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Optimal economic length of leys:  
a dynamic programming approach 

 

Abstract 
A model is presented to investigate the optimal economic life cycle of grass leys with winter 
damage problems in northern Norway and to determine the threshold of winter damage before 
it is profitable to re-seed. A two-level hierarchic Markov process has been constructed using 
the MLHMP software. The model takes uncertainty concerning yield potential, damage 
estimation and weather dependent random fluctuations into account. A Kalman filter 
technique is used for updating of knowledge on yield potential and damage level.  

The application of the model is demonstrated using data from two commercial 
Norwegian farms. Since parameter estimates vary considerably among farms, it is concluded 
that decision support concerning optimal economic life cycle of grass leys should be done at 
farm level. The results also show the importance of using a flexible dynamic replacement 
strategy. Use of the model for a specific farm situation is illustrated. 

 
Keywords: Dynamic programming; Bayesian updating; Leys replacement; Norway  
 
 

1. Introduction 
Grass production is the main agricultural land use in many parts of Norway. In northern 
Norway, i.e. the three counties of Nordland, Troms, and Finnmark, as much as 94 per cent of 
agricultural land in use was under grass in 1999 (Statistics Norway, 2000). In the years 1975, 
1978, 1985, 1995, and 1998 grass leys were severely damaged on many farms in northern 
Norway. Clearly, winter damage to grassland is a significant hazard in this area, and winter 
damage is the main reason why leys have to be resown. 

Once established, young grass leys normally have higher yields than older leys 
(Nesheim, 1986). Therefore, even under “normal” as well as under winter damage conditions, 
it might be beneficial to plough the fields and re-seed grasses. 

Deciding whether to re-establish grass leys is a typical replacement problem. Such 
problems are effectively handled by dynamic programming (DP). Agricultural applications of 
DP have been reviewed by Kennedy (1986) and Kristensen (1994). To our knowledge, there 
are no published studies of the use of DP to determine the optimal economic length of leys.  
However, DP has been used extensively to solve animal replacement problem (Kristensen, 
1994) which corresponds closely to our replacement problem. The approach in this paper is to 
apply modern methods of DP modelling for the animal replacement research to the problem 
of replacement of leys.  

A farmer who cultivates grassland is always faced with uncertainty, especially in the 
area of our study. For instance, the farmer will not know for sure what yields he will obtain in 
future. This uncertainty concerning future yields has several different sources: 
• Even though the farmer knows the yield history of the field, there is still some uncertainty 

concerning the true yield potential. 
• A ley may suffer damage in winter. 
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• In spring, the farmer may inspect the field and visually estimate the extent of a possible 
winter damage. There is a considerable uncertainty concerning the visual estimate. 

• Weather conditions may influence the year-to-year yields considerably. 
 
The aim of this study is to construct a model taking all the uncertainties mentioned 

into consideration. A two-level hierarchic Markov process (Kristensen and Jørgensen, 2000) 
is build using the MLHMP software (Kristensen, 2003). A Kalman filter model (West and 
Harrison, 1997) is used to represent and update knowledge on the yield potential of the field. 

An extended version of this paper will be published in Lien et al. (forthcoming). 

2. The grassland yield model 

2.1. Description of the problem 

We assume a relatively flat and uniform area is sown with grasses on soil and under climatic 
conditions that lead to an unstable yield. In cold periods of the year when there is no snow 
cover, the soil freezes. In coastal areas the temperature often varies and, after a cold period 
there might be a milder period with rain. Frozen soil has low water permeability, so the water 
will not soak into the soil. If the mild, rainy period is followed by cold weather, the surface 
water freezes. An ice cover might damage the ley, and the yields can suddenly drop 
considerably between years because of winter damage.  

In the first year after a winter damage, a partial recovery is often seen, but a moderately 
damaged ley that is not reseeded will normally not recover fully (Haraldsen et al., 1995). 
Decision strategies to keep or replace the ley after a year with winter damage should account 
for this potential partial recovery. 

The sharp yield drops caused by winter damage are in addition to year-to-year yield 
uncertainty caused by for instance weather conditions in the growing season.  

The optimal replacement decision involves selection of an optimal rotation strategy for 
grass leys that maximises expected present value of income over time. The decisions to 
replace or keep the ley are assumed to continue sufficiently far into the future to justify an 
assumption of an infinite time horizon. Stochastic DP problems with infinite time horizons 
can often be solved more easily than those with finite horizons, and are likely to give reliable 
results for real problems with time horizons of several years (Kennedy, 1986). 

