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ABSTRACT 

This study builds and demonstrates a methodology to evaluate the impacts of climate change on the FCIP 

for a representative grain sorghum farm in Sherman County, Texas. The results indicate that the approved 

APH yields and federal yield protection (YP) insurance premiums would decrease as the grain sorghum 

yields trend to decrease as climate change continues. Federal crop insurance loss ratios are statistically 

different in year 2020, 2030, and 2040 for each climate change scenario. Therefore, which climate change 

scenario is assumed for analyses of the impacts of climate change on the FCIC would result in statistically 

different conclusions. The study also shows that the efficiency of the current APH formula will not be 

negated by climate change since no extreme yield change occurs during 2020 – 2040 based on the climate 

change forecasts.  

 

Key words: crop insurance, premium subsidies, demand  

JEL classification: G22, Q54, Q18 
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INTRODUCTION 

Farming is risky due to the impacts of climate conditions, especially in rain-fed agricultural regions. The 

Risk Management Agency (RMA) designs and regulates the Federal Crop Insurance Program (FCIP) to 

help farmers manage risks. The FCIP has experienced rapid development since the 1980 Federal Crop 

Insurance Act. In 2015, approximately 300 million acres were insured in the FCIP and the corresponding 

liabilities were more than $102 billion. Studies show that climate change is inevitable and climate variability 

increases with global warming (Thornton et al. 2014). As a result, farming would be riskier and historical 

yield patterns would be less reliable for the estimation of future production. However, the impacts of climate 

change on the FCIP received very little attention in the literature.  

 Figure 1 displays the national crop insurance loss ratios for all crops, all plans and all coverages. 

Relatively large lose ratios (indemnity/gross premium) occurred in 1988 at 2.45, 1993 at 2.19, 2002 at 1.39 

and 2012 at 1.58 and these losses were mainly due to weather extremes. Figure 2 shows corn and soybean 

production in the U.S. during 1985-2015. The drought in 1988 was nationwide and costed $15.6 billion in 

losses of agriculture (Riebsame et al. 1991). In 1988, corn and soybean production were reduced by 45% 

and 26%, respectively, compared to the 1985-87 average (Wu and Wilhite 2004).  In 1993, spring-seeded 

crops in the Midwest were destroyed by floods (Cassidy and Althaus 1994). According to Cassidy and 

Althaus (1994), more than 6 million acres of corn and soybean production were significantly affected by 

the 1993 floods. In 2002, western and eastern agricultural regions had severe droughts. The gross loss ratios 

of corn crop insurance were greater than three in Colorado (3.72), Kansas (3.46) and Ohio (3.85), and the 

loss ratios were greater than four in Pennsylvania (4.08) as well as Delaware (4.28). The high loss ratio in 

2012 was also related to droughts and the damage mainly occurred in the Corn Belt. Figure 3 shows crop 

insurance loss ratios by county. The FCIP experienced high losses mainly in the Corn Belt, and the severe 

damage did not occur in the western and eastern counties in year 2012.  
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Figure 1. National Crop Insurance Loss Ratios 

Source: USDA, RMA, Summary of Business Reports 

 

 

 
Figure 2. Corn Production in the U.S. 

Source: USDA, NASS 
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Figure 3. 2012 Crop Insurance Loss Ratios by County 

Source: Schnitkey 2015 

 

 Moreover, these historical loss ratios were constructed based on gross premium, which are the ratios 

of crop insurance indemnities to gross premium. When examining the net loss ratios, which are the rates of 

crop insurance indemnities to net premium (gross premium - government subsidies), the losses of crop 

insurance were even higher when extreme weather happened. For example, the national net loss ratios were 

3.25, 2.98, 3.46, and 4.22 in 1988, 1993, 2002, and 2012, respectively. In 2002, the net loss ratios were 

6.77, 6.28, 6.73, 8.91 and 9.45 in Colorado, Kansas, Ohio, Pennsylvania and Delaware, respectively. 

Therefore, the losses of crop insurance were extremely high when natural disasters occurred. 

