) 

Interaction -0.192 -0.402 -0.749 -0.609 -0.019 0.199 0.676 1.048 -0.423 -0.868** 

  (0.753) (1.291)  (0.998)  (1.447) (0.118) (0.159) (0.447) (0.760) 

 

(0.332)  (0.417) 

Observations 413 413 413 413 413 413 413 413 413 413 

R-squared 0.139 0.096 0.137 0.095 0.135 0.097 0.141 0.101 0.141 0.107 

Cluster robust standard errors at the EA level in parentheses. Block fixed effects included in each regression. Significance 

levels: *** p<0.01, ** p<0.05, * p<0.1.  Baseline covariate controls included in estimation, but excluded from the table. 

Results are robust to econometric specification: Tobit and linear probability model show similar results.  

 

 



Table 4. Average partial effects of knowledge on WTP for gloves and masks 

 Mask Gloves 

Variables (1) (2) 

Average partial effects of knowledge of PPE 

benefits 
 

 
Overall average partial effect 0.545** 0.775** 

 (0.251) (0.302) 

Relative toxicity knowledge = 0 0.268 0.502** 

 (0.212) (0.241) 

Relative toxicity knowledge = 1 1.326** 1.545** 

 (0.484) (0.686) 

 
 

 
Average partial effects of relative toxicity 

knowledge 
 

 
Overall average partial effect 0.142 -0.327 

 (0.553) (0.731) 

knowledge of PPE benefits = 0 -4.187*** -4.595* 

 (1.472) (2.455) 

knowledge of PPE benefits = 1 -3.130*** -3.553* 

 (1.099) (1.868) 

knowledge of PPE benefits = 2 2.072** -2.510* 

 (0.757) (1.313) 

knowledge of PPE benefits = 3 -1.015* -1.468* 

 (0.516) (0.855) 

knowledge of PPE benefits = 4 0.042 -0.425 

 (0.536) (0.717) 

knowledge of PPE benefits = 5 1.099 0.618 

 (0.797) (1.035) 

   
Relative toxicity knowledge mean 0.262 0.262 

knowledge of PPE benefits mean 4.094 4.094 

Bid mean 4.489 6.833 

N 413 413 

Cluster robust standard errors at the EA level in parentheses. Estimates of 

equation (4). Covariate controls included in estimation but excluded from 

table. Results are robust to econometric specification; Tobit estimations show 

similar results. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 

 



Table 5. Effects of information on choice toxicity – first difference ITT estimations 

Experiment Bollworms Nematodes 

 (1) (2) 

N=413   
OLS    

 -0.283*** -0.322*** 

 (0.096) (0.112) 

OP - Average partial effects    
Ib to U (-3) 0.018*** 0.042*** 

 (0.007) (0.015) 

II to U (-2) 0.048*** 0.020*** 

 (0.018) (0.007) 

Ib to II (-1) 0.015*** 0.011*** 

 (0.005) (0.003) 

No change (0) -0.025*** -0.010** 

 (0.009) (0.004) 

II to Ib (+1) -0.020*** -0.016*** 

 (0.007) (0.005) 

U to II (+2) -0.029** -0.016*** 

 (0.011) (0.006) 

U to Ib (+3) -0.007** -0.031*** 

 (0.003) (0.011) 

Estimates are of beta 1 in equation (5). Cluster robust SEs at the EA level in 

parentheses. Block fixed effects included in estimation. Significance levels: *** 

p<0.01, ** p<0.05, * p<0.1. 

 

 



 

Table 6: Average partial effects of information on pesticide choice probabilities and price coefficients 

  Nematodes experiment   Bollworms experiment 

  Baseline Endline   Baseline Endline 

  (1) (2)   (3) (4) 

N= 413      

 

Average partial effects of treatment assignment on choice 

probabilities 

Highly toxic: Class Ib      
Alternative 1 -0.006 -0.167***  -0.012 -0.003 

 (0.048) (0.051)  (0.018) (0.030) 

Low toxicity: Class U      
Alternative 2 0.014 0.126***  0.017 0.155** 

 (0.030) (0.044)  (0.020) (0.064) 

Moderately toxic: Class II      
Alternative 3 -0.018 0.041  0.002 -0.023 

 (0.0457 (0.041)  (0.019) (0.015) 

