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Future volatility forecast in agricultural commodity markets 

Abstract 

Recent changes in commodity markets suggest that risk management in agriculture has become 

even more important for both long and short hedgers. We found that over the last decades 

significant changes occurred in corn, soybean, and wheat term structure volatilities. We compare 

forecast performance of three methods to predict realized volatilities: implied forward volatility 

(IFV), historical volatility based on the SARIMA model (SARIMA-HV), and a naïve forecast. Our 

study covers the period from 2006 to 2016, and analyses three sub-periods: before, during, and 

after the 2008 crisis. Our results suggest that the IFV and the SARIMA-HV models perform equally 

well at predicting future volatility in the corn and wheat markets. However, the results for the IFV 

were unbiased and efficient in most of our analysis. The SARIMA-HV method outperformed all 

other methods in the soybean market, in most of the analyzed periods. 

 

Keywords: agricultural commodity options, implied forward volatility, term structure. 

 

1. Introduction 

Hedgers and speculators who trade agricultural futures or options contracts need to determine their 

risk levels in order to guide production planning, investment levels, inventory positions, and 

portfolio composition. As a result of the seasonal biological characteristic of agricultural 

commodities, market participants expect to face higher price volatility during the growing season, 

when uncertainty due to weather conditions is also higher. Therefore, participants deal with 

different risk levels in different periods of the year, since the market conditions follow the growing 

and the harvest seasons very closely. 

Pindyck (2001) highlights the importance of volatility for hedgers, since it drives the demand for 

price risk management tools (for example, futures and options contracts) and it is important to 

determine the levels of inventories in the cash market. For instance, producers and inventory 

holders who believe that prices of a certain commodity will be very volatile in the future can use 

derivatives to hedge their final selling prices. If they believe that the future cash price is likely to 

fall below a certain level, they can lock in their future selling price by either selling futures 
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contracts or buying put options. Likewise, long hedgers who also expect highly volatile prices in 

the future can hedge their final purchase price by buying futures contracts or by buying call options 

on the underlying futures contract. Many other trading strategies combining futures and/or options 

contracts can also be created for market participants who have different expectations regarding 

future prices volatility (straddles, strangles, butterflies, bull/bear spreads, etc.).  

According to Poon and Granger (2003), volatility is the most important variable in pricing 

derivative securities such as futures and options contracts. Therefore, market participants seek to 

forecast volatility over defined periods in order to price such derivative contracts.  

For all the reasons previously mentioned, both long and short hedgers have interest in predicting 

future price variation, and may use various methods to forecast future volatility in agricultural 

commodity markets. Even though different studies have already investigated the performance of 

different methods to predict volatility, they have not covered recent years in order to evaluate 

whether their results can still be applied to current agricultural markets. 

This type of comparison is important because most of the commodity markets have faced 

significant changes over the last 15 years. These changes, including a financial crisis and 

technology innovations, can change price patterns and the term structure of implied forward 

volatility. (Figures 1A, 2A and 3A in the Annex show the evolution of the realized volatility for 

corn, soybeans, and wheat futures prices from 1969 to 2016.) 

Therefore, our research question is: which of the most-used methods in the empirical literature has 

superior performance predicting the realized volatility in grains and oilseed markets? We are also 

interested in investigating if the most recent changes in the agricultural and financial markets have 

changed the seasonal patterns of agricultural commodity volatilities. 

Our main objective with this study is to compare different approaches to forecast future volatility 

in the agricultural commodities markets using historical volatility data. We investigate the corn, 

soybean, and wheat U.S. futures and options markets between 2006 and 2016. We closely follow 

the methodology introduced by Egelkraut, Garcia, and Sherrick (2007) to calculate the term 

structure volatility implied in the aforementioned commodities futures prices. We compare the 

predictive performance of the implied forward volatility (IFV) with a naïve forecast, and a 

SARIMA model to forecast the realized volatility for different periods within the crop year.  
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In addition, we also investigate the forecast performance for different models before, during, and 

after the 2008 crisis. The analysis of these sub-periods is important since the literature highlights 

unusual price movements of various commodity markets since 2006, especially during the 

financial crisis (Etienne et al., 2014). In addition to updating the important contribution presented 

by Egelkraut, Garcia, and Sherrick (2007), our study contributes to the literature in the area using 

SARIMA models to forecast seasonal patterns for select commodities. As far as we know, no other 

study in the area uses such a model, even though most of the authors who studied similar problems 

mentioned the seasonal effect. 

 

2. Review of literature 

Egelkraut and Garcia (2006) classify the various methods available in the literature into two 

groups: backward- and forward-looking. Backward-looking models make predictions based on 

historical past information. This type of model can be as simple as a naïve model that uses the last 

period realized volatility to forecast the one-step-ahead volatility, or more complex models such 

as those in the ARIMA family and stochastic volatility. On the other hand, forward-looking models 

estimate future values based on prices implied volatility, which is available in the options market. 

The option pricing models developed by Black and Scholes (1973), and by Black (1976) are the 

most popular models in the area and can be used to calculate the implied volatility when one can 

observe call or put options values (or options on futures, regarding the Black model). 