Each year the farmer must decide whether to replace or keep the existing grass ley. The 
decision depends on yield level, grass quality and roughage price, re-seeding cost, loss of 
production during the establishment phase, fieldwork and other variable costs, etc.  

All of the above-mentioned factors affecting ley replacement decisions are uncertain, and 
so ideally should be modelled as stochastic variables. For simplicity we express only yield, 
assumed to be the main uncertainty in the evaluation, in stochastic terms. In addition to this 
uncertainty, we also assume that in years with winter damage the yields suddenly drop 
significantly, but then partially recover next year. Such drops with following increase in yield 
are accounted for with five possible discrete downward jump processes. 

2.2. General model 

Grassland yields are in general assumed to follow a quadratic function 
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where ( )ny  is the expected yield for year 1+n  since re-seeding (i.e. ( )0y  is the expected 
yield for the first year after re-seeding). The parameters nyy  and ,0  are the initial yields, the 
minimum yield and year of minimum yield, respectively. Having reached the minimum yield, 
it is assumed to remain at this minimum value. When we apply the model (1) to a particular 
field i , we shall index the symbols by i  (e.g. ( )nyi ). 

The actual yield of a field will vary at random from year to year, and from ley to ley. 
We may include those aspects by the following extension 

( ) ( ) njiij LnynY ε+= '

 (2) 

where ( )nYij  is the observed actual yield at year n  from field i , ley j , ( )2' ,1N~ LjL σ  is the 

random multiplicative effect of ley, and ( )2,0N~ σε n  is a random year-to-year fluctuation. In 
other words, if 05.1' =jL , it means that the true expected yield of the ley is 5% higher than 

assumed. The effect of '
jL  is partially a result of the climatic and other conditions around the 

year of re-seeding and partially we may interpret it as uncertainty regarding our choice of 
field characteristics expressed by the yield estimates ( )yy  ,0  and year of minimum yield ( )n .  

In order to model the effect of winter damage we further assume that the ley effect jL'  
may be reduced by one or more winter damages. This means that the value is no longer 
constant over years, but depends on the winter damage history of the ley. In order to reflect 
this change the damage dependent ley effect is denoted as )(nL j  for year n  of ley j ; that is, 

)(nL j  represents the combined effects of the undamaged ley potential jL'  and the damage 
history of the ley. Extending the model with the effect of damages leads to the following 
model 

( ) ( ) ( ) .njiij nLnynY ε+=  (3) 

In the modelling of the effect of winter damages, the following assumptions are made: 
1. At the beginning of the season in spring, the farmer knows with certainty whether or not 

there has been a damage during the winter; 
2. Through a visual inspection of the field, the farmer is able to give an unbiased estimate of 

the damage expressed as a ratio nα  defining the expected relative reduction in yield 
caused by the damage. The precision of the farmer’s estimate is assumed known as well;  

3. The effect of damage is reduced the following year as a result of partial recovering. After 
the partial recovery, the remaining effect is permanent; 

4. Damages in subsequent years are independent of previous damages. In other words: 

)P(),,P( n11 αααα =−nn …  (4) 

2.3. Field and ley level 

In the model represented by Eqs. (3) and (4) only the resulting yield ( )nYij  is observable, but 
the estimated relative size nα  is known. In the following we shall only refer to one particular 
field and ley, and we may therefore skip the indexes for field and ley 

( ) ( ) ( ) nnLnynY ε+=  (5) 
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If we apply the Kalman filter technique as described by West and Harrison (1997) we 
may interpret the yield model (5) as the observation equation. The corresponding system 
equation of the Kalman filter is 

( ) ( ) nn enLFnL +−= 1  (6) 

where  
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and ( )2,0N~ Snne σ  is a residual reflecting the system variance defined as 
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The interpretation of Eqs. (6) - (8) is that the yield potential ( )nL  is assumed constant 
over time as long as no damage has occurred or if the latest damage is at least two years old. 
If a damage occurred last year, the effect of the damage is assumed to have decreased to a 
level defined by β  due to partial recovery of the field. In years where a new winter damage is 
observed, nα  must express the size of the relative damage, and the loss is expressed as the 
expected value plus a random term of which the variance depends on the uncertainty ( )2

Dσ  of 
the farmer's estimate. 

It is obvious that the true value of ( )nL  is important for the re-seeding decision since it 
represents a permanent trait of the ley and the size of a winter damage. Since we are not able 
to observe the true value, we have to estimate it using Bayesian updating (Kristensen, 1993). 

In general, we shall denote the current estimate of ( )nL  after the observation of n  

years of yields nL̂  and accordingly for other parameters. Now, assume that we know the 

estimates nL̂ , and furthermore observe the yield ( )1+nY  of year 1+n . We may then update 
our belief in the true value of ( )1+nL  using the following relation taken from West and 
Harrison (1997): 
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The value nC is the variance of nL̂ , and 00  and ˆ CL  are the initial values of 

0for   and ˆ =nCL nn , i.e. before the first yield result is observed. The variance components 
22  and σσ L  from Eq. (9) must be estimated from yield data.  

In the prediction of the next yield we want to be as precise as possible using all 
previous information (i.e. all yield observations of the ley). The benefit of the Kalman filter 
technique combined with the proposed yield model (3) is that the expected value of ( )1+nY  

given all previous information only depends on nL̂ . The conditionally expected value of 
( )1+nY  is 

( ) ( ) ( )( ) ( )( ) ( ) nnn LFnyLnYCLYnYnY ˆ1ˆ 1E,ˆ,0,..., 1E 100 ++=+=+
 (10) 

and the conditional variance is 1+nV  as defined in Eq. (9). It should be noticed that the 
conditional variance 1+nV  varies with n , but is independent of the observations of ( )nY . From 
Eqs. (7) to (9), however, we conclude that we need to know the precise damage history 

11 ,..., +nαα  in order to know the precise values of 1+nV  and nC . Given this damage history, it is 
possible to calculate the sequence nVV ,...,1  for any n  without observing ( ) ( )nYY ,...,1 . That 
means that in order to predict the next yield result we only need to keep the most recent value 
of nL̂ . 

3. Optimisation model 

3.1. Model structure 

The tool to be used in this re-seeding model is a multi-level hierarchic Markov process as 
described by Kristensen and Jørgensen (2000). A multi-level hierarchic Markov process has 
an ordinary infinite time Markov decision process running at the founder level. For each 
combination of state and action, a stage of the founder may be represented by a child (and 
grant-child) process, which in turn is an ordinary finite time Markov decision process. In this 
case we use a model with only two levels as follows: 
 
Founder process - Infinite time horizon. 

Stage - Stage length is equal to the lifetime of one particular ley. 

State space - Only one dummy state is defined. 

Action space - Only one dummy action is defined. 

Child level 1 - Finite time. 

Stage - Stage length is equal to a year. 

State space - The state is defined by the values of the following state variables at 
stage n : 

Estimated ley potential - The value of 1
ˆ

−nL  - the estimated potential after 
1−n  observations (21 classes). 
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Variance of estimate - The value of 1−nC  - variance of the estimated potential 
after 1−n  observations (21 classes). 

Winter damage - The value of nα . Six levels are considered: nα  = 0.00, 0.20, 
0.30, 0.40, 0.50 or 0.75. 

Age of damage - Two levels: “This year”, “Previous year”. 

If the winter damage is 75%, all other state variables are ignored, and the 
decision “Re-seed” is chosen without further consideration. The total number 
of states equals 3970 per stage. 

Action space - Two options: “Keep” or ”Re-seed”. If the winter damage is 75% only 
the decision “Re-seed” is available. 
 
The total number of state combinations is around 75 000. The model was constructed 

as a plug-in to the MLHMP software (Kristensen, 2003). 

3.2. Parameters 

The output, ( )nmd
i , of a stage under the action “Keep” is simply the expected yield calculated 

according to Eq. (10), and under the action “Re-seed” it is 0. As concern stage length, it is 1 
year if the ley is kept and 0 if re-seeded. When we refer to state i  at stage n , we mean the 
state ( )nnnn aCLi ,,,ˆ

11 −−= α  where na  is the age of the damage (if any). 
The rewards, ( )nr d

i , of the model are defined as the expected net revenues in a 
particular state under a given action. The expected net revenue is calculated as the value of the 
coarse fodder produced minus the variable costs which are assumed to depend on expected 
yield according to a quadratic function. For the decision “Re-seed” ( )1=d , the reward is 
simply zero since all costs related to re-seeding are included at stage 0 of the new ley. 

The transition probabilities, ( )np d
ij , define the probability of a transition from state 

( )nnnn aCLi ,,,ˆ
11 −−= α  at stage n  to state ( )11 ,,,ˆ

++= nnnn aCLj α  at stage 1+n . The uncertainty 
concerning the transition is governed by two random events: The (later) observed yield ( )nY  
of this year, which is normally distributed, and the observed level of winter damage next year, 
which has a simple discrete distribution. All other effects are deterministic. Based on the two 
known random distributions and all the deterministic transitions, the over-all transition 
probabilