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Abstract 
 

We examine the sign and the magnitude of spillovers associated with the High 

Priority Violations Policy (HPVP) under the Clean Air Act (CAA), which caps the 

quantities of emissions that a polluting facility can generate per period of time or 

per unit of fuel input. Using data containing over 181,000 plant-year level 

observations for 24,048 polluting facilities across all industries in the U.S., we find 

evidence of negative spillovers associated with the HPVP. On average, a 

compliant facility increased its air emissions by about 43 percent if it had at least 

one other sister-facility, within the same 6-digit NAICS industry code and 

belonging to the same parent firm, under violation. The magnitude of such intra-

firm pollution substitution was stronger towards compliant facilities with no 

history of CAA violation. 

 

JEL: Q52, Q53 

 

Keywords: pollution substitution, pollution leakage, CAA, spillovers, nearest 

neighbor matching 
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1. Introduction 

 

Environmental regulations are largely associated with positive increases in social welfare 

(Chay and Greenstone, 2003; Environmental Protection Agency, 2011). However, the 

magnitude of the welfare gains due to environmental regulations can be difficult to pin down. 

One of the main reasons why estimating the magnitude of net welfare gains is so challenging 

is due to the existence of spillovers. A spillover is an unintended consequence of an intended 

regulation, which can affect the overall welfare gains that can be attributed to the regulation. 

For example, if a pollution reduction policy in a certain location leads to a decrease in 

pollution in that location but, unintendedly, also leads to increase in pollution elsewhere, 

then the welfare impact of the pollution regulation is likely going to be positive in the location 

where it was implemented and negative where there were unintended consequences 

(spillovers). As a whole, the net welfare gains associated with such a policy would depend 

on the magnitude of the welfare gains due to the intended decrease in pollution as well as 

the magnitude of the unintended spillovers. As spillovers can either be negative or positive, 

they can cause the estimates of net welfare gains due to environmental regulations to be 

biased upward or downward, respectively. A reliable welfare analysis of any pollution 

regulation, thus, warrants a closer examination of potential spillovers. In this paper, we 

examine the potential spillovers associated with one policy in particular – the High Priority 

Violations Policy (henceforth, HPVP) under the Clean Air Act (CAA). 

 

Implemented in 1999, the HPVP mandates inspection agencies to label certain violations of 

CAA requirement as “high priority” so as to ensure that these violations are addressed and 

resolved in a timely and appropriate manner. Figure 1 provides basic guidelines on how high 

priority violations are identified. A violation is labeled as “high-priority” (i) if it fits within 

one of the ten “General HPV Criteria,” (ii) if it is associated with emission levels that fit within 

the “HPV Matrix Criteria,” or (iii) on a discretionary basis (EPA, 1999). We are interested in 

those violations that either fit the eighth general HPV criterion or any of the five HPV matrix 

criteria because the HPVP can have some unintended consequences for these particular 

types of violations. For example, if a polluting facility is found to be in a high priority violation 
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that fits the abovementioned criteria, then the parent firm is required to decrease its 

emissions in the violating facility as per the policy mandate1; however, such requirements 

could also create incentives for that firm to substitute its emissions away from the violating 

facility towards other facilities that are not in violation with the CAA requirements. In that 

case, the sign of the spillover associated with the HPVP is negative, and the existence of such 

intra-firm pollution substitution, if not accounted for, can result in an upward bias in the 

estimates of the overall welfare gains due to the HPVP. Conversely, a cap on emissions at a 

violating facility could also trigger positive spillovers: the parent firm might be inclined to 

simultaneously decrease emissions in other facilities that are not in violation so as to avoid 

a situation where it has multiple facilities under violation, and hence, multiple fines and 

penalties. Positive spillovers might alternatively be triggered by the desire to maintain a 

decent public image of the company. Since all the information on HPVs are publicly available 

in the EPA’s National Enforcement and Compliance History Online (ECHO) website, this is 

indeed a plausible hypothesis. Regardless, the magnitude and net sign of the spillovers 

associated with mandatory pollution reduction policies such as the HPVP is an important 

empirical question with profound policy implications.  

 

To estimate the sign and magnitude of the spillovers associated with the HPVP under the 

CAA, we use data from EPA’s Toxic Release Inventory (TRI) and the Integrated Compliance 

Information System for Air Pollution (ICIS-AIR).  ICIS-AIR contains compliance and permit 

data for stationary sources of air pollution regulated by the EPA, state and various local air 

pollution agencies. Using one-to-one nearest neighbor matching for identification, we check 

whether a compliant facility belonging to a multi-facility firm increases or decreases its total 

TRI air emissions while it has at least one other sister-facility (i.e. facility belonging to the 

same parent firm) within the same 6-digit NAICS code under a high priority violation. Our 

treatment group comprises facilities belonging to multi-facility companies that have at least 

one sister-facility concurrently under high priority violation, while the control group 

                                                        
1 Other HPV criteria on their own do not require facilities to decrease their emissions. For example, HPV 
criterion #1 is “failure to obtain new source review (NSR) permit”. Similarly, HPV criterion # 10 is “violation 
of CAA Section 112(r)”, which requires facilities to submit their accidental release prevention/risk 
management plan. These types of violations can be lifted with appropriate actions, which does not necessarily 
entail decreasing emissions. 
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consists of facilities belonging to multi-facility firms that do not have any sister-facilities 

concurrently under violation. To establish causality between the assignment of high priority 

violation at a facility and the change in emissions at other compliant sister-facilities, we 

match our treated observations with the nearest control based on various facility-level and 

firm-level characteristics such as the growth rate of the facility’s total TRI emissions, the 

growth rate of the parent firm’s total TRI emissions, a proxy for the age of the facility, the 

projected growth in the plant’s total TRI emissions, and the projected growth in the parent 

firm’s total TRI emissions.  We also make sure that the nearest neighbor in our matched 

sample has an exact match on variables such as the reporting year, the 6-digit NAICS industry 

code, the facility’s location (county/state), and the facility’s participation in pollution 

prevention (P2).  