Alternative 4    0.015 -0.030 

    (0.032) (0.028) 

Alternative 5    0.001 -0.082* 

    (0.033) (0.042) 

Alternative 6    -0.028 -0.017 

    (0.019) (0.021) 

 Price coefficients by treatment assignment 

Control 0.007 0.013*  0.119*** 0.053* 

 (0.013) (0.008)  (0.029) (0.028) 

Treatment 0.004 -0.029**  -0.044 -0.097*** 

  (0.017) (0.011)   (0.040) (0.033) 

Cluster robust standard errors at the EA level in parentheses. "No pesticide" selections excluded from table 

but not from calculations (less than 1% of choices were on pesticides). Alternative descriptions found in 

Table A6 in the appendix. A non-model based robustness check confirms the estimated changes in choice 

probabilities by toxicity class; treatment group choice shares are insignificantly different than the control 

group at baseline, but significantly different at endline with a large increase in class U choice shares for the 

treatment group. 

 
 



Table 7. Revealed demand toxicity market shares by pest and by survey round 

Pesticide controls: Bollworms  Nematodes 

Survey Baseline Endline   Baseline Endline 

Treatment      
# of observed purchases 165 107  2 10 

Class Ib 36% 32%  50% 40% 

Class II 63% 61%  50% 30% 

Class U 1% 7%  0% 30% 

Control      
# of observed purchases 158 89  10 9 

Class Ib 29% 33%  100% 67% 

Class II 66% 67%  0% 33% 

Class U 3% 0%   0% 0% 

Pearson's Chi Square test1 2.84 7.22   3.38 

p-value 0.248 0.031     0.189 

1 No test possible for baseline nematodes. 
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APPENDICES 

 
Figure A1. Becker-DeGroot-Marschak mechanism sample script 

BDM Introduction Script 

Interviewer: Please read this script in its entirety to the respondent and ensure that they understand its meaning. 

You will now have the opportunity to purchase a pair of protective gloves and a dust mask. The price of each item 

will be determined by chance in a special game. You will not have to spend any more on any item than you truly 

want to. Let us begin by describing this procedure… 

First, I will show you an item available for sale and ask you to tell me the MAXIMUM PRICE you are willing to 

pay for the Item. After you state your MAXIMUM PRICE, you will be shown a stack of cards and you will be asked 

to draw one. Each card lists a price. The price on the card that you draw will be the price of the item. If the price that 

you stated as your maximum price is GREATER than the price on the card, then you will BUY the item AT THE 

PRICE ON THE CARD. If the price that you stated as your maximum price is LESS than the price on the card, then 

you will NOT BUY the item. You CANNOT change your bid after a card is drawn. If your MAXIMUM price is 

Less than the price on the card you will NOT be given another chance to buy the item. You must state a price that 

you are actually able to pay. 

We are about to begin a practice round, but do you have any questions? 

 

 SOAP SALE - PRACTICE GAME 

Before we play for the Gloves and the Mask, we'll play a practice game for a bar of soap. The games for the Gloves 

and Mask will follow the exact same rules. 

What is the MAXIMUM price you are willing to pay for this soap? (let respondent handle the soap) 

_______________________ 

Now, if you draw a card with a number that is less than or equal to (BID), you will buy the soap at the price you 

pick. If you pick a number greater than (BID), you will not be able to purchase the soap, even if you are willing to 

pay the greater number. You cannot change your bid after you draw a price card. Do you understand? 

If farmer does not understand, please begin script again and allow for questions to ensure they understand. 

If the farmer understands, please proceed. 

Please tell me, if you pick a card with (BID + 1 kwacha) on it, what happens? If respondent does not give correct 

answer, explain the rules again. 

Please tell me, if you pick a card with (BID - 1 kwacha) on it, what happens? If respondent does not give correct 

answer, explain the rules again. 

So, if you draw (BID + 1 kwacha) you will NOT be able to buy the soap at that price. Do you want to change your 

bid? 

If yes, What is the MAXIMUM price you are willing to pay for this soap? (let respondent handle the soap) 

_______________________ 

If you draw a card with price (BID), then you must be able to pay (BID). Are you able to pay (BID) now?  

If NOT, What is the MAXIMUM price you are willing AND ABLE to pay for this soap? (let respondent handle the 

soap) ________________ 

Could you please fetch the (BID) amount and show it to me? 