Several studies have investigated which type of model has superior forecast performance. Most of 

the literature on the subject concludes that the implied forward volatility has a superior 

performance to forecast future volatilities. For instance, Egelkraut and Garcia (2006) investigated 

five agricultural commodities (corn, soybeans, soybean meal, wheat, and hogs) and found that the 

IFV dominated forecasts based on historical volatility information, between 1992 and 2001. 

Szakmary et al. (2002) also found that the IFV outperformed the historical volatility as a predictor 

for realized volatility in most of the 35 markets investigated. The performance of the FIV model 

was compared to the moving average and the GARCH model forecasts. The authors implemented 

different models to forecast the volatility of several futures options contracts, including indexes, 

interest rates, currencies, energy assets, metals, agricultural, and livestock contracts. The authors 

used datasets very similar to those used by Egelkraut and Garcia (2006), and by Egelkraut, Garcia, 
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and Sherrick (2007) to investigate the agricultural commodities markets. This is probably the 

reason the two studies found similar results. 

Berlova (2011) compared volatility forecast models to investigate their efficiency predicting 

volatility in the crude oil and in the natural gas markets. The author used a model-free FIV 

developed by Britten-Jones and Neuberger (2000), a model-based FIV estimated using the Black’s 

(1976) model, a GARCH model, and a historical volatility (HV) model based on a 250-day moving 

average. The authors found that the FIV-type models outperformed the others. 

Locke (2014) found strong volatility seasonal patterns in the corn, wheat, and soybeans markets 

between 1995 and 2012. Differently from the aforementioned studies, the author used intraday 

prices (tick prices) in his analysis. He compared the IV with the historical volatility calculated 

using a 30-day rolling window. He found that the IV forecasts outperformed the historical volatility 

predicting the future realized volatility in all markets in his analysis. 

During the last decades, the study done by Martens and Zein (2004) seems to be the most relevant 

in the area to have found different results regarding the dominance of IV models over HV (and/or 

time series) models to forecast realized volatilities. The authors analyzed three classes of assets 

(equity, foreign exchange, and commodities) between 1993 and 2000 using high-frequency data 

and long-memory modeling. Since the authors considered the 24-hour period in their analysis, they 

calculated the realized volatility based on the intraday and the intra-night returns. They compared 

the forecasts obtained from the (high-frequency) Autoregressive Fractionally Integrated Moving 

Average (ARFIMA) and (daily) GARCH models to the IV forecasts for different assets and 

horizons. The first part of their findings confirm the results from previous researchers: the daily 

GARCH volatility forecasts have little or no information over that already contained in implied 

volatilities. However, they found that the ARFIMA outperformed the GARCH model, and that the 

first model contains information not already built in the options-implied volatilities. 

 

3. Data and methods 

Our analysis is similar to the approach presented in the literature by Egelkraut and Garcia (2006) 

and by Egelkraut, Garcia, and Sherrick (2007). However, our dataset covers a different period for 
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futures and options prices on the corn, soybeans, and wheat futures contracts. In addition, we also 

compare the forecast results of a SARIMA model to predict the realized volatilities. 

The methodology is divided into three different steps: i) we first build volatility intervals for which 

we further calculate the realized and the implied volatilities (IV), and estimate historical volatilities 

(HV); ii) we obtain volatilities forecasts using different methods; iii) at last, we use an econometric 

model to compare forecast performances for different methods, during different time periods. 

 

3.1. Data 

Our dataset consists of futures and standard options on futures prices for corn, soybeans, and wheat 

contracts traded at the CME Group, obtained at the websites Barchart (http://www.barchart.com/) 

and Quandl (http://www.quandl.com/). 

We use daily settle futures prices from November 1969 to June 2016 to calculate historical 

volatilities. The dataset consists of 11,965 daily observations for corn and wheat, and 12,034 daily 

observations for soybeans. 

The options on futures data extend from February 2006 to June 2016. We used all the options 

traded (non-zero volume) to calculate the implied volatility for each day representing a 

correspondent time interval. All in-, at-, and out-of-the-money options were used in our 

calculation. A total of 4,564 options on the corn and wheat futures contracts (2,606 calls and 1,958 

puts for each commodity), and 5,155 options on the soybeans futures contract (2,918 calls and 

2,237 puts) were used to calculate the implied volatilities.  

 

3.2. Forecast intervals 

We only use serial options in our analysis. For this reason, we calculate volatilities for intervals 

between two underlying futures contracts expiration months. Since corn and wheat futures 

contracts are traded for five expiration months (March, May, July, September, December) and 

soybeans futures are traded for seven months (January, March, May, July, August, September, 

November), we create forward intervals with different lengths in our analysis (either one, two or 

three months long). According to tables 1 and 2, the non-overlapping time intervals cover different 
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production and marketing stages for the analyzed commodities, and are fixed across time 

(EGELKRAUT; GARCIA, 2006). 