 

We find strong and statistically significant evidence of negative spillovers or intra-firm 

pollution substitution associated with the HPVP. On average, a compliant facility increased 

its total TRI air emission by roughly 35 percent if it had at least one other sister-facility 

within the same 6-digit industry code under violation. Furthermore, we find that the 

magnitude of the intra-firm pollution substitution is much stronger towards compliant 

facilities with no history of high priority violation as compared to those with some history of 

high priority violations.  

 

Our research contributes to the literature on pollution leakage2 (Levinson and Taylor, 2008; 

Fowlie, 2009; David and Kahn, 2010; Gibson, 2015.) The empirical question we attempt to 

answer has important policy implications. If multi-facility firms substitute emissions among 

facilities within the company, then pollution reduction policies directed at protecting public 

health must not only consider the intended emission reductions at the targeted facility but 

also regulation induced unintended change in emissions across all other facilities within the 

firm.  The magnitude of the elasticity of pollution substitution would be a vital input for 

future policy design. 

                                                        
2 Pollution leakage or the spatial leakage of pollution, is the transfer of pollution from one geographical 
location to another, usually (but not always) due to differential stringency of environmental regulations in the 
two locations. 
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The rest of the paper is organized as follows: Section 2 provides a brief literature review on 

pollution leakage and other spillovers associated with environmental regulations. Section 3 

contains some more background information on the Clean Air Act and the HPVP. Section 4 

provides a description of the data and the summary statistics. Section 5 contains a discussion 

of the identification strategy. Section 6 contains a discussion of the results, and Section 7 

concludes. 

 

2. Pollution Leakage: A Brief Review of Literature 

 

Pollution leakage has mostly been discussed in the literature related to the spillovers 

associated with environmental regulation (Carrada-Bravo, 1995; Henderson, 1996; List et. 

al., 2003; Dean et. al., 2009; Hanna, 2009). However, much of the “leakage” discussed in the 

literature has been the transfer of pollution across national boundaries as opposed to 

pollution leakage within national boundaries. Levinson and Taylor (2008) examine the effect 

of regulatory intervention on the flow of trade and pollution emissions across national 

borders. Using U.S. regulations and net trade flow data for 130 manufacturing industries 

from 1977 to 1986 in the U.S., Canada and Mexico, they show that industries whose 

abatement costs increased due to additional environmental regulation experienced the 

largest increase in net imports. The results were indicative of a geographical substitution of 

pollution towards “pollution havens” due to the scale effect.3  Hanna (2010) also finds that 

multinational firms when subject to environmental regulations in the United States increase 

their foreign assets by 5.3 percent and increase their foreign output by 9 percent as 

compared to their non-regulated counterparts. Overall, the results in these papers are 

consistent with the view that U.S. environmental regulations cause U.S. firms to move capital, 

jobs, and pollution to locations abroad. 

 

                                                        
3 The scale effect considers the role of output levels on total emissions: holding the composition of clean vs 
dirty industries and the production technique employed constant, total emissions can increase in pollution 
havens because more output is produced there. 
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In examining the impact of environmental regulation on the geographical substitution of 

mobile-source air pollution, David and Kahn (2010) exploit the trade deregulation that took 

place between United States and Mexico under the North American Free Trade Agreement 

(NAFTA). Their results show that traded vehicles leaving the U.S. [following NAFTA] were 

higher-emitting per mile than the stock of vehicles in the United States, but lower-emitting 

per mile than the stock of vehicles in Mexico. The study also shows that used vehicles 

exported to Mexico from the United States were more likely to have failed regulatory 

emissions testing; hence, supporting the pollution leakage hypothesis.  

 

Some studies have also analyzed the negative spillovers of environmental regulation under 

complete regulation versus incomplete regulation. Fowlie (2009), in particular, proposes 

that when regulated producers are less polluting than their unregulated counterparts, the 

aggregate level of emissions that would have occurred in the absence of regulation could be 

exceeded by the level of emissions under incomplete regulation. Furthermore, when 

regulated firms are relatively more polluting, aggregate emissions under complete 

regulation could exceed aggregate emissions under incomplete regulation. These 

propositions were empirically tested and confirmed using simulations on California’s 

electricity sector under a source-based cap-and-trade program.  

 

Environmental regulations can have other potential spillovers in that they can also 

significantly impact where the polluting firms decide to construct new plants or even move 

existing ones. Condliffe and Morgan (2009), for example, examine the impact of the 1977 

Clean Air Act (CAA) amendments on the location decision of pollution-intensive 

manufacturing firms. Using panel data on manufacturing plant births and county-level 

NAAQS attainment status for the federal standard of ozone concentration, they find that 

enhanced regulatory scrutiny and more stringent local level environmental regulations can 

significantly deter new plant birth in that area.  These results are consistent with the findings 

from Becker and Henderson (1996) who also show that the designation of non-attainment 

status as per the CAA mandate reduces expected birth rate of plants by 40-50% in the 

polluting industries, ceteris paribus.  
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Gibson (2015) is perhaps the only paper in the pollution leakage literature that attempts to 

examine the spatial substitution of pollution within the United States. Using EPA’s Toxic 

Release Inventory (TRI) data, he examines whether CAA regulations create incentives for 

multi-plant firms to substitute air pollution away from plants located in close proximity to 

air quality monitors that are in violation with the national ambient particulate matter (PM10) 

standards to plants located in counties where the air quality monitors are in compliance with 

PM10 NAAQS. He finds that regulation in an average plant increases air emissions at 

unregulated plants belonging to the same 6-digit NAICS code owned by the same firm by 

roughly 17 percent, resulting in a net-emission increase. Adding state level linear time trends 

and accounting for the number of treated plants (plants located within 2 km radius of PM 

non-attainment air quality monitors), the estimates were slightly smaller at 12 percent.  