Now you will select a price card that will determine whether you buy the soap or not. Are you ready? Mix cards and 

display them face down so respondent cannot see them. 

PLEASE DRAW A CARD. 

Enumerator- please record the price on the card drawn. 

Is the price on the card LESS than the Maximum bid? 

If YES, Do you wish you had bid less and reduced your chances of buying the soap? 

If NO, Do you wish you had bid HIGHER to increase your chances of buying the soap? 

If Card Price < Bid, then complete the transaction – accept payment and give the soap. 

If not, explain the outcome and why they did not buy the soap. 

Do you have any questions about the game? 

 



Figure A2. Pesticide training summary letter (page 1) 

 
 

PESTICIDE SAFETY SUMMARY SHEET 

 
 

PESTICIDE HEALTH RISK COLOUR CODES: 

 

     RED   YELLOW   BLUE     GREEN 

 

 

 

 

Extremely Dangerous   Highly Dangerous  Moderately Dangerous   Slightly Dangerous  

 

Do you know anyone that has been sick after using pesticides? 

Getting dangerous pesticides on your skin can make you sick quickly – including dizziness, headache, 

coughing, sneezing, nausea, diarrhea, and other symptoms. 

Some pesticides have been shown to have LONG TERM health risks: 

including Cancer, uncontrollable shaking, and chronic coughing. 

YOU CAN CONTROL your pesticide illnesses 

1) BUY LOWER TOXICITY PESTICIDES       2) WEAR PROTECTIVE CLOTHING 

 

 

 

 

 

 

 

HOW TO BUY PESTICIDES: 

1) What pests does the pesticide control? Read the pesticide label first and foremost. Buy pesticides 

to control specific pests in your plots, but also consider additional pest controls. 

2) What is the toxicity level? Look at the colour label. GREEN pesticides are safer.  

What is the PRICE? Price is always important, but price alone is NEVER enough to base your 

pesticide decisions on. A higher price DOES NOT MEAN higher quality. 

NOT ALL PESTICIDES ARE VERY POISONOUS. 

 

Some pesticides are SAFE (Green label) while others are very 

DANGEROUS (Red label). 

 

Pesticide health risk information is found on the colour band at the 

bottom of pesticide packaging. 

 

 

Phoskill is Red label meaning it is EXTREMELY DANGEROUS. 

Look at the colour label before buying 

pesticides. 

 

Avoid RED label pesticides whenever possible. 

 

Go for GREEN label pesticides. 

 

Use GLOVES when mixing pesticides. 

 

Wear a MASK when spraying. 

 

Using pesticides “Carefully” is NEVER enough 

to protect yourself. 

 



Figure A2 (continued). Pesticide training summary letter (page 2) 

 

 

BOLLWORM AND NEMATODE CONTROL SUMMARY 
   

 
 

 

Here are some products that can control Bollworms and other tomato pests – remember that the 

colour labels show how harmful the pesticide is to humans. 

 

1)  “Benefit” (Bifenthrin & Imidacloprid, GREEN label) 

a. Benefit also controls White flies. 

2)  “Profenofos” (profenofos, YELLOW label) 

a. Profenofos also controls Red Spider Mite, White flies, Aphids, and Cut Worm 

3)  “Phoskill” (monocrotophos, RED label) 

a. Phoskill also controls Red Spider Mite, White flies, Aphids, Cut worm, Thrips 

4) “Bollpack” (Lambda cyhalothrin, YELLOW label) 

a. Bollpack also controls Aphids, and Thrips. 

 

 
 

 

Because nematodes attack tomato roots, many farmers do not even know they are affecting their 

tomatoes. But they can SERIOUSLY reduce tomato yields and quality and cost farmers a lot of 

money.  

 

It is best to prevent nematodes by applying a pesticide when transplanting tomatoes in your plot. 

Ashes do NOT prevent nematodes. Here are a few products that can control Nematodes - 

remember that the colour labels show how harmful the pesticide is to humans. 

1) “Bio-nematon” – (biological fungi, GREEN label) 

2)  “Orizon” – (Acetamiprid & Abamectin, YELLOW label) 

3)  “Umet” – (Phorate, RED label) 

Do you recognize this tomato pest? 

This is a BOLLWORM. 

BOLLWORMS eat tomato fruits and can 

quickly ruin a tomato plot and eat 

through your money and effort. 
 

What has damaged these tomato roots? 

This is NEMATODE damage. 

NEMATODES are small worms that live 

in the soil and attack tomato roots. They 

reduce yields and make tomatoes more 

vulnerable to diseases. 
 



Figure A3. Experimental design and information compliance 

 
Percentages are of the total sample. 

 
Figure A4. Sample icon array used in contingent demand experiments 

 

 

 



Table A1. Sample  balance tests for full and trimmed samples 

 Full Sample 
 

Trimmed Sample 

Variable Mean Std dev Diff p-value   Mean Std dev Diff p-value 

Observations N= 483  
    N=413 

   
Another hh member 

managed their own tomato 

plot 
0.362 0.481 0.007 (0.914)  0.380 0.486 0.002 (0.983) 

# of hh members age<15 2.694 1.920 -0.013 (0.960)  2.717 1.936 -0.005 (0.987) 

# of hh members age>=15 3.006 1.406 0.103 (0.532)  3.044 1.381 0.037 (0.842) 

Asset ownership 1st 

principle component 
-0.147 1.713 -0.198 (0.423)  -0.061 1.749 -0.205 (0.450) 

Formal agricultural 

training 
0.083 0.276 -0.028 (0.507)  0.085 0.279 -0.008 (0.861) 

Farmer age 39.000 12.466 0.938 (0.363)  39.109 12.418 1.667 (0.122) 

Farmer completed grade 7 0.381 0.486 -0.08 (0.178)  0.390 0.488 -0.067 (0.319) 

Farmer female 0.172 0.378 0.031 (0.530)  0.172 0.378 0.047 (0.388) 

Tomato experience (# of 
years in last 10) 

6.404 3.014 0.022 (0.945)  6.361 3.023 -0.104 (0.757) 

Farmer had business 

income 
0.516 0.500 -0.172** (0.029)  0.511 0.500 -0.109 (0.163) 

Farmer had salary/wage 

income 
0.350 0.477 -0.009 (0.870)  0.349 0.477 -0.041 (0.480) 

# of horticultural advice 
sources 

2.986 1.358 0.452* (0.063)  3.022 1.370 0.44 (0.111) 

Total tomato area planted 
(ha) 

0.277 0.211 0.01 (0.768)  0.274 0.209 0.038 (0.260) 

Active tomato plot 0.532 0.499 0.026 (0.842)  0.516 0.500 -0.071 (0.610) 

Farmer always mixes and 

applies pesticides 

themselves 
0.555 0.497 0.046 (0.506)  0.552 0.498 0.039 (0.612) 

Farmer owns a mask 1.876 0.330 0.021 (0.661)  1.867 0.340 0.029 (0.584) 

Farmer owns gloves 1.820 0.385 0.044 (0.373)  1.816 0.388 0.064 (0.197) 

# of class Ib pesticides 

applied 
0.545 0.696 -0.041 (0.727)  0.554 0.697 -0.014 (0.916) 

# of class U pesticides 

applied 
3.296 1.311 0.035 (0.826)  3.230 1.336 -0.003 (0.985) 

# of times farmer visited a 
clinic to treat pesticide 

illness 
0.420 0.944 -0.061 (0.620)  0.458 0.986 -0.04 (0.775) 

# of acute pesticide 

symptoms reported 
2.358 1.824 -0.258 (0.294)  2.339 1.821 -0.128 (0.611) 



Table A2. PPE ownership for tomato farmers in Mkushi, Zambia at the baseline 
  Share of farmers that… 

PPE item   Own the item 

Always 

use the 

item 

Full PPE (all items below)  1% 1% 

Gloves  18% 11% 

Dust mask  13% 6% 

Boots  69% 34% 

Worksuit  37% 15% 

Goggles  10% 3% 
    

Median number of items  1 0 

Mean number of items    1.5 0.7 

We define PPE “use” as farmers reporting that they “always use” an item, though the majority 

of farmers either always use or never use a PPE item; for each item, less than 7% of the sample 

reported occasional use. This suggests that farmers are not varying their PPE use decisions with 

other health risk factors like weather at application time, pesticide toxicity, and pesticide type. 