 When weather extremes happened, crop insurance indemnities also increased significantly because 

of the increased participation in the FCIP. Figure 4 presents crop insurance indemnity costs and liabilities 

for all crops, all regions and all contracts. In 1988, only 25% of eligible acreage participated in the FCIP 

(Glauber 2007). Although the natural disaster in 1988 had bigger range and more intensive than the weather 
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extremes in the other three years (1993, 2002, and 2012), the indemnity payments of crop insurance in 1993 

were the lowest. In 1988, the total crop insurance indemnity payment was approximately $1.07 billion, and 

the indemnity payment was more than $17.45 billion in 2012. The FCIP would have significantly large 

losses in the future if weather extremes occur considering the high participation in the crop insurance 

program.  

 

 

 
 

Figure 4. National Crop Insurance Indemnities and Liabilities 

Source: Glauber 2002; USDA, RMA, Summary of Business 

 

The purpose of this study is to test the ability of the APEX model to be used for climate change 

analysis in a crop insurance setting. The Agricultural Policy Environmental eXtender (APEX) model is 

built on the Environmental Policy Integrated Climate (EPIC) model (Williams et al. 20005) and it is 

developed and maintained by the Blackland Research and Extension Center in Temple, Texas. The APEX 

model can be used to estimate the effects of temperature, precipitation, farm management, and fertilizer and 

pesticide use on crop yields for areas with homogeneous soils and management (Gassman et al. 2010). It 

has been widely tested and recognized as a reliable tool for crop yield simulation (Roloff et al. 1998; Bryant 

et al., 1992; Edwards et al., 1994; Wang et al. 2012). This analysis will be a proof of the concept for a 

methodology to analyze the impacts of climate change on the loss ratio of crop insurance for a representative 
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farm. A more comprehensive analysis using the method can be undertaken for multiple crops and regions 

once the methodology has been tested and validated. 

 This study is constructed as the followings. In the first part, the crop and soil productivity simulation 

model (APEX) is parameterized and calibrated to estimate grain sorghum yields for a representative farm. 

A grain sorghum farm in Sherman, Texas is selected as a representative farm. The weather information 

projected by different weather models are used in the crop growth model to simulate the yield of grain 

sorghum for 25 years in the second part. In the third part, the simulated crop yields are applied in the crop 

insurance ratemaking procedures to estimate crop insurance premiums for alternative weather models.  
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PARAMETERIZATION AND CALIBRATION OF THE APEX MODEL 

As the IPCC emphasized that the impacts of climate change on agriculture should be focused on regional 

models (Tan and Shibasaki 2003), a representative farm is selected to use local features to estimate the 

effects of climate change on the loss ratios of crop insurance in this study. A non-irrigated grain sorghum 

farm in Sherman County, Texas is randomly selected from the Agricultural Food and Policy Center (AFPC) 

database. The farm’s ten years of annual yields, planted acreage, and RMA’s T yield are available in the 

dataset. Table 1 lists the summary statistics of annual yields of non-irrigated grain sorghum for the selected 

farm.  

Table 1. Summary Statistics of Non-Irrigated Grain Sorghum Yields 

 Farm 

Sherman 

County Texas 

Mean 43.222 37.513 48.778 

StDev 16.890 10.277 8.827 

Min 13.000 19.000 34.000 

Median 42.000 37.150 49.000 

Max 77.000 56.800 60.700 

CV 39.078 27.395 18.097 

 

Source: USDA, NASS and private data. 

 

 

Among the three yield series, the coefficient of variation for non-irrigated grain sorghum is the largest at 

the farm level (39.078), which implies that the yield of grain sorghum is more variable at the farm level. 

During the ten years of available data, the farm’s grain sorghum yield reached its maximum in 1997 and 

reached its minimum in 2006 at each level. The yield trend at the farm level is roughly consistent with the 

yield trend at the county level, but with larger variance.  

 In this study, two interfaces (ArcAPEX and APEXeditor) of the APEX model were used. ArcAPEX 

is a user interface which combines the Geographic Information System (GIS) and the APEX model (Tan 



 

8 

 

and Shibasaki 2003). It is built as an extension to the ArcGIS software. In the APEX model, each research 

area should be relatively homogeneous regarding soils, land use, topography, weather and management. 

The homogeneous area is called a subarea or a Hydrologic Response Unit (HRU) in the APEX model. Each 

subarea is related to a channel for routing (Shukla 2011). Generally, the delineation of subarea is difficult 

due to the complexity unless the boundaries of subareas are well known by researchers. In this study, the 

boundaries of the representative farm are unavailable due to limitations in the data source. Therefore, 

following Tuppad et al. (2009), the GIS platform (ArcMap) as well as the routing component in the APEX 

model are used to analyze and parameterize geometric and topographic characteristics, channel dimensions 

and slope distributions in order to delineate subareas. In addition to delineation, the integration of ArcGIS 

with the APEX model simulates crop yields and exports input data as well as parameters for future 

modeling.  