Gibson’s results indicate that although stringent measures taken to improve the ambient air 

quality around non-attainment monitors can be effective, the regulatory pressure to 

decrease emissions can also trigger spatial substitution of pollution towards other locations 

where regulatory scrutiny might be relatively lax. Our work adds to Gibson’s in three major 

ways. First, unlike in Gibson’s work, where treatment is assigned at the air quality monitor 

level, in our analysis treatment occurs at the plant level. As much of his identification rests 

on the assumption about the exogeneity of treatment on plant-level outcomes, this is not 

likely a concern in our analysis as it is extremely unlikely for emissions from one plant to 

affect the treatment status in another. Second, since we consider many more toxic gases than 

just PM10, our results on pollution substitution are more generalizable than Gibson’s 

pollutant specific result. Lastly, Gibson focuses on estimating cross-media pollution 

substitution.4 We are not interested in such cross-media substitution of pollution within a 

plant but rather the substitution of TRI air emissions across plants within a parent firm. We 

also attempt to examine the heterogeneity in the magnitude of intra-firm air pollution 

substitution across several plant and firm level characteristics, which is absent in Gibson’s 

work. 

 

                                                        
4 Cross media pollution substitution is the substitution of pollution within a plant from one medium (such as 
air) to other media (such as water, landfills, etc.). 
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Positive spillovers associated with environmental regulations are relatively elusive in the 

literature. Nevertheless, that is not to say that they are non-existent. Liu (2012), for instance, 

shows that facility-level inspections under the CAA have a positive and significant effect on 

facility compliance with Reservation and Conservation Recovery Act (RCRA) which deals 

with hazardous and non-hazardous solid waste. Furthermore, Dechezlepretre and Sato 

(2014) argue that there is now ample evidence linking strong environmental regulations 

with innovations in clean technologies and lower levels of research and development in 

conventional polluting technologies. They state that innovations in clean technologies induce 

larger economic benefits due to knowledge spillovers than innovations in dirtier 

technologies which they replace. Jiang et. at. (2015) attempt to explicitly estimate the 

magnitude of the positive spillovers associated with a policy designed to decrease SO2 

emissions in China. They show that positive spillovers could be caused by the spread of 

pollutants (or in their case, the lack of) through air or water across different cities within 

China. In other words, pollution reduction in one location would spread less pollution to 

other nearby locations; hence, causing the spillover associated with implementing the SO2 

reduction policy to be positive in sign. Taking into account the positive spillovers, they were 

able to attribute about 21 percent decrease in SO2 concentration to the pollution reduction 

policy, whereas without taking into account the positive spillover, the estimated reduction 

in SO2 concentration as a result of the policy was only about 13 percent. Lastly, Evans (2016) 

has also suggested that provision of information about a firm’s environmental record, such 

as the record of plants entering into and exiting from HPV status, may encourage the firm to 

make improvements in its environmental performance as they adjust to market responses 

(e.g., from consumers or stockholders) or other pressures such as from local community 

groups.  
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3. Background: The High Priority Violations Policy (HPVP) 

 

Implemented in 1999, the HPVP was designed by the EPA as a management tool for oversight 

over specific categories of violations under the CAA.5  The EPA considers a CAA violation a 

high priority violation if (i) it is likely to result in a significant risk to human health and/or 

the environment from either direct or indirect release of air pollutants or (ii) it may harm 

the ability of the state, local, territorial and tribal agencies (henceforth, the enforcement 

agencies) to implement CAA programs.6 An HPV is always a significant violation of a federally 

enforceable CAA program by either a major or synthetic minor stationary source of air 

pollution.7  Although the EPA considers all CAA violations important, the HPVs warrant 

additional scrutiny to ensure that enforcement agencies respond to these types of violations 

in a timely and appropriate manner and have access to federal assistance (EPA, 1998, 2014).  

 

The day a violation is identified as a high priority violation is called “Day Zero”. The 

enforcement agencies are responsible for reporting all data about HPVs to ICIS-AIR, which is 

the Air Module of EPA’s national compliance information database. The enforcement agency 

must also advise the polluting source that an HPV has been identified within no more than 

45 days of Day Zero. Enforcement agencies can address the HPVs through the following 

actions: (1) by issuing a legally enforceable order that requires immediate action to come 

into compliance with the requirement violated; (2) by issuing a legally enforceable order 

that imposes penalties, where the source has demonstrated that it is currently complying 

with the requirement violated; (3) by issuing a legally enforceable order that imposes a 

schedule on the source to comply with the requirement violated and penalties for violation; 

or (4) transferring the matter to another organization with the authority to initiate a civil or 

criminal judicial action against the violator8  (EPA, 2014). The enforcement agencies can take 

                                                        
5 HPVs include not only the regulations implementing the CAA, but also other state, local, tribal, or territorial 
regulations approved by the EPA so as to implement the requirements of the CAA.  
 