Table 1. Forecast intervals for corn and wheat1 futures contracts  

Intervals Contract expiration Characteristic 

FEB-APR (p1) May (K) Storage 

APR-JUN (p2) July (N) Planting and beginning of growth period 

JUN-AUG (p3) September (U) Critical growth period 

AUG-NOV (p4) December (Z) Harvest 

NOV-FEB (p5) March (H) Harvest and storage 

 

Table 2. Forecast intervals for soybean futures contracts  

Intervals Contract expiration Characteristic 

FEB-APR (p1) May (K) Storage 

APR-JUN (p2) July (N) Planting and beginning of growth period 

JUN-JUL (p3) August (Q) Critical growth period 

JUL-AUG (p4) September (U) Growth period 

AUG-OCT (p5) November (X) Harvest 

OCT-DEC (p6) January (F) Harvest 

DEC-FEB (p7) March (H) Storage 

 

3.3. Volatility forecast methods 

3.3.1. Realized volatility 

We calculated realized volatilities for each time interval as the annualized standard deviations of 

log returns. We calculated returns ሺܴ௧ሻ using futures prices underlying options with the longest 

maturity for each time interval, according to equation (1): 

                                                            
1 We assume that the spring wheat planting occurs from April through May, and the harvest from August through 
September. The winter wheat planting season occurs between August and October, and the harvest from May through 
July. 
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ೌ்,௥௘௔௟ߪ (1) ି்್ ൌ ඨ252 ∗ ቆ
∑ ሺܴ௧ െ ܴ௧തതതሻଶே
௧ୀଵ

ܰ
ቇ 

 

Futures prices were used to calculate 233 realized volatilities for corn and wheat, and 325 realized 

volatilities for soybeans, from 1969 to 2016.  

3.3.2. Implied forward volatility 

We followed the procedure presented by Egelkraut and Garcia (2006), and by Egelkraut, Garcia, 

and Sherrick (2007) to calculate implied forward volatilities. Both studies assume no-arbitrage 

conditions and follow Cox and Ross’ (1976) model to calculate call and put values, according to 

equations (2) and (3): 

(2) ௖ܸሺݔሻ ൌ ܾሺܶሻන maxሺ0, ்ܨ െ ்ܨሻ்݀ܨሻ݃ሺݔ

ஶ

଴

 

(3) ௣ܸሺݔሻ ൌ ܾሺܶሻන maxሺ0, ݔ െ ሻ்ܨ ݃ሺ்ܨሻ்݀ܨ

ஶ

଴

 

Where ௖ܸሺݔሻ and ௣ܸሺݔሻ are the European call and put option premiums for a given strike price x, 

ܾሺܶሻ	is a continuous discount factor using the time to maturity T and a risk-free interest rate2, ்ܨ 

is the current futures price of the underlying contract, and ݃ ሺ்ܨሻ is the market expected probability 

density function of the underlying futures contract price at maturity. Equations (2) and (3) 

represent Black’s (1976) option pricing model when we assume that ݃ሺ்ܨሻ is the log normal 

distribution. These equations are part of the following objective function (4) that we use to obtain 

implied futures prices and volatilities for specific maturities. 

(4) min
ఝ

ۏ
ێ
ێ
ێ
ێ
ۍ ෍൭ቆ ௖ܸ,௜ െ ܾሺܶሻන ݃ሺ்ܨ|߮ሻሺ்ܨ െ ்ܨ௜ሻ݀ݔ

ஶ

௫೔

ቇ
ଶ

൱

௞

௜ୀଵ

൅෍൭ቆ ௣ܸ,௝ െ ܾሺܶሻන ݃ሺ்ܨ|߮ሻ൫ݔ௝ െ ்ܨ൯்݀ܨ
௫ೕ

଴
ቇ
ଶ

൱

௟

௝ୀଵ ے
ۑ
ۑ
ۑ
ۑ
ې

 

 

                                                            
2 We used the three-month T-Bill interest rates obtained at the Federal Reserve in our analysis. 
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The variables in equation (4) are the same presented in equations (2) and (3), and include the 

various observed calls ሺ ௖ܸ,௜ሻ and puts ሺ ௣ܸ,௝ሻ premiums for different strike prices ሺݔ௜	and	ݔ௝) with 

the same maturity. 

The approach using equation (4) minimizes the sum of the squared difference between the 

observed premiums and the model premiums, calculated using equations (3) and (4). Differently 

from the traditional Black-Scholes and Black options pricing models, this approach does not 

impose any restrictions on the futures prices distribution, and allows the use of all options traded 

on a given date, regardless of if they are in-, at- or out-of-the money (EGELKRAUT; GARCIA; 

SHERRICK, 2007). 

The solutions obtained from equation (4) were used to calculate the implied forward volatilities 

(IFV) for different periods assuming that the volatilities are time-additive. For a specific day t = 0, 

we use options contracts maturing in ௔ܶ and ௕ܶ ( ௕ܶ > ௔ܶሻ, and calculate the volatility for each time 

interval  ߪ௜௩,଴ି்ೌ  and ߪ௜௩,଴ି்್. The same procedure is used to calculate implied forward volatilities 

for consecutive periods. According to Egelkraut, Garcia, and Sherrick (2007), the IFV calculated 

in equation (5) “represents the market’s expectation of the average volatility that will occur during 

this future interval”. 