 APEXeditor (version APEX0806) is another interface of the APEX model. A series of Visual Basic 

for Applications (VBA) macros are built in a Microsoft Excel file. The APEXeditor interface can be used 

to read and revise input datasets as well as parameters and run the APEX model. It is a convenient tool to 

manipulate input datasets required by the APEX model. The datasets extracted from the ArcAPEX interface 

are revised in the APEXeditor interface to better fit local characteristics. A flowchart of the GIS- and Excel- 

based APEX interfaces is shown in figure 5.  
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Figure 5. The Flowchart of ArcAPEX and APEXeditor 

 

Table 2 lists the sources of data which were used in the APEX model parameterization. Delineating of 

subareas is the first step in developing an APEX model. In this study, the boundaries of subareas are 

delineated based on a Digital Elevation Model (DEM). A 30-meter DEM for Sherman County, Texas is 

downloaded from the U.S. Geological Survey (USGS) Earthexplorer site. A projection of the DEM is 

generated by using tools in ArcMap (figure 6). A single-flow direction algorithm available in ArcMap is 

used to generate required flow information for subarea delineation (figure 8).  
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Table 2. Input Used in the APEX Model Set Up to Define Parameters for the Study Subarea 

Input Resolution Source Location/time period 

Digital 

Elevation Model 

(DEM) 

30m U.S. Geological Survey 

EarthExplorer 

Sherman County, 

Texas 

Soils 1000m Harmonized World Soil Database 

(HWSD) 

Sherman County, 

Texas 

Temperature Daily 

Climate Forecast System 

Reanalysis (CFSR) 
1/1/1979 - 7/31/2014 

Precipitation Daily 

Solar radiation, 

relative 

humidity and 

wind  

Daily 

 

  

Figure 6. A DEM-based Projection of Sherman, Texas 

Source: USGS. Available at: http://earthexplorer.usgs.gov/ 

 

An outlet is manually added on a randomly selected channel, and then a subarea associated with the outlet 

is automatically delineated by ArcAPEX. The subarea delineated in ArcAPEX is 147.8 acres, which 

matches with the size of a field unit on the representative farm (148.9 acres). The latitude and longitude are 

36.376 and -101.988 at the centroid of the subarea. Because the trend of non-irrigated grain sorghum yields 
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in Sherman County, Texas is basically consistent with the corresponding trend in the representative farm, 

the delineated subarea is used to represent the farm in this study.  

 Soil information for Sherman County, Texas is extracted from the Harmonized World Soil Database 

(HWSD). Instead of using the HSWD Viewer to manually query the dataset, the HWSD is accessed and 

queried in the open-source R project (Rossiter, 2014). The latitude of Sherman County, Texas ranges from 

36.055 to 36.501, and the longitude ranges from -101.623 to -102.163. A corresponding rectangular 

bounding box is created in R regarding the range of latitude and longitude of Sherman County, Texas. Based 

on the HWSD dataset, Kastanozems and Calcisols are the two soil types in this region (figure 7) and they 

account for 98.90% and 1.10% of the land, respectively. Because the latitude and longitude of the centroid 

of the subarea are 36.376 and -101.988, the corresponding soil type in the subarea is Kastanozems. There 

are three soil layers in the subarea, and all the three layers are loam. Detailed soil information is listed in 

Appendix I.  

 
Figure 7. Soil Classes in Sherman County, Texas 

Source: HWSD 

  

 The soil parameters collected from the HWSD dataset are not enough for running the APEX model. 

The soil albedo value is set at 0.17 at the beginning to test the model because the soil albedo ranges from 

0.1 to 0.23 for clay loam (Orsini et al. 2000) and clay loam is the dominant soil in Sherman County, 
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according to the Soil Survey of Sherman County, Texas (1975). Soil hydrologic group could be set at 2 or 

3 because loam soil belongs to group 2 and clay loam is in group 3. Another soil parameters, such as soil 

water tension, conductivity and water holding capability, are calculated in the Soil Water Characteristics 

Program (SWCP) based on the soil texture, organic matter, gravel content, salinity and compaction 

extracted from the HWSD. The units in the SWCP are changed to metric unit to match with units in the 

APEX model.  