6 Figure 1 provides a flowchart on HPV applicability determination. 
7 In our sample, plants have been assigned HPV status due to violation of several federally enforceable CAA 
programs. Some examples are CAAMACT, CAANSPS, CAAPSD, CAASIP, CAANESH, CAANSR, etc. 
8 This is known as “a referral.” 
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any of the above actions to address the HPV but it needs to be done within 180 days of Day 

Zero. For those HPVs that are not addressed within 180 days, the enforcement agency is 

required to schedule a case-specific consultation with the regional EPA to discuss the matter 

within no less than 270 days from Day Zero.  

 

A high priority violation that is not addressed or resolved in a timely manner gets listed 

under the “watch list”. The EPA has maintained the watch list since 2004 to track HPVs of 

the CAA that are not addressed or resolved within 9 months of a facility entering violation. 

It is worth noting that the listing of HPVs on the watch list depends both on the behavior of 

the regulated facilities and the behavior of the regulator. An HPV can be listed on the watch 

list if either the facility fails to come into compliance or if the regulator fails to address the 

HPV with an appropriate action.  

 

The watch list, by design, implies increased regulatory scrutiny and increased pressure for a 

facility to return to compliance (Evans, 2016). Furthermore, the penalties for failure to 

resolve high priority violations are also sufficiently high such that they effectively deter the 

polluting sources from deliberately refraining to comply. In cases where no penalty is levied, 

or where the assessed penalty is different from the collected penalty, the enforcement 

agency must provide an explanation to the regional authority (EPA, 2014). 

 

 

4. Description of the dataset 

 

A. Emissions Data 

 

The plant level emissions data come from the EPA’s Toxic Release Inventory (TRI) 2000-

2014. The TRI records emissions on an annual basis for more than 500 chemicals (measured 

in pounds or grams) for U.S. facilities across many industries. Typically, only plants that emit 

more than 10,000 pounds of TRI pollutants (or 5,000 pounds in some cases) are obliged to 

report their emissions. Reported emissions are estimated using various engineering models, 
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rather than being obtained through direct measurements. Under TRI there are serious 

penalties for false reporting. In the past, the EPA has fined up to $27,000 per day for 

reporting problems (Gamper-Rabindran, 2009; Gibson, 2015). Therefore, we believe that 

firms have little incentive to under-report their emissions to the TRI and, despite their self-

reported nature, the TRI is probably the most widely used source for data on toxic emissions 

in the US. TRI also contains the Duns & Bradstreet unique 9-digit identification number 

(DUNS number) indicating the parent company that a facility belongs to. As the EPA started 

collecting the TRI data since 1987, we also have information on the first year a facility 

reported its emissions. We use this information as a proxy for the facility’s age. In addition 

to current emissions, the facilities are also required to report their projected TRI emissions 

for the following year and the second following year, which we make use of in our analysis.  

 

B. Violations Data 

  

Data on the plant specific HPVs were collected from the National Enforcement and 

Compliance History Online (ECHO) website. In particular, we obtained the ICIS-AIR data 

which contains emissions, compliance and enforcement data on stationary source air 

pollution.  The sources in the dataset cover a wide spectrum of polluters from large industrial 

facilities to relatively small operations and industrial plants. The plant level ICIS-AIR data 

treats the entire facility as one unit rather than looking at individual emission points, 

processes, or stacks.  

 

From the plant level HPV data, we omit those violations that were resolved before the year 

2000 or the ones that were issued after 2014. We are only interested in the HPVs that were 

active between 2000 and 2014 due to the change in the HPV policy in August of 2014. To 

analyze the impact of HPVs related to [over]emission of air pollution (i.e. violations that fit 

the general HPV criterion # 8 or any of the 5 HPV matrix criteria) on the plant’s total TRI air 

emissions, we discard the HPVs that are related to carbon monoxide, sulfur dioxide, nitrogen 
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dioxide, or other pollutants that cannot be traced to the TRI 2000 core chemical list.9 Out of 

the 2,390 high priority violations in our dataset, 219 violations fit this category and thus had 

to be excluded from our analysis.  

 

 

C. Analysis Sample and Summary Statistics 

 

The TRI emissions data are merged with the HPV data using the plants’ Facility Reporting 

System (FRS) identification number. Our analysis sample is constrained to only those 

facilities that have a TRI Facility Identification (TRIF ID) number. Several HPVs that were 

active between 2000 and 2014 had to be omitted from our analysis because they were not 

listed as a TRI facility and, hence, lacked information on facility level annual emissions. We 

place two additional restrictions on our data: we exclude facilities that emit less than 10 

pounds of total air emissions per year as well as those facilities that produce more than 

100,000 pounds of total air emissions per year, thus excluding very small and exceptionally 

large facilities, some of which produce hundreds of thousands of pounds of TRI air emissions 

per year. The histograms showing the distribution of total air emissions in our analysis 

sample before and after trimming are presented in figure 2. All information on the county 

non-attainment status was retrieved from the EPA’s Green Book.  

 

The summary statistics are presented in table 1. We provide the mean and the standard 

deviation for treated and the control groups separately. We also include the normalized 

difference between the control and the treated group. The normalized difference is a natural 

measure of the difference between the distributional locations in our treated and control 

arms (Imbens and Rubio 2016). It is a scale-free equal to the difference in means scaled by 

the square root of the average of the two within-group variances.  A normalized difference 

closer to zero suggests a greater similarity in the distribution of the covariate between the 

two opposite treatment arms. 