 
Table A3. Effects of information on WTP for gloves and masks - Linear probability and Tobit models 

Model Linear probability model  Tobit 

      

 Mask Gloves  Mask Gloves 

Variables (1) (2)  (1) (2) 

Treatment assignment -0.053 -0.042  0.027 -0.499 

  (0.055)  (0.052)   (0.699)  (0.931) 

      
Observations 413 413  413 413 

R-squared 0.186 0.181    
Cluster robust standard errors at the EA level in parentheses. Block fixed effects included in each 

regression. Significance levels: *** p<0.01, ** p<0.05, * p<0.1.  All covariates are from the baseline 

data. Covariate controls included in estimation, but excluded from the table. Tobit estimates shown are 

marginal effects. 

 

 
Table A4. Price elasticity of demand estimates by price (N= 413) 

 Elasticity 

Price Mask Gloves 

1 0.19 0.09 

5 1.70 0.79 

10 5.12 2.48 

15 11.33 4.65 

20   5.30 

 

 



Table A5. Endline PPE purchases by treatment assignment 

  All   Treatment   Control 

PPE item   

# of 

farmers 

that 

purchased 

Share of 

farmers 

that 

purchased   

# of 

farmers 

that 

purchased 

Share of 

farmers 

that 

purchased   

# of 

farmers 

that 

purchased 

Share of 

farmers 

that 

purchased 

Gloves  18 0.04  8 0.03  10 0.04 

Mask  14 0.03  6 0.03  8 0.03 

Boots  78 0.16  35 0.15  43 0.18 

Goggles  10 0.02  3 0.01  7 0.03 

Coveralls  16 0.03  6 0.03  10 0.04 

Any PPE item  98 0.21  47 0.20  51 0.21 
          

Mean # of PPE 

items purchased      0.29     0.25     0.32 

Lead-farmers excluded because they were given PPE items as demonstration tools for their trainings. Farmers 

that reported paying a zero price for the items are also excluded. 

 

Table A6. Pesticide products and prices used in contingent demand experiment choice sets 

 Nematode experiment  Bollworm experiment 

Option numbers by 

toxicity class1 

Pesticide 

Trade 

Name 

Active 

Ingredients 

Initial Price 

Levels2 

Expanded 

Price 

Levels2 

  

Pesticide 

Trade 

Name 

Active Ingredients 
Initial Price 

Levels2 

Expanded Price 

Levels2 

Highly toxic: Class Ib 
         

Alternative 1 Umet Phorate 70, 75, 80 60, 75, 90  Phoskill Monocrotophos 10, 12, 14 7, 12, 17 

Low toxicity: Class U 
         

Alternative 2 
Bio-

Nematon 
Bacteria 76, 84, 91 

66, 84, 

101 
  Benefit 

Bifenthrin & 

imidacloprid 
10, 12, 14 7, 12, 17 

Moderately toxic: 

Class II          

Alternative 3 Orizon 
Acetamiprid 

& Abamectin 
84, 93, 102 

74, 93, 

112 
 Profenofos Profenofos 

Phoskill Price 

+ (0, 1, 2) 

Phoskill Price 

+ (0, 2, 5) 

Alternative 4 
     

Bollpack 
Lambda-

cyhalothrin 
8, 10, 13 6, 10, 15 

Alternative 5 

     

Blast 

Lambda-

cyhalothrin & 

imidacloprid 

Bollpack 

price + (4. 5, 

6) 

Bollpack price 

+ (2. 5, 8) 

Alternative 6 
     

AlphaGold Alphacypermethrin 9, 11, 13 6, 11, 16 

1 Option numbers used to identify products in Table 6. 2 Prices are in Zambian kwacha (ZMW). 

 



Table A7.  First-difference effects of treatment assignment on choice toxicity OLS and OP 

estimates for both experiments - Revised toxicity change codes 

 Untrimmed Sample   Trimmed Sample  

Experiment Nematodes Bollworms   Nematodes Bollworms 

OLS       
 -0.258** -0.148*  -0.197* -0.127 

 (0.105) (0.082)  (0.114) (.082) 

OP - Marginal effects      
Ib to U (-2) 0.055** 0.017  0.041* 0.015 

 (0.024) (0.011)  (0.025) (0.011) 

II to U or Ib to II (-1) 0.036*** 0.054*  0.029* 0.048 

 (0.013) (0.030)  (0.016) (0.032) 

No change (0) -0.013* -0.021  -0.010 -0.020 

 (0.008) (0.015)  (0.008) (0.015) 

U to II or II to Ib (+1) -0.039** -0.044*  -0.031* -0.038 

 (0.016) (0.023)  (0.018) (0.023) 

U to Ib (+2) -0.038*** -0.007*  -0.029* -0.005 

  (0.014) (0.004)   (0.016) (0.003) 

Cluster robust SEs at the EA level in parentheses. Choice toxicity coded as 1= class U, 2 = class II, 

3 = class Ib, and differences are baseline toxicity code minus endline toxicity code. Significance 

levels: *** p<0.01, ** p<0.05, * p<0.1. 