್்ିೌ,்,௜௙௩ߪ (5) ൌ ඨ ௕ܶߪଶ௜௩,଴ି்್ െ ௔ܶߪଶ௜௩,଴ି்ೌ

௕ܶ െ ௔ܶ
 

 

The IFV for each period was calculated using the premiums for all options traded on the last Friday 

of the month, two months before the option expiration.  

3.3.3. Historical volatility 

 

The series of calculated realized volatilities (equation 1) was used to estimate historical volatilities. 

We assume that a rational trader uses all available information to estimate the future volatility and 

therefore, to price an option. Market participants are also assumed to know how weather conditions 

and other seasonal effects affect prices and volatilities along the crop year, and how some of these 
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patterns repeat over the years3. For this reason, we use a SARIMA model to estimate future 

volatilities based on historical data. We assume that realized volatilities follow an autoregressive 

process and use the Box and Jenkins (1976) approach to forecast two and three-step ahead 

historical volatilities. Brooks (2014) considers this approach as a relatively simple form of the 

class of stochastic volatility specifications. According to Pankratz (1983), ARIMA models are 

particularly useful for forecasting series with seasonal variations. 

The econometric specification that we use for the SARIMA (p, d, q)x(P, D, Q)s model considers 

that the s observations for each year in our analysis (s=5 for corn and wheat, and s=7 for soybeans) 

present a seasonal pattern described by the following equation (5): 

(5) ϕሺܤሻΦሺܤௌሻΔௗΔௌ
஽

௧ܻ ൌ  ௌሻ݁௧ܤሻΘሺܤሺߠ

 

Where ϕሺܤሻ and ߠሺܤሻ represent the autoregressive (AR) and the moving average components of 

orders p and q, respectively. Φሺܤௌሻ and Θሺܤௌሻ similarly represent the seasonal-AR and the 

seasonal-MA components of orders P and Q. Δௗ and Δௌ
஽ are difference and seasonal-difference 

operators, and ݁௧ is a white noise process. 

We follow the standard identification procedure described by Box and Jenkins (1976) to estimate 

51 two-step ahead volatility forecasts for corn and wheat, and 71 two- or three-step ahead forecasts 

for soybeans. All the data prior to February 2016 was used to forecast the initial volatility value 

for all three commodities. We then added the new realized volatility to the model and re-estimated 

a new SARIMA model to forecast the next future volatility. We used the rolling window procedure 

to complete our volatility forecasts for all three commodities between April 2006 and June 2016. 

3.3.4. Naïve volatilities 

A historical naïve volatility (NV) is calculated to serve as a comparative reference to the SARIMA 

model forecasts, as follows: 

ே஺ூ௏ா೅ߪ (5) ൌ  ೅షೄ	ோ௘௔௟௜௭௘ௗߪ

  

                                                            
3 For instance, a visual inspection of Figures 1A, 2A and 3A may suggest the existence of seasonal volatility effects 
in all the three commodities. 
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Where the naïve volatility is the same realized volatility for the same time interval, in the previous 

year. 

 

3.4. Forecast evaluation 

 

The volatility forecast methods are evaluated according to their performance predicting the 

realized volatility. We first use equation (6) to estimate a linear regression model, and then perform 

various tests to identify the performance of each forecast method. 

 

ோா஺௅ூ௓ா஽೟ߪ (6) ൌ ଴ߙ ൅ ிைோா஼஺ௌ்೔,೟ߪଵߙ ൅  ௜,௧ߝ

 

According to Christensen e Prabhala (1998), different hypothesis can be tested using equation (6): 

i) We assume that a forecast volatility method (i = IFV, naïve-HV, or SARIMA-HV) contains 

information about the realized volatility, if the slope coefficient ߙଵ is statistically different 

from zero. 

ii) The forecast volatility method “i” provides unbiased predictions of the realized volatility 

if the join hypothesis ߙ଴ ൌ 0	 and ߙଵ ൌ 1	cannot be rejected. We use the Wald test to verify 

this hypothesis. 

iii) The forecast volatility method “i” is efficient when the residuals are white noise, and 

uncorrelated with any other variable included in the market information set. We use the 

Durbin-Watson test to verify this hypothesis.  

Moreover, we test the residuals estimated from the additional regression (7) to compare the 

informational efficiencies of the IFV and the SARIMA-HV forecasts. 

 

ோா஺௅ூ௓ா஽೟ߪ (7) ൌ ଴ߙ ൅ ூி௏೟ߪଵߙ ൅ ௌ஺ோூெ஺ିு௏೟ߪଶߙ ൅  ௧ߝ

 

Equation (7) is used to test if the presence of an additional variable in the model can contribute to 

increase the prediction performance of a certain forecast method. We use the t-statistics to test 

individual null hypotheses that ߙଵ and ߙଶ are equal to zero. When one of the slope coefficients is 

found to be different from zero when the other one is not, we can conclude that the method with a 

non-zero coefficient is efficient whereas the other is not.  
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The accuracy of different forecast methods are evaluated using the mean absolute percentage errors 

(MAPE) and compared using the modified HLN test proposed by Diebold and Mariano (1995) – 

HLNDM, and suggested by Poon and Granger (2003)4. 