                                                        
9 Lead is one of the TRI chemicals, and several other TRI chemicals can be mapped into either the PM category 
or the VOC category. See Greenstone (2003) for more details. 
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On average, we see that our treated group is a larger producer of total air emissions 

(measured in pounds). The participation rate in pollution prevention (P2) does not seem to 

be much different across the two groups; neither does the non-attainment status of the 

country where the facilities are located. While 39 percent our control facilities are located in 

counties that are in non-attainment for O3, VOCs or Lead, the percentage of the treated 

facilities located in non-attainment counties is 42. Overall, we see not too big a difference 

between the distributional locations in our treated and control arms for matching covariates 

except: the number of additional compliant sisters, the lag of total air emissions, and the 

expected growth in the parent firm TRI emissions. While the control facilities tend to have 

on average about 3 other compliant sister-facilities, the treated facilities tend to have about 

7, which is more than double compared to the control. We can also see that while the one-

year lag of total air emissions for our control facilities is on average 10,325 lbs. of air 

emissions, the one-year lag of total air emissions for our treated facilities is 14,226 lbs.  

 

5. Identification Strategy 

 

We use one-to-one nearest neighbor covariate matching to estimate the magnitude of intra-

firm pollution substitution triggered by sister-plants entering high priority violations. Our 

treatment group comprises compliant facilities belonging to multi-facility firms that have at 

least one sister-facility within the same 6-digit NAICS industry code concurrently under high 

priority violation; and the control group consists of compliant facilities belonging to multi-

facility firms that do not have any sister-facilities under the same 6-digit NAICS industry code 

concurrently under violation. As mentioned in table 1, we only have 3,126 treated 

observations in our analysis sample, whereas the number of control observations is 34,038. 

Due to this stark difference in the number of observations in opposite treatment arms, it is 

not feasible for us to estimate the average treatment effect via one-to-one nearest neighbor 

matching as we lack sufficient treated observations which can serve as plausible 

counterfactuals for the controls. We could allow for matching with replacement so as to get 

the sample average treatment effect (SATE), but that is not likely going to give us good 
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quality matches given the degree of the difference in the relative size of the opposite 

treatment arms in our case. 

 

We thus estimate an alternative average causal effect – the sample average treatment effect 

on the treated (SATT).  This causal estimate gives us the average effect of the treatment only 

on the group that receives the treatment: 

 

𝜏𝑇
𝑆 =

1

𝑁𝑇
∑ [ 𝑌𝑖(1) −  𝑌𝑖(0)

𝑖: 𝑊𝑖=1

]. 

 

𝜏𝑇
𝑆  here, is the SATT, 𝑁𝑇 is the number of treated units, 𝑊𝑖 is the treatment status (1 if treated, 

0 otherwise), 𝑌𝑖(1)  is the realized outcome and 𝑌𝑖(0) are the potential outcome under control 

treatment. Estimating the SATT is useful for our purpose because we can infer from it how 

different the observed outcome for our treated facilities would have likely been in the 

absence of the treatment. In other words, our SATT estimates can tell us how much less (or 

more) total TRI air pollution would have been emitted by the treatment facilities had they 

not had at least one sister-facility under the same 6-digit NAICS industry code 

contemporaneously under high priority violation.  

 

Employing nearest neighbor matching to estimate the SATT also serves several useful 

purposes in our case. We match our treated observations with the controls based on exact 

matches for variables including the reporting year, the location of the facility (county or 

state), the non-attainment status of the county (if we are matching facilities within the same 

state but not necessarily in the same county), the NAICS 6-digit industry code to which the 

facility belongs, and an indicator for the facility’s participation in the EPA’s voluntary 

pollution prevention (P2) program. By specifying exact matches for these variables, we can 

prevent our SATT estimates from being driven by industry specific differences between the 

treated and the control facilities, other industry-year level shocks that are likely going to 

differentially affect facilities in the two treatment arms, or other unobservables at the 

aggregate year level that might be correlated with a facility’s production of air emissions.  
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Furthermore, we make sure that all treated facilities that are P2 participants are matched 

with control facilities that are also P2 participants, and the non-participant treated facilities 

are matched with their non-participating control counterparts.  

 

Other continuous variables for which we find the nearest neighbor are: one-year lag of the 

plant’s total air emissions,10 a proxy for the plant age which is derived from the first year a 

facility reported its emissions to the TRI, total emissions growth rate of the plant, total 

emissions growth rate of the parent firm, the expected total emissions growth rate at the 

plant and the expected total emissions growth rate at the parent firm. Matching based on the 

plant’s total emissions and the firm’s total emissions becomes important because comparing 

treated and control facilities that display differential plant level or firm level emission trends 

will not allow us to obtain a clean estimate of the treatment effect.  For example, if the treated 

facilities have a greater total emissions growth trend as compared to the controls, perhaps 

due to a differential increase in demand at the firm level, then our causal estimate of the 

treatment effect (HPV induced increase in emissions at compliant facilities) is likely going to 

be biased upward. In that case, much of what we estimate to be the increase in emissions at 

compliant facilities due to HPV induced intra-firm pollution substitution, might simply be 

increase in emissions at compliant facilities due to firm level demand shocks.  Accounting for 

the age of the plant also becomes important as older plants tend to be more polluting as 

compared to their younger counterparts. Furthermore, additional matching variables such 

as the expected total emissions growth at the plant and the expected total emissions growth 

at the parent firm not only help us identify facilities that display similar emission trends for 

comparison, but they also give us a sense of the plant level or the firm level managerial intent 

to curb total pollution. Hence, the inclusion of these variables would also allow us to match 

“greener” [or “dirtier”] treatment plants belonging to “greener” [or “dirtier”] firms with 

other control facilities displaying similar characteristics.  