 

The APEX model requires daily solar radiation (J/m2), maximum temperature (°C), minimum temperature 

(°C), precipitation (mm), relative humidity and wind speed (m/s). In this study, weather data are requested 

from the National Centers for Environmental Information (NOAA) (requests can be submitted at 

http://www.ncdc.noaa.gov/cdo-web/) and the database of Global Weather Data for SWAT (GWDS) 

(request can be submitted at http://globalweather.tamu.edu). The NOAA weather data for Sherman County, 

Texas starts from July 1, 1911 and ends at May 2, 2016. Solar radiation, relative humidity and wind speed 

are missed in the NOAA dataset. 

  Weather data collected from the GWDS covers the time period from January 1, 1979 to July 31, 

2014. Although the time period in the GWDS datasets is shorter compared with the NOAA dataset, the 

GWDS data have all the weather variables required by the APEX model (solar radiation, maximum 

temperature, minimum temperature, precipitation, relative humidity and wind speed). Therefore, weather 

data requested from the Global Weather Database are used in this study.  

 In the Global Weather Database, two weather datasets are available for Sherman County, Texas. 

The two datasets are collected from two weather stations. Both of the weather datasets cover the time period 

from January 1, 1979 to July 31, 2014. The latitude and longitude for the two weather stations are 36.062, 

-101.875 and 36.375, -101.875, respectively. The locations of the two weather stations were projected on 
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an ArcGIS map, and station 2 is significant closer to the subarea in this study, compared with station 1. 

Therefore, weather data collected by weather station 2 is applied in the APEX model.  

 The setup of the APEX model is sensitive to format. The format of weather data is converted by 

using a component in the APEX Weather Generator (APEX WXGM). All input datasets associated with 

maximum temperature, minimum temperature, participation, wind, relative humidity and solar radiation are 

updated by the weather data collected from GWDS in APEXeditor interface.  

 Not only the input datasets and parameters, but all related files should be adjusted when changes 

have been made in the inputs. The APEX model is run for 17 years to represent the years in the farm dataset. 

Summary statistics of estimated yields and historical yields for non-irrigated grain sorghum are presented 

in table 55. The estimated yields are converted to bushel per acre to match with the units in the original 

yield dataset.  

 

Figure 8. Historical Farm Yields and Simulated Yields 
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CALIBRATION 

The representative farm’s historical yields data are used to calibrate the APEX model. The APEX model is 

calibrated by adjusting the parameters that are found sensitive in experts’ opinions and literature (Gassman 

et al. 2009). Table 3 shows the selected parameters for the calibration process.  

 

Table 3. Selected Parameters for APEX Yield Calibration 

Parameter Symbol Unit 

Model 

Default 

Set 

Value 

Recommended 

Range 
Reference 

Harvest Index HI - 0.5 0.45 - 0.60 
Akarsh, Patel, and Kumar 

(2013) 

Maximum Potential 

Leaf Area Index 
DMLA - 5.5 5.0 - 6.0 Doraiswamy et al. (2003) 

Potential Heat Units PHU °C 2200 1200 - 2400 

Kiniry, Benson , and 

Williams (1991); Akarsh, 

Patel, and Kumar (2013) 

Water Stress  PARM(3) Percentage 0.5 0 - 1 
Steglich an and Williams 

(2013) 

Initial Organic Nitrogen 

Concentration 
WN 

g N/Mg or 

ppm) 
N/A 100-5000 

Steglich an and Williams 

(2013) 

Initial organic P 

Concentration 
WPO g/t N/A 50 - 1000 

Steglich an and Williams 

(2013) 

Fertilizer - kg/ha - - Experts' Opinions 

Plant Population OPV5 plants/m2 8 - Experts' Opinions 

Beginning Year of 

Simulation 
IYR - - - Experts' Opinions 

Planting Date - - - - Experts' Opinions 

Harvest Date - - - - Experts' Opinions 

Potential 

Evapotranspiration 
IET - 0 0 - 5 Wang et al. (2012) 

 

The major difficulty for the calibration lays on the data limitations. Important information, such as operation 

schedules, the leaf area index, root depth and weight, and crop height, is missed in the database. Fortunately, 

experts at the Blackland Research and Extension Center (BREC) give great assistance in this section.  

 Irrationally high water stress is initially observed in the simulation outputs. For example, in year 

2001, grain sorghum has water stress for 58 days during the 128 growing days. Although the low yields 

caused by water stress can be offset by adjusting other parameters, such as applying more fertilizer, the 
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APEX model simulations did not initially reflect the observed yields well. Therefore, weather information 

collected from weather station 1 is also tested in the APEX model in case the weather data provided by 

weather station 2 is biased. However, changing weather information and adjusting sensitive parameters did 

not improve the accuracy of the APEX model.  

 After careful experimentations and literature review, the poor fit problem is attributed to the weather 

data collected from the GWDS. The weather information in the GWDS is collected from the CFRS. The 

precipitation data in the CFRS is satellite-based estimates, not gauged rainfall data. Worqlul et al. (2014) 

discuss the error in daily precipitation data between the point-gauged data and the satellite-predicted 

precipitation data. Considering the irrationally high water stress in the APEX simulation outputs, the 

weather information is substituted by the gauged precipitation information provided by the BREC. The 

weather data provided by the BREC contains weather information in 1960 – 2010. Thus, the APEX model 

is adjusted to simulate grain sorghum yields through 2010. 

Different sources of weather data are used in the APEX model, but none of them could predict the 

extremely low yield in year 2006 for the representative farm. Without detailed information to be 

incorporated in the APEX model (e.g., insect disasters, different operation schedules), the APEX model 

cannot capture the extremely low yields by only relying on the weather change in year 2006. Besides, the 

representative farm’s yield in year 2006 (13 bushels/acre) is 46% lower than the 2006 average yields in the 

Sherman County (19 bushels/acre), and 207% lower than the average 2006 grain sorghum yields in Texas 

(40 bushels/acre). Therefore, the observed yield in year 2006 is excluded and observed grain sorghum yields 

in 1999 – 2005 are selected to calibrate the APEX model.  

The performance of the APEX model is evaluated by statistical comparisons and tests. The 

difference between the cumulative distribution functions (CDF) of the observed yields and simulated yields 

is measured by using the CDFDEV( ) function in Simetar©. The sum of the squared difference between two 



 

16 

 

CDFs and a penalty for differences in the tails is calculated by the function (Richardson, Schumann, and 

Feldman 2006): 

 𝐶𝐷𝐹𝐷𝐸𝑉 =  ∑ (𝐹(𝑥𝑖
𝑁
𝑖=1 )−𝐺(𝑥𝑖))2 + 𝑤𝑖 

Where 𝐹(𝑥𝑖) is the CDF of the observed yields and the 𝐺(𝑥𝑖) is the CDF of the simulated yields by the 

APEX model, and 𝑤𝑖 represents the penalty function. The best calibrated model is selected based on the 

smallest results of the CDFEDV( ) function. Because the unit of simulated yields from the APEX model 

is ton/hectare, the observed yields (bushel/acre) are converted to tons/hectare, and all the calculations are 

based on yields as ton/hectare for convenience. Figure 40 shows the observed grain sorghum yields and 

the simulated yields by the calibrated APEX model. The CDF difference between the observed yields and 

simulated yields is 0.41, and it is 0.35 between the representative farm’s yields and the average yields of 

Sherman County, Texas in 1999 – 2005. The CDF difference is 0.24 between the observed yields and the 

simulated yields by the selected calibrated model, while the difference is 0.82 between the farms’ 

observed yields and the average yields of Sherman County, Texas in 1997 – 2005. Therefore, considering 

the limited data availability, the calibrated model is considered to a good fit of the observed yields. 

  

Figure 9. Comparisons of Grain Sorghum Yields  

 The Student’s t-test and F-test are used to test the simulated grain sorghum yields generated by the 

calibrated APEX model. The Student’s t-test fails to reject the null hypothesis that the means of the observed 
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yields and the simulated yields are equal at the 95% confidence level. The F-test fails to reject the null 

hypothesis that the variances in the observed yields and the simulated yields are equal at the 95% confidence 

level. Therefore, there is no statistical difference between the means and variances in the observed yields 

and simulated yields. Overall, the calibrated model is considered as a good fit.  

YIELD SIMULATION UNDER DIFFERENT WEATHER SCENARIOS 

The Coupled Model Intercomparison Project (CMIP) provides a standard protocol for climate change 

groups from around the world to collaborate for the next several years (Taylor, Stouffer, and Meehl 2012). 