 

 

Table A8. Stated choice toxicity market shares by treatment and control group assignment 

Experiment Bollworms  Nematodes 

Survey Baseline Endline   Baseline Endline 

Treatment  
 

   

Class Ib 16% 12%  39% 30% 

Class II 70% 55%  33% 28% 

Class U 13% 33%  27% 42% 

Control      

Class Ib 18% 12%  41% 39% 

Class II 71% 71%  33% 31% 

Class U 12% 18%   26% 30% 

Chi Square1 1.34 63.15  0.27 31.88 

p-value 0.511 p<0.001  0.872 p<0.001 

Observations N= 425         
1  Pearson's chi-square tests are for treatment vs. control group distributions. Fewer than ten choices 

(less than 1%) for each experiment were "no pesticide" so they are excluded from the table. 

 

 



APPENDIX SECTION 2: UNTRIMMED SAMPLE COMPARISON TABLES 

 
Table A9. Effects of information on WTP for gloves and masks - untrimmed sample. Comparison: Table 2 

Model 

Linear projection 

model  Two-stage least squares 

    1st stage 2nd stage 

 Mask Gloves   Mask Gloves 

Variables (1) (2)  (3) (4) (5) 

Treatment assignment 0.290 -0.798  0.258***   

  (0.526)  (0.743)  (0.050)   
Relative toxicity knowledge (IV)     1.123 -3.09 

     (1.951) (2.853) 

Observations 505 505  505 505 505 

R-squared 0.155 0.102  0.227 0.162 0.047 

F-statistic    26.45   
Endogeneity test (p-value)     0.927 0.177 

Cluster robust standard errors at the EA level in parentheses. Block fixed effects included in each regression. 

Significance levels: *** p<0.01, ** p<0.05, * p<0.1.  All covariates are from the baseline data.  Covariate 

controls included in estimation, but excluded from the table. 

 
Table A10. Heterogeneous effects of information on WTP for gloves and masks - untrimmed sample. Comparison: Table 3. 

Dependent 

variable 

Low baseline 

knowledge 

(<median) 

Completed primary 

school Tomato experience 

# of class Ib 

pesticides used 

# of class U pesticides 

used 

 Mask Gloves Mask Gloves Mask Gloves Mask Gloves Mask Gloves 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Treatment 

assignment 0.247 -0.897 0.549 -0.283 0.208 -1.841 -0.019 -0.884 1.248 2.071 

 (0.625)  (0.920)  (0.741) (1.005) (0.854)  (1.185) (0.537)  (0.854)  (1.268)  (1.728) 

Covariate 0.807 0.666 1.680*** 1.956* 0.041 0.047 -0.076 0.526 0.124 0.469 

 (0.559)  (1.111)  (0.502) (1.026)  (0.070)  (0.157) (0.276)  (0.439)  (0.158)  (0.280) 

Interaction 0.129 0.304 -0.657 -1.309 0.013 0.164 0.571* 0.212 -0.290 -0.869** 

 (0.886)  (1.346)  (1.057) (1.424)  (0.112)  (0.173) (0.333)  (0.623)  (0.289)  (0.397) 

Observations 505 505 505 505 505 505 505 505 505 505 

R-squared 0.163 0.105 0.157 0.104 0.155 0.103 0.158 0.107 0.157 0.109 

Cluster robust standard errors at the EA level in parentheses. Block fixed effects included in each regression. Significance levels: *** 

p<0.01, ** p<0.05, * p<0.1.  Baseline covariate controls included in estimation, but excluded from the table. Results are robust to 

econometric specification: Tobit and linear probability model show similar results.  

 

 



Table A11. Average partial effects of knowledge on WTP for gloves and masks - 

untrimmed sample. Comparison: Table 4 

 Mask Gloves 

Variables (1) (2) 

Average partial effects of PPE knowledge  
 

Overall average partial effect 0.542** 0.838** 

 (0.240) (0.303) 

Relative toxicity knowledge = 0 0.302 0.705*** 

 (0.197) (0.258) 

Relative toxicity knowledge = 1 1.281** 1.248 

 (0.559) (0.754) 

 
 

 
Average partial effects of relative toxicity knowledge  

Overall average partial effect 0.575 0.137 

 (0.546) (0.774) 

PPE knowledge = 0 -3.455* -2.097 

 (2.041) (3.024) 

PPE knowledge = 1 -2.476 -1.555 

 (1.553) (2.328) 

PPE knowledge = 2 -1.497 -1.012 

 (1.087) (1.659) 

PPE knowledge = 3 -0.518 -0.469 

 (0.688) (1.070) 

PPE knowledge = 4 0.046 0.073 

 (0.535) (0.771) 

PPE knowledge = 5 1.440* 0.616 

 (0.787) (1.050) 

   
Relative toxicity knowledge mean 0.246 0.246 

PPE knowledge mean 4.117 4.117 

Bid mean 4.783 7.305 

N 505 505 

Cluster robust standard errors at the EA level in parentheses. Estimates of 

equation 4. Covariate controls included in estimation but excluded from table. 

Results are robust to econometric specification; Tobit estimations show similar 

results. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 

 

 



Table A12. Effects of information on choice toxicity - untrimmed sample. Comparison: Table 5 

Experiment Bollworms Nematodes 

 (1) (2) 

N=505   
OLS    

 -0.324*** -0.407*** 

 (.091) (0.100) 

OP - Average partial effects    
Ib to U (-3) 0.021*** 0.057*** 

 (0.006) (0.014) 

II to U (-2) 0.054*** 0.024*** 

 (0.017) (0.006) 

Ib to II (-1) 0.017*** 0.013*** 

 (0.004) (0.003) 

No change (0) -0.026*** -0.014*** 

 (0.008) (0.004) 

II to Ib (+1) -0.023*** -0.021*** 

 (0.007) (0.005) 

U to II (+2) -0.033*** -0.020*** 

 (0.011) (0.005) 

U to Ib (+3) -0.009*** -0.039*** 

 (0.003) (0.010) 

Estimates are of beta 1 in equation (5). Cluster robust SEs at the EA level in parentheses. Block 

fixed effects included in estimation. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 

 

 



Table A13 Average partial effects of information on pesticide choice probabilities and price coefficients 

- untrimmed sample. Comparison: Table 6 

 Nematodes experiment  Bollworms experiment 

 Baseline Endline  Baseline Endline 

 (1) (2)  (3) (4) 

N= 413      

 Average partial effects of treatment assignment on choice probabilities 

Highly toxic: Class Ib      

Alternative 1 0.022 -0.164***  -0.010 -0.010 

 (0.044) (0.046)  (0.017) (0.027) 

Low toxicity: Class U      
Alternative 2 0.011 0.148***  0.028 0.179*** 

 (0.028) (0.040)  (0.023) (0.059) 

Moderately toxic: Class II      

Alternative 3 -0.041 0.016  0.004 -0.026 

 (0.043) (0.038)  (0.016) (0.016) 

Alternative 4    0.005 -0.046* 

    (0.026) (0.026) 

Alternative 5    -0.008 -0.075* 

    (0.030) (0.039) 

Alternative 6    -0.022 -0.021 

    (0.016) (0.019) 

 Price coefficients by treatment assignment 

Control 0.012 0.013*  0.130*** 0.052** 

 (0.012) (0.007)  (0.025) (0.026) 

Treatment -0.003 -0.028***  -0.086** -0.090*** 

 (0.015) (0.011)  (0.038) (0.032) 

Cluster robust standard errors at the EA level in parentheses. "No pesticide" selections excluded from 

table but not from calculations (less than 1% of choices were on pesticides). Alternative numbers match 

products in Table A6. A non-model based robustness check confirms the estimated changes in choice 

probabilities by toxicity class; treatment group choice shares are insignificantly different than the control 

group at baseline, but significantly different at endline with a large increase in class U choice shares for 

the treatment group. 

 

 

 

 