                                                        
10 We have information on lagged total TRI air emissions only for those facilities that report emissions for 
successive years. For the remaining facilities, we use the emissions in the second-latest reporting year in place 
of one-year lagged emissions. The choice of our lagged variable does not change the results significantly. For 
facilities that started reporting their emissions to the TRI between 2000 and 2014, we are not able to create 
any lagged value of total air emissions for their first reporting year and we exclude these observations when 
obtaining our causal estimates.   
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When we have multiple continuous variables that cannot be matched exactly, the choice of a 

distance metric, which puts a weight on the different matching variables, becomes important 

in determining the nearest neighbor. A very common choice for the distance is the 

Mahalanobis metric, where the weight matrix is based on the average of the within-

treatment-group sample covariance matrices. This metric takes into account correlations 

across covariates and leads to matches that are invariant to affine transformations of the 

covariates (Imbens and Rubio, 2015). This property of the Mahalanobis distance metric is 

useful for us because our pre-treatment variables have no natural scale.  

 

Another potential pitfall of our estimation strategy is that the nearest neighbor matching 

estimator is likely going to be biased if matching on all the variables is not exact. For example, 

two facilities with the same one year lagged value of the total air emissions, belonging to the 

same 6-digit industry, located in the same county and sharing the same P2 participation 

status, might not be good matches for each other due to other variables that are not perfectly 

matched. A plant belonging to a firm which has a sharply declining total TRI emissions 

(perhaps due to a firm level shock) can be considered to be very different from another plant 

for which the parent firm’s TRI emissions are growing, despite the two plants having the 

exact matches for other variables. To tackle with this problem and avoid getting biased 

estimates of the treatment effects, we employ simple regression adjustments as prescribed 

by Abadie and Imbens (2011) on our results using the original continuous matching 

variables for which we are not likely to get exact matches.11  All estimates presented in our 

result tables are therefore regression-adjusted bias-corrected estimates of the sample 

average treatment on the treated (SATT). 

 

We can see in table 2 that our matched sample tends to show a smaller difference in the 

distributional locations of the pre-treatment covariates between the two treatment arms. All 

the variables shown on table 2 were used for nearest neighbor matching in addition to exact 

matches for reporting year, plant location (state), county’s NAAQS non-attainment status, 6-

                                                        
11 See Abadie and Imbens (2011) or Imbens and Rubio (2016) for more details. 
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digit NAICS, and the P2 participation status of the plant.  The only normalized difference in 

mean that exceeds 0.1 is for the 1-yr lag of total air emissions. We acknowledge that we have 

not used the number of additional compliant sister-facilities as a nearest neighbor matching 

variable.12 Nevertheless, a significant difference in the number of other compliant facilities 

between the treated and the control group can lead to our estimate of the SATT to be biased. 

If a compliant plant that has a sister-facility concurrently under violation, but also many 

other sister-facilities that are concurrently not under violation, then it is not likely going to 

increase its emissions significantly as a result of the treatment. In such cases, the firm might 

able to cope with the regulatory pressure to decrease its emissions at the violating facility by 

dissipating the increase in emissions across many compliant facilities. To address this 

potential source of bias, in our ongoing work, we are separately examining the heterogeneity 

in the magnitude of intra-firm pollution substitution by the additional number of compliant 

sister facilities belonging to the treated group. 

 

 

6. Results 

 

The SATT estimates are presented in table 3A and 3B. In table 3A, we use the natural log of 

total TRI air emissions as our dependent variable. Doing this we can interpret the SATT 

estimates as the percentage increase in the facility’s total air emissions due to at least one 

sister-facility under the same 6-digit NAICS industry code being concurrently under 

violation. In column 1 we match the treated facilities with the controls based on exact 

matches for the facility county, reporting year, 6-digit NAICS code and facility’s P2 

participation status. The estimated treatment effect suggests that the treated facilities are 

likely to emit about 104% more total TRI air emissions as compared to the control 

counterparts located in the same county. This is the most basic model where we match the 

treated group with the control based on exact matches for 4 variables, namely, the reporting 

                                                        
12 Attempting to match the treated facilities with the controls based on the number of additional compliant 
sister-facilities involves certain trade-offs. For example, this would significantly decrease the number of 
potential matches for our treatment facilities affecting the statistical power of our analysis. Another trade-off 
includes inability to get better matches for other pre-treatment variables, which might lead to biased causal 
estimates. 
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year, 6-digit NAICS, facility county, and the status of the facility’s P2 participation, and 

nearest neighbor matching based on 3 variables: one year lag of facility total air emission, 

the facility’s total TRI emission growth, and the parent firm’s total TRI emission growth. 

However, by specifying exact matches based on the facility county, we were only able to 

match 733 treated observations (which is only about 35 percent of the total treated 

observations in our analysis sample). Therefore, to increase the size of our matched sample 

and thus get a more accurate SATT, we match the treated facilities with other controls that 

are not necessarily located in the same county but rather the same state (see column 2). A 

potential source of bias is that if our matched treatment facilities, as compared to the 

controls, are disproportionately located in counties that are in non-attainment with the 

NAAQS for ambient lead, VOCs, or PM, then our estimate of the intra-firm pollution 

substitution is likely going to be biased upwards.13 In the opposite case, when matched 

control facilities are disproportionately located in non-attainment counties, our SATT 

estimate can be biased downward. Therefore, to control for such regulatory pressures at the 

county level that might be confounded with our potential outcomes, we specify an additional 

exact matching variable denoting the county’s non-attainment status. As we can see in 

column 2, we were able to significantly increase the number of matches by doing so. In an 

attempt to get a more accurate estimate of the SATT, we also include a few additional 

continuous variables: the plant’s age, expected total TRI emissions growth for the plant and 

expected total TRI emissions growth for the parent firm in order to select the nearest 

neighbor. Our estimate of the increase in total air emissions at the treated facility after the 

inclusion of these additional matching variables is about 35% (see column 3).  

 

In table 3B, we carry out the exact same NN matching estimation except with the total TRI 

air emissions (measured in pounds) as the dependent variable. As we can see in column 3, 

compliant treated facilities, which have at least one sister-facility within the same industry 

concurrently under violation, would have likely produced 1,705 pounds of TRI air emission 

                                                        
13 Other criteria air pollutants like CO, SO2 and NO2 are not included in the TRI chemical list. The non-
attainment status triggered by these pollutants is thus not likely going to exert significant pressure on the 
polluting facility to decrease its TRI air emissions. Lead, on the other hand, is listed as a TRI chemical, and 
several other TRI chemicals can be categorized as VOCs or PM. 
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had they not entered treatment. In other words, the impact of the treatment on the treated 

facilities in our sample is the release of 1,705 additional pounds of air pollution.  

 

In table 4, we can see the heterogeneity in the SATT estimates across top 6 NAICS 3-digit 

industries for which we were able to get the most number of exact matches. Our results 

suggest that the high magnitude of intra-firm pollution substitution as shown in tables 3A 

and 3B are mostly driven by increase in emissions at compliant facilities belonging to 3-digit 

NAICS industries such as chemical manufacturing (325), primary metals manufacturing 

(331), and above all, fabricated metal products manufacturing (332).Next, we check the 

magnitude of intra-firm pollution substitution between treated facilities with no history of 

HPVs (treated facility is a compliant facility with no history of HPVs that has a sister facility 

in the same 6-digit NAICS that is concurrently under violation) -- and treated facilities with 

some history of HPVs (treated facility is a compliant facility with some past history of HPVs 

with a sister facility in the same 6-digit NAICS that is concurrently under violation). To do 

show, we run two separate nearest-neighbor matching estimations: one for the treated 

facilities with some history and another for treated facilities with no history of high priority 

violation. We also account for the violation history of the nearest neighbor control facilities 

as inexact matches based on the treated and the control facilities’ history of violation could 

lead to biased estimates of our causal effect. The results are presented in table 5.  Column 2  

shows that treated facilities with no history of HPV increase their TRI air emissions by over 

44 percent when they have a sister-plant within the same industry under violation. This 

result is statistically significant at the 1 percent level. Column 1 reports the magnitude of 

HPV induced intra-firm pollution substitution for treated facilities with some history of 

violation. Although the sign of the SATT estimate is positive, we see that it is not statistically 

significant. Our results suggest that the effect of the treatment on facilities with no history of 

HPV is far greater than those with some history of HPV.  
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7. Conclusion and Discussion 

 

The existence of spillovers makes it challenging for us to estimate the overall welfare gain 

due to environmental regulations. The magnitude and the sign of the spillovers can cause the 

estimates of the net welfare gain to be biased in either direction. Thus, from a policy 

perspective, it becomes important to empirically examine the sign and the magnitude of such 

spillovers. This, in turn, helps us better access the overall desirability of environmental 

regulations from a welfare standpoint.  

 

Using the annual TRI emissions data and the High Priority Violations data for all polluting 

industries across the U.S., we empirically examine the existence of intra-firm pollution 

substitution, which is a potential source of negative spillover in the HPVP under the Clean 

Air Act. Our results show that compliant facilities tend to increase total emissions when at 

least one other facility owned by the same parent firm enters HPV. Our results are 

statistically significant at the 1 percent confidence level and provide strong evidence 

supporting the intra-firm pollution substitution hypothesis. These results call for a 

consideration of pollution leakages in policy design, and the negative welfare impact 

associated with such pollution substitution presents an interesting topic for future research 

in pollution control.  

 

In our ongoing work, we are exploring the heterogeneity in the magnitude of intra-firm 

pollution substitution based on various factors such as the number of violating and 

compliant facilities owned by the parent firm, the duration of the violations, and whether the 

parent firm is a publicly traded company.  In addition, we also hope to determine the 

probability that a compliant facility enters violation as a result of intra-firm pollution 

substitution between violating and compliant facilities. A significant result, in that case, 

would allow us to directly link regulation induced intra-firm pollution substitution with 

increase in public health risks.  
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Figures 

 

Figure 1: Major and synthetic minor sources are stationary sources of air pollution. A major 
source is one that either has the potential to emit more than 10 tons of a certain HAP per 
year or more than 25 tons of total HAPs per year. A synthetic minor source has the potential 
to emit levels of HAPs equal or greater to the major source thereshold levels, but has 
accepted federlly enforceable limitations to keep emissions below the threshold level. 
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Figure 2: Above – the distribution of total air emissions (lbs.) before trimming 
observations with total air emissions > 100,000 lbs. and <10 lbs. Below - the distribution of 

total air emissions (lbs.) after trimming. 
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Tables 
 
 

Table 1 – Summary statistics 
 

Control Treated 
 

 
Obs. Mean SD Obs. Mean SD Nor. Dif. 

Total air emission (lbs.) 34038 10289 18278 3126 14340 20879 0.206         

P2 participation [0 or 1] 34038 0.16 0.37 3126 0.12 0.32 -0.139 
Non-attainment Status [0 or 1] 34038 0.39 0.49 3126 0.42 0.49 0.051 
Plant age (yrs.) 34038 23.53 6.45 3126 23.39 5.97 -0.023 

No. of additional com. plants  34038 3.01 7.41 3126 6.92 10.87 0.420 
Total firm TRI (1000 lbs.) 34038 358.91 6821.34 3126 344.94 1574.18 -0.003         

Plant prior yr. TRI (1000 lbs.) 33589 106.99 4158.61 3096 92.00 660.74 -0.005 
Plant current TRI (1000 lbs.) 33589 107.99 4092.35 3096 80.71 526.87 -0.009 
Plant next yr. TRI (1000 lbs.) 33589 108.95 4374.49 3096 74.22 446.06 -0.011         

Exp. firm TRI growth (%) 26132 0.55 3.26 2295 -0.02 0.44 -0.245 
Exp. plant growth (%) 25718 0.184 7.006 2253 0.019 0.717 -0.033         

1-yr lag total air emission (lbs.) 27078 10325 17911 2590 14226 20158 0.205 

 

 

Table 2 – Matched observations  
 

Control Treated 
 

 
Obs. Mean SD Obs. Mean SD Nor. Dif. 

Plant age (yrs.) 
 

2037 24.05 5.889 2037 23.65 6.05 -0.067 

Firm TRI growth (%) 
 

2037 0.455 6.368 2037 9.6 396.992 0.033 

Plant TRI growth (%) 
 

2037 0.947 8.693 2037 6.451 207.248 0.038 

Exp. firm TRI growth (%) 
 

2037 -0.024 0.229 2037 -0.022 0.4 0.006 

Exp. plant growth (%) 
 

2037 -0.013 0.46 2037 0.017 0.683 0.052 

1-yr lag total air emission 
(lbs.) 

2037 10316 16448 2037 13944 20237 0.197 
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Table 3A – Sample average treatment effect on the treated estimates 
 

Dep. Var. 
ln(total air emissions)  

(1) (2) (3) 

SATT 1.041*** 0.377*** 0.352***  
(0.062) (0.057) (0.721)     

Exact matching vars. 
   

County Y N N 
State - Y Y 
County non-attain  - Y Y 

Reporting Year Y Y Y 
6-digit NAICS Y Y Y 

P2 participation Y Y Y     

NN matching vars. 
   

Lag total air Y Y Y 
Plant TRI growth rate Y Y Y 
Firm TRI growth rate Y Y Y 
Plant age N N Y 
Exp. firm TRI growth N N Y 
Exp. plant TRI growth N N Y     

Number of exact 
matches 

733 2037 2037 

Standard errors re in parentheses. All SE are robust i.e. we allow for 
heteroskedastic SE. The unit of observation is plant-year. All SATT 
estimates are bias-adjusted for imperfect matches on NNM vars. 
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Table 3B - Sample average treatment effect on the treated estimates  
 

Dep. Var. 
Total air emissions (lbs.)  

(1) (2) (3) 

SATT 3739.34*** 1713.21*** 1705.13***  
(380.97) (375.35) (378.04)     

Exact matching vars. 
   

County Y N N 
State - Y Y 
County non-attain  - Y Y 

Reporting Year Y Y Y 
6-digit NAICS Y Y Y 

P2 participation Y Y Y     

NN matching vars. 
   

Lag total air Y Y Y 
Plant TRI growth rate Y Y Y 
Firm TRI growth rate Y Y Y 
Plant age N N Y 
Exp. firm TRI growth N N Y 
Exp. plant TRI growth N N Y     

Number of exact 
matches 

733 2037 2037 

Standard errors are in parentheses. All SE are robust i.e. we allow for 
heteroskedastic SE. The unit of observation is plant-year. All SATT 
estimates are bias-adjusted for imperfect matches on NNM vars. 
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Table 4 – Heterogeniety in the SATT estimates across top 6 NAICS 3-digit industries by 
number of matches 
 

 Dep. Var. 
ln(total air emissions) 

3-digit NAICS SATT No. of 
matches 

Wholesalers Nondurable goods (424) 0.070 
(0.177) 

357 

Chemical Manufacturing (325) 0.596*** 
(0.133) 

266 

Fabricated Metal Products (332) 0.978*** 
(0.247) 

152 

Primary Metals Manufacturing (331) 0.615** 190 
 (0.250)  

Utilities (221) 0.857 84 
 (0.947)  

Food Manufacturing (311) 0.479 
(0.458) 

68 

   

Standard errors are in parentheses. All SE are robust i.e. we allow for 
heteroskedastic SE. The unit of observation is plant-year. All SATT 
estimates are bias-adjusted for imperfect matches on NNM vars. The 
exact matching vars. are year, state, 6-digit NAICS, p2 and non-attain. 
NN matching vars. are lag total air, plant age, plant TRI growth, firm 
TRI growth, exp. firm TRI growth and exp. plant TRI growth.  
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Table 5 – Heterogeneity in SATT estimates across plants with HPV history vs. no HPV 

history 

 Dep. Var. 
ln(total air emissions)  

History=1 History=0 

 
SATT 

 
0.256 

 
0.446***  

(0.347) (0.073)    

Exact matching vars. 
  

State Y Y 

County non-attain  Y Y 
Reporting Year Y Y 
6-digit NAICS Y Y 
P2 participation Y Y    

NN matching vars. 
  

Lag total air Y Y 
Plant TRI growth rate Y Y 
Firm TRI growth rate Y Y 
Plant age Y Y 
Exp. firm TRI growth Y Y 

Exp. plant TRI growth Y Y    

Number of exact matches 271 1573 

Standard errors are in parentheses. All SE are robust i.e. we allow for 
heteroskedastic SE. The unit of observation is plant-year. All SATT 
estimates are bias-adjusted for imperfect matches on NNM vars. 
 
 

 

 