 

4. Results 

During the first part of the analysis, realized volatilities for different time intervals for all 

commodities were calculated. Figure 1 presents the average volatilities calculated during the most 

recent period and the average volatilities calculated during the period between 1992 to 2001, which 

is the period previously studied by Egelkraut and Garcia (2006)5. A visual inspection of Figure 1 

suggests that for most time intervals and commodities, the average volatilities still follow a defined 

pattern, increasing during the growing season and decreasing otherwise6. In addition, realized 

volatilities appears to have increased after the first period. 

  

  

                                                            
4 Egelkraut, Garcia and Sherrick (2007) also used the same approach to compare different forecast methods. 
5 The comparison is based on the results found by Egelkraut and Garcia (2006), as this is the only study that covers a 
wide variety of agricultural commodities in the literature, and includes all three of the commodities investigated in 
our study. 
6 It is possible to observe two periods of high volatility for wheat. The first one corresponds to the growing season of 
the spring crop, while the second is related to the beginning of the planting season of the winter crop. 
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Figure 1. Annualized realized volatilities for different time intervals 
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We tested for the difference in the volatility means between the two periods using the t-test with 

unequal variances7. The results presented in Table 3 show that for corn and wheat, the null 

hypothesis that there is no difference in variance is rejected at the 5% significance level, for all 

time intervals. However, for soybeans the result is not the same, since the null hypothesis cannot 

be rejected for the time intervals between April to August, which represent the growing season for 

the commodity.  

 

Table 3. Variance comparison using the t-test: 1992-2001 versus 2006-2016 (annualized values) 

 1992-2001 2006-2016 t-test 

CORN Mean SD n Mean SD n t-stat p-value 

Feb-Apr 0.1669 0.0471 10 0.2737 0.0632 11 4.4176 0.0000 
Apr-Jun 0.2147 0.0583 10 0.2872 0.0640 11 2.7167 0.0079 
Jun-Aug 0.2594 0.0676 10 0.3467 0.0657 10 2.9318 0.0171 
Aug-Nov 0.1645 0.0322 10 0.3142 0.0978 10 4.5988 0.0005 
Nov-Feb 0.1413 0.0318 10 0.2436 0.0966 10 3.1810 0.0036 

         

SOYBEANS Mean SD N Mean SD n t-stat p-value 

Feb-Apr 0.1578 0.0483 10 0.2093 0.0877 11 1.6847 0.0435 
Apr-Jun 0.2046 0.0462 10 0.2091 0.0579 11 0.1968 0.4283 
Jun-Jul 0.2582 0.0762 10 0.2665 0.0962 11 0.2189 0.3298 
Jul-Aug 0.2087 0.0965 10 0.2750 0.1099 10 1.4353 0.2362 
Aug-Oct 0.1761 0.0317 10 0.2535 0.0896 10 2.5757 0.0133 
Oct-Dec 0.1456 0.0273 10 0.2215 0.0791 10 2.8714 0.0107 
Dec-Feb 0.1409 0.0361 10 0.2132 0.0672 10 2.9975 0.0064 

         

WHEAT Mean SD n Mean SD n t-stat p-value 

Feb-Apr 0.2216 0.0469 10 0.3498 0.1143 11 3.4173 0.0010 
Apr-Jun 0.2306 0.0567 10 0.3168 0.0887 11 2.6748 0.0048 
Jun-Aug 0.2299 0.0465 10 0.3475 0.1085 10 3.1512 0.0076 
Aug-Nov 0.1989 0.0269 10 0.3213 0.0988 10 3.7797 0.0011 
Nov-Feb 0.1850 0.0182 10 0.2880 0.0836 10 3.8044 0.0010 

 

  

                                                            
7 The null hypothesis for the t-test is that there is no difference in the sample means. The alternative hypothesis assumes 
that the realized volatility in the second period is larger than in the first period. Jarque-Bera tests were also conducted, 
and the null hypothesis that the volatility is normally distributed could not be reject for any time interval at the 1% 
significance level. 
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We continue our analysis using the calculated realized volatility to calculate the naïve volatilities 

and to estimate the historical volatilities using the SARIMA model. Moreover, we use the options 

data to calculate the implied forward volatilities. All volatility forecasts methods show significant 

seasonal patterns for all commodities. Figure 4A in the Annex illustrates the results found for the 

IFV forecasts using boxplots for all commodities. 

Tables 1A through 4A present all the results for the forecast evaluation analysis. Table 1A presents 

the results for the whole period, while the other three tables show the results for three sub-periods: 

before, during, and after the 2008 crisis. 

The analysis of the results presented in Table 1A show that most of the estimated slope coefficients 

are significantly different from zero in all regressions, indicating that the IFV, the naïve HV, and 

the SARIMA-HV contain information about the future realized volatility. Most of the forecast 

methods provided biased (except the SARIMA-HV for corn and soybeans, the IFV for wheat) and 

non-efficient predictors of the market volatility (except the IFV for corn and wheat).  

A prior analysis of the results suggests that the naïve-HV was the poorest predictor of the realized 

volatility between 2006-2016. The coefficients of determination (R2) and the slope parameters in 

the naïve-HV regressions have the smallest values among all regressions (with the exception of 

the R2 for corn). The IFV, on the other hand, presents significant better outcomes. The results for 

all IFV regressions in Table 1A present the highest R2 coefficients, and significant information 

predicting the realized volatility (high values for slope coefficients). Moreover, the IFV method 

seems to outperform the SARIMA-HV since the presence of historical forecasts does not improve 

the information already given by the implied volatility while predicting the realized values. 

The analysis of the results for the three sub-periods have similar results regarding the naïve-HV 

forecast method. The results in Tables 2A, 3A and 4A show that the most basic method was 

outperformed by the other methods for all sub-periods, and commodities. Therefore, the volatility  

forecast based only in the past year information does not seem to be a good predictor for future 

volatilities. 

The analysis for the first period (before the crisis) for corn shows that, even though the results 

using the IFV are unbiased, and the results using the SARIMA-HV contain less information about 

the market data, both models performed equally well predicting corn prices volatility. For the 

wheat market, all the methods resulted in biased and efficient results, and the IFV method seems 

to contain more information about the realized volatility than other forecasts. The SARIMA-HV 
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outperformed all other forecast methods to predict soybean prices volatility during the first sub-

period. 

For the crisis period, we found similar results for corn and wheat. Most of the evaluated forecasts 

resulted in unbiased and efficient forecasts, and the results for both commodities were very poor 

during the crisis: the information content in the evaluated forecasts were very low, and as 

consequence, most of the models did not provide important contributions to predict the realized 

volatility (low R2, and low and non-significant slope coefficients). No slope coefficients were 

statistically different from zero at the 5% significance level, for the corn and wheat analysis for 

the crisis period (Table 3A). The analysis for soybean prices volatilities, however, were different 

and the results for the IFV forecasts presented better outcomes than the other two methods. 

The results for the last period for corn show that both the IFV and SARIMA-HV methods provide 

unbiased and efficient forecasts, and contain significant information about the realized volatility 

(slope coefficients close to one) - although the IFV method seems to have superior performance. 

The IFV also provided similar results predicting wheat and soybean prices volatilities. However, 

the performance for all models seems to be very poor after the crisis. 

 

5. Conclusion 

 

Our main findings suggest that volatility in the corn, soybean and wheat futures markets have 

increased over the last decades. Even though we found significant changes in the levels of risk, we 

also found that the seasonal patterns in all three markets are still present, and follow the critical 

events along the crop year for all analyzed commodities. Since market participants face higher risk 

levels in agricultural markets, we investigated how different forecast models perform predicting 

future realized volatilities. 

We found that the implied forward volatility (IFV) and the historical volatility (HV) method based 

on SARIMA forecasts have similar predictive performance in the corn and wheat markets. Both 

methods seem to contain important information related to the realized volatilities, in those markets. 

The forecasts obtained with the FIV method seem to perform slightly better than other models 

since they were found to be unbiased and efficient predictors in most of the analyzed sub-periods. 

The historical volatility method based on the SARIMA model forecasts seems to be more 

appropriate to forecast future volatilities in the soybean market. 
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Other studies that evaluate different volatility forecast methods are still important to investigate 

price variation in the agricultural markets. Moreover, studies that investigate other contracts, such 

as the short-dated new crop options, could also help to understand how changes in volatility can 

affect hedgers’ outcomes. 
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Annex 

Figure 1A. Realized volatility for corn futures from 1969 to 2016 (in cents/bushel) 

 

 

Figure 2A. Realized volatility for soybean futures from 1969 to 2016 (in cents/bushel) 
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Figure 3A. Realized volatility for wheat from 1969 to 2016 (in cents/bushel) 
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Figure 4A. Boxplots for implied forward volatilities (annualized) 2006-2016 
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Table 1A: Summary of regressions: full period (2006 – 2016) 
  CORN  WHEAT  SOYBEANS 
Variables/  IFV  HV-ARIMA  HV-NAIVE  IFV + HV-

ARIMA 
IFV  HV-ARIMA  HV-NAIVE  IFV + HV-

ARIMA 
IFV  HV-ARIMA  HV-NAIVE  IFV + HV-

ARIMA 
Coefficients                                                 

  ଴ 0.064 * 0.159 ** 0.186 *** 0.121 ** 0.094  0.156 *** 0.250 *** 0.060  0.072 *** 0.078 *** 0.200 *** 0.043ߙ 
 [0.038]  [0.063]  [0.042]  [0.056]  [0.057]  [0.032]  [0.039]  [0.048]  [0.026]  [0.029]  [0.033]  [0.044]  
 *** ூி௏ 0.726 ***     0.918 *** 0.725 ***     0.539 *** 0.589 ***     0.535ߪ 
 [0.113]      [0.180]  [0.179]      [0.162]  [0.116]      [0.106]  

  ො஺ோூெ஺   0.480 **   -0.42    0.556 ***   0.303 ***   0.705 ***   0.196ߪ 
   [0.190]    [0.267]    [0.081]    [0.094]    [0.138]    [0.189]  

    ොே஺ூ௏ா     0.367 ***       0.236 ***       0.143ߪ 
     [0.108]        [0.086]        [0.133]    
R² 0.38  0.08  0.13  0.41  0.336  0.201  0.058  0.389  0.384  0.137  0.021  0.392  

# obs. 50  51  51  50  50  51  51  50  70  71  71  70  
Wald test 
଴ߙ ൌ 0, ଵߙ
ൌ 1 

6.74  3.93  3598  
  

1.48  15.01  43.15    9.87  4.00  20.88  
  

p-value 0.003  0.026  0.000    0.237  0.000  0.000    0.000  0.023  0.000    

Residualss                                                
Jarque-Bera 5.08  2.90  7.08  3.19   0.04    13.79    9.62    0.51    2.32    20.19    19.53    2.64   

p-value 0.08  0.23  0.03  0.20   0.98    0.001    0.01    0.78    0.314    0.000    0.000    0.266   

DW 1.62  1.00  1.04  1.71   1.62    1.24    1.09    1.63    1.18    0.97    0.71    1.22   

MAPE 21.98  24.47  24.31     20.29    23.70    30.70        32.66    24.85    36.42       

HLN-DM 
(IFV and 
HV-ARIMA) 

1.12       1.41            2.58           

p-value 0.269       0.165            0.012           
HLN-DM 
(HV-ARIMA 
and HV-   
NAIVE) 

  

0.07 

       

-2.32            3.25 

     

p-value   0.948         0.024            0.002       

*** significant at the 1% level. 
** significant at the 5% level. 
* significant at the 10% level. 
Standard errors in brackets. 
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Table 2A: Summary of regressions: before the crisis 
  CORN – p2.2006 - p3.2008  WHEAT - p2.2006 - p3.2008  SOYBEANS - p2.2006 - p4.2008 
Variables/  IFV  HV-

ARIMA 
HV-NAIVE  IFV + 

HV-
ARIMA 

IFV  HV-ARIMA  HV-NAIVE  IFV + HV-
ARIMA 

IFV  HV-ARIMA  HV-NAIVE  IFV + HV-
ARIMA 

Coefficients                                                 

 *** ଴ 0.156 * 0.126  0.313ߙ 
0.172  

0.090  0.213 *** 0.134 * 0.124 *** 0.051  
-
0,044 

 0,251 *** 
0,197  

 [0.081]  [0.098]  [0.027]  [0.110]  [0.068]  [0.052]  [0.070]  [0.031]  [0.04]  [0,15]  [0,05]  [0,120]  
 *** ூி௏ 0.468 *     0.618  0.812 ***     0.357 * 0.618 ***     0,894ߪ 
 [0.231]      [0.920]  [0.235]      [0.161]  [0.13]      [0,236]  

   * ො஺ோூெ஺   0.788ߪ 
-0.257  

  0.517 ***   0.360 ***   1,392 **   
-
1,077 

 

   [0.399]    [1.536]    [0.118]    [0.069]    [0,64]    [0,786]  

    ොே஺ூ௏ா     0.018        0.847 **       0,003ߪ 
     [0.122]        [0.320]        [0,25]    
R² 0.37  0.33  0.00  0.38  0.64  0.27  0.16  0.83  0.52  0,17  0,00  0,55  

# obs. 11  12  12  11  11  12  12  11  16  17  17  16  
Wald test 

଴ߙ ൌ 0, ଵߙ ൌ 1 3.46  13.72  70.60    8.47  9.08  12.07    12.20  2,03  11,98    

p-value 0.076  0.001  0.000    0.009  0.006  0.002    0.001  0,166  0,001    

Residuals                                                
Jarque-Bera 1.22  1.04  1.47  1.18   0.51    25.43    8.19    0.51    2.102    3,956    3,539    1,95   

p-value 0.54  0.59  0.48  0.55   0.77    0.000    0.017    0.78    0.35    0,14    0,17    0,377   

DW 1.861  1.931  1.44  1.90   2.01    1.69    1.93    2.63    2.04    1,43    0,78    1,99   

MAPE 18.61  22.18  22.60                     35.43    20,58    33,93       

HLN-DM (IFV and 
HV-ARIMA) 0.498       2.406            4.974           

p-value 0.628       0.035            0.000           
HLN-DM (HV-
ARIMA and HV-   
NAIVE) 

  
-0.11 

       
-0.039            2.293 

     

p-value   0.913         0.970            0.036       

*** significant at the 1% level. 
** significant at the 5% level. 
* significant at the 10% level. 
Standard errors in brackets. 
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Table 3A: Summary of regressions: during the crisis 
  CORN – p4.2008 - p1.2011  WHEAT – p4.2008 - p1.2011  SOYBEANS – p5.2008 - p1.2011 
Variables/  IFV  HV-ARIMA  HV-NAIVE  IFV + HV-

ARIMA 
IFV  HV-ARIMA  HV-NAIVE  IFV + HV-

ARIMA 
IFV  HV-ARIMA  HV-NAIVE  IFV + HV-

ARIMA 
Coefficients                                                 

  ଴ 0.282  0.491 ** 0.360 ** 0.422 ** 0.333 *** 0.255 *** 0.489 *** 0.240  0.022  0,151 ** 0,359 *** -0,024ߙ 
 [0.161]  [0.214]  [0.120]  [0.189]  [0.096]  [0.069]  [0.068]  [0.146]  [0.10]  [0,06]  [0,10]  [0,112]  
 ** ூி௏ 0.188      0.823 ** 0.120      0.045  0.757 **     0,678ߪ 
 [0.393]      [0.343]  [0.261]      [0.316]  [0.27]      [0,279]  

 * ො஺ோூெ஺   -0.449    -1.197    0.368 *   0.361 *   0,508 ***   0,286ߪ 
   [0.616]    [0.844]    [0.197]    [0.189]    [0,13]    [0,136]  

  ොே஺ூ௏ா     -0.026ߪ 
  

    -0.269        
-
0,240 

 
  

     [0.283]        [0.178]        [0,29]    
R² 0.02  0.05  0.00  0.22  0.01  0.117  0.086  0.119  0.34  0,13  0,06  0,38  

# obs. 13  13  13  13  13  13  13  13  18  18  18  18  
Wald test 
଴ߙ ൌ 0, ଵߙ ൌ 1 

4.56  2.89  11.63    5.99  7.61  26.65    3.31  15,05  9,76    

p-value 0.036  0.098  0.002    0.017  0.008  0.000    0.062  0,001  0,002    

Residuals                                                
Jarque-Bera 0.86  0.57  0.77  0.77   0.20    0.252    0.708    0.19    0.420    1,097    1,05    0,382   

p-value 0.65  0.75  0.68  0.68   0.91    0.881    0.702    0.91    0.81    0,58    0,59    0,83   

DW 1.204  1.147  1.18  1.53   1.92    2.20    1.728    2.23    0.845    0,680    0,436    0,92   

MAPE 24.12  23.61  25.74                     39.81    28,63    56,90       

HLN-DM (IFV 
and HV-
ARIMA) 

0.09 
     

0.886 
         

1.45 
         

p-value 0.925       0.393            0.167           
HLN-DM 
(HV-ARIMA 
and HV-   
NAIVE) 

  

0.37 
       

1.670            3.09 
     

p-value   0.714         0.121            0.007       

*** significant at the 1% level. 
** significant at the 5% level. 
* significant at the 10% level. 
Standard errors in brackets. 
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Table 4A: Summary of regressions: after the crisis 
  CORN – p2.2011 - p2.2016  WHEAT - p2.2011 - p2.2016  SOYBEANS - p2.2011 - p2.2016 
Variables/  IFV  HV-ARIMA  HV-NAIVE  IFV + HV-

ARIMA 
IFV  HV-ARIMA  HV-NAIVE  IFV + HV-

ARIMA 
IFV  HV-ARIMA  HV-NAIVE  IFV + HV-

ARIMA 
Coefficients                                                 

 *** ଴ 0.001  -0.018  0.121 *** 0.003  -0.024  0.116 ** 0.195 *** -0.024  0.185 ** 0,335 *** 0,178 *** 0,320ߙ 
 [0.044]  [0.076]  [0.033]  [0.189]  [0.097]  [0.048]  [0.05]  [0.099]  [0.07]  [0,08]  [0,04]  [0,09]  
  ூி௏ 0.903 ***     0.917 *** 1.101 ***     1.135 ** 0.079      0,206ߪ 
 [0.156]      [0.128]  [0.337]      [0.542]  [0.32]      [0,37]  

 * ො஺ோூெ஺   0.968 ***   -0.021    0.563 ***   -0.032    -0,639    -0,782ߪ 
   [0.262]    [0.292]    [0.172]    [0.248]    [0,38]    [0,43]  

    ොே஺ூ௏ா     0.492 ***       0.289 *       0,116ߪ 
     [0.108]        [0.143]        [0,19]    

R² 0.45  0.30  0.26  0.45  0.35  0.19  0.12  0.35  0.003  0,044  0,012  0,06  

# obs. 26  26  26  26  26  26  26  26  36  36  36  36  
Wald test 
଴ߙ ൌ 0, ଵߙ ൌ 1 5.18  3.14  12.94    0.10  3.24  12.53    4.69  13,93  12,72    

p-value// 0.014  0.061  0.001    0.91  0.057  0.000    0.016  0,000  0,0001    

Residuals                                                
Jarque-Bera 0.80  1.72  2.03  0.78   0.43    0.54    0.261    0.45    3.237    2,944    3,93    2,23   

p-value 0.67  0.42  0.36  0.68   0.80    0.76    0.878    0.80    0.198    0,229    0,14    0,33   

DW 1.919  1.579  1.518  1.92   1.38    0.97    0.847    1.40    1.312    1,363    1,35    1,372   

MAPE 22.34  25.96  24.39                     27.86    24,98    27,36       

HLN-DM (IFV 
and HV-
ARIMA) 

3.487 
     

-0.911 
         

0.605 
         

p-value 0.002       0.371            0.549           
HLN-DM 
(HV-ARIMA 
and HV-   
NAIVE) 

  
-0.88 

       

2.967            1.75 
     

p-value   0.383         0.007            0.08       

*** significant at the 1% level. 
** significant at the 5% level. 
* significant at the 10% level. 
Standard errors in brackets. 

 