It is developed by the World Climate Research Programme (WCRP), and is followed by more than 20 

modeling groups (Brekke et al. 2013). A set of climate projections is generated by climate modeling groups 

under the CMIP, and climate models proposed by CMIP5 are used in this chapter. 

 Previous studies found that multi-model ensembles are better than a single-model forecast, 

especially for regional studies (e.g., Palmer et al. 2005). For example, Knutti and Tebaldi (2007) discuss 

the sources of model uncertainty and the benefits of using multi-model ensembles for regional studies. 

Asseng et al. (2013) found that multi-model ensembles are preferred for crop yields simulation under 

climate change because a single model cannot adequately describe the uncertainty in climate change. 

Therefore, rather than using a single model, multi-model ensembles are used in the study to generate climate 

projections.  

 The CMIP5 proposed four Representative Concentration Pathways (RCPs) which characterize 

“radiative forcing of the atmosphere by 2100 relative to preindustrial levels, expressed in units of W m-2: 

RCP2.6, 4.5, 6.0, and 8.5” (IPCC 2014). The four RCP scenarios are independently designed by climate 

modeling groups based on variables that are relevant to climate change, such as greenhouse gas emissions 

and concentrations, social-economic characteristics, technological development, and land-cover change 

projections (Vuuren et al. 2011).  
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The downscaled climate projections are available on the “Downscaled CMIP3 and CMIP5 Climate 

and Hydrology Projections” website (DCHP website) at  http://gdo-

dcp.ucllnl.org/downscaled_cmip_projections/ for requests. At the monthly level, downscaled monthly total 

precipitation and monthly mean daily temperature are available on the DCHP website. Daily precipitation, 

minimum and maximum temperatures can also be simulated by the DCHP based on requests.  

 Table 4 shows the 132 weather projections generated by the 20 models and RCP scenarios available 

in the DCHP. 20 Climate models are used to generate daily downscaled weather projections for Sherman 

County, Texas under CMIP5. Three RCP scenarios are selected: RCP2.6, RCP4.5, and RCP8.5 because 

few runs are available under the RCP6.0 scenario. Daily precipitation (mm/day), minimum surface air 

temperature (°C), maximum surface air temperature (°C) from 2017 - 2040 are generated and saved into 

three data sets (three NetCDF files) by the DCHP, respectively.  

 

Table 4. Weather Projection Generation 

 

Source: http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/  

 

A Python program is coded to automatically adjust the format of the weather information to fit in the APEX 

model, run the grain sorghum model to simulate yields for years 2017 – 2040, and export the simulated 

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
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yields in separated files. Figure 10 shows the trend of simulated grain sorghum yields from 2017 – 2040 in 

the three RCP scenarios (RCP2.6, 4.5, and 8.5).  

 
 

Figure 10. Average Grain Sorghum Yields Simulated for the Three RCP Scenarios (RCP2.6, 4.5, 

and 8.5) 

 

The simulated grain sorghum yields for the representative farm tend to decrease from 2020 to 2040 under 

the three RCP scenarios (figure 10). The mean yield over the representative farm’s nine-year history is 

43.22 bushels/acre, and the mean simulated yieldin 2020 over 36 climate models is 43.98 bushels/acre in 

the RCP2.6 scenario, and it decreases to 28.40 bushels/acre in 2040 (figure 10).  
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Federal Crop Insurance Loss Ratios 

In this section, individual Federal grain sorghum Yield Protection (YP) insurance policy is simulated at the 

65% coverage level with a 100% price level coverage. The calculations of YP premiums and indemnities 

are independently constructed for each RCP scenario (RCP2.6, 4.5, and 8.5). The transitional yield (T-yield) 

and the projected price are assumed to be 20 bushels and $3.75/bushel across the period (2017 – 2040).  

 An empirical distribution is defined for each year from 2017 to 2040 by using the simulated grain 

sorghum yields generated by the APEX model based on the weather projections. For example, under the 

RCP4.5 scenario, 42 daily weather trails are generated by 20 models for each year (2017 – 2040). Therefore, 

42 grain sorghum yield simulations are generated from the APEX model based on the 42 weather trails. 

The 42 grain sorghum yield simulations are further used to construct an empirical probability distribution 

for the representative farm at each year. The empirical probability distributions are different from year to 

year because the grains sorghum yields simulated by the APEX model are different. For each year, the 

empirical distribution is used to simulate stochastic grain sorghum yields for the representative farm.  The 

constructions of the empirical distributions and the generations of stochastic grain sorghum yields are 

implemented by using Simetar© (Richardson, Schuman, and Feldman 2006). The simulated stochastic grain 

sorghum yields are used for future calculations of the farm’s actual production history (APH) yields, 

premiums, and indemnities, and are referred as realized yields.  

 Following RMA’s rules, the 60% of the T-yield (20 * 60% = 12 bushels) is used to substitute annual 

grain sorghum yields which are lower than the substitution (USDA, RMA). According to the Federal crop 

insurance premium calculations, the APH yield is calculated as the average of previous four to ten years’ 

yields with the 60% of T-yield substitution (USDA, RMA). Figures 11 - 13 show the fan graphs for APH 

yields over 2020 – 2040 to illustrate the changes of the representative farm’s APH yields under the three 

scenarios (RCP2.6, 4.5, and 8.5). 
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Figure 11. Fan Graph for APH Yields under the RCP2.6 Scenario 

 

 

Figure 12. Fan Graph for APH Yields under the RCP4.5 Scenario 

 

 

Figure 13. Fan Graph for APH Yields under the RCP8.5 Scenario 
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Overall, the APH yields decrease through 2020 – 2040. For example, under the RCP2.6 scenario, the 

simulated APH yield is 36.64 and 32.69 at 2020 and 2040, respectively; and under the RCP4.5 scenario, 

the simulated APH yield decreases from 37.69 (at 2020) to 31.30 (at 2040). Since the guaranteed yield of 

the individual YP insurance at the 65% coverage level is calculated as 65% of the APH yield, the decreasing 

APH yields will result in lower yield guarantees and lower net premiums. 

 The detailed calculations of individual YP insurance premiums for grain sorghum follows the RMA 

rules, and are generated by using the premium calculator programmed by AFPC. The net premiums 

(producers paid premiums) are calculated based on the stochastic APH yields of the representative farm 

simulated by APEX. Figures 14 – 16 show the simulated net premiums ($/acre) under each scenario 

(RCP2.6, 4.5, and 8.5).  

 

 
 

Figure 14. Fan Graph for Net Premiums under the RCP2.6 Scenario 
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Figure 15. Fan Graph for Net Premiums under the RCP4.5 Scenario 

 

 
 

Figure 16. Fan Graph for Net Premiums under the RCP8.5 Scenario 
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the premiums are statistically equal between RCP2.6 and RCP8.5 scenarios, but they are statistically 

different between RCP4.5 and RCP8.5 scenarios. The F tests fail to reject the null hypothesis that the 

variances of premiums are equal among RCP2.6, RCP4.5, and RCP8.5 scenarios at the 95% confidence 

level. 

 In year 2030, the means of simulated grain sorghum YP insurance premiums are statistically 

different between RCP2.6 and RCP4.5 scenarios, as well as between RCP2.6 and RCP8.5 scenarios at the 

95% confidence level.  But the means of the simulated YP insurance premiums between RCP4.5 and 

RCP8.5 in year 2030 are statistical equal. Similarly as 2020, the F tests show that the variances of simulated 

premiums are equal among the three RCP scenarios.  

 In year 2040, the means of the simulated grain sorghum YP insurance premiums are statistically 

different for RCP2.6 and RCP4.5 based on the Student’s t-test at the 95% confidence level. Similarly, the 

means of the simulated grain sorghum YP insurance premiums are statistically different between RCP2.6 

and RCP8.5 scenarios. The variances of the premium simulations are statistically equal between RCP2.6 

and RCP4.5, and RCP4.5 and RCP8.5 at 2040. But the variances of premium simulations are statistically 

different at 2040 for RCP2.6 and RCP8.5 at the 95% confidence level.  

 As discussed above, the simulated federal grain sorghum YP insurance premiums decrease as the 

simulated APH yields decrease over time. For example, the simulated mean premium is $13.59/acre at the 

65% coverage level for 2020, and it decreases to $10.17/acre under the RCP8.5 scenario. Farmers are 

expected to pay less for the same crop insurance coverage level over time due to the impacts of climate 

change on the yields of grain sorghum. 

 Corresponding federal YP insurance loss ratios are calculated as the ratios of indemnities to net 

premiums, and are illustrated in fan graphs (figure 17 – 19). At 2020, the expected loss ratio across 500 

iterations is 0.17, 0.28, and 0.28 for RCP2.6, 4.5, and 8.5, respectively. The highest loss ratio across 500 
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iterations is 3.2, 4.0, and 5.9 for RCP2.6, 4.5, and 8.5, respectively, at 2020. At 2020, 2030, and 2040, the 

highest loss ratio is 5.9, 5.5, and 5.2 and the three highest loss ratios all occur under the RCP8.5 scenario.  

 The Student’s t-test and F-test are used to test the distributions of the three series of loss ratios for 

RCP2.6, 4.5, and 8.5 scenarios. The null hypotheses for equal means are rejected at the 95% confidence 

level between RCP2.6 and RCP4.5 scenarios, and between RCP4.5 and RCP8.5 scenarios in year 2020, 

which implies that the means of the simulated loss ratios for RCP2.6 and RCP4.5 are statistically different, 

and the means of the simulated loss ratios for RCP2.6 and RCP4.5 are statistically different. But the 

variances of the simulated loss ratios are statistically equal to each other across the three RCP scenarios in 

year 2020. In year 2030, both the means and variances of the simulated federal crop insurance loss ratios 

are statistically different between RCP4.5 and RCP4.5.  In year 2040, all the means and variances null 

hypotheses are rejected by tests. Therefore, at 2040, the means of the simulated loss ratios are different 

across the three RCP scenarios, and the variances of the simulated loss ratios are statistically different across 

the three RCP scenarios also.  

 
 

Figure 17. Fan Graph for Loss Ratios under the RCP2.6 Scenario 
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Figure 18. Fan Graph for Loss Ratios under the RCP4.5 Scenario 

 

 
 

Figure 19. Fan Graph for Loss Ratios under the RCP8.5 Scenario 
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SUMMARY 

This study develops the methodology to estimate the impacts of climate change on the federal crop 

insurance APH yields, premiums, indemnities, and loss ratios. A representative grain sorghum farm in 

Sherman County, Texas is used to illustrate the methodology. The ensembles of multiple climate models 

are used to generate local weather projections to better describe the uncertainties in climate change. 

Specifically, 119 weather trials are generated based on climate model ensembles and three RCP scenarios 

(2.6, 4.5, and 8.5). The downscaled daily weather information in the 119 weather trials are incorporated in 

the APEX model to simulate annual grain sorghum yields through 2040 to evaluate the representative farm’s 

yield risks. In each RCP scenario, an empirical yield distribution is constructed for each year based on the 

simulated grain sorghum yields by the APEX model. Stochastic grain sorghum yields are generated based 

on the empirical distributions to calculate the Federal YP insurance premiums, indemnities, and loss ratios 

at the 65% coverage level with the 60% of T-yield substitution. 

 Simulated results show that climate change will result in lower grain sorghum yields (2020 – 2040) 

in each climate change scenario for the representative farm in Sherman County, Texas. As the realized grain 

sorghum yields decrease, the approved APH yields will decrease. Crop insurance premium costs will also 

decrease with the lower APH yields.  

 The study finds that the current APH formula which uses the average crop yields in previous ten 

years with the 60% of T-yield substitution will accommodate the gradual change in crop yields as climate 

change continuous. Althought the simulated grain sorghum yields decrease from 2020 to 2040 as climate 

change continues, there is no extreme decrease occurs in the simulated yields based on the cliamte change 

forecasts. Therefore, the efficiency of the current APH formula will not be negated by climate change.  

 The study also finds that the simulated federal crop insurance loss ratios and premiums are 

statistically different across the three climate change scenarios (RCP2.6, 4.5, and 8.5) in year 2020, 2030, 
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and 2040. Student’s t-test and F-test show that the means and variances of simulated insurance loss ratios 

are statistically different at the 95% confidence level across the three climate change scenarios in year 2020, 

2030, and 2040. Therefore, which climate scenario is used in the analysis of the impacts of climate change 

on the FCIC would affect the conclusions.   

 Due to the time constraint, the methodology is only applied for one crop (non-irrigated grain 

sorghum) and one farm (in Sherman County, Texas). A more comprehensive analysis using the 

methodology can be undertaken for multiple crops and regions. The results can provide a better overview 

of the impacts of climate changes on the FCIP.  
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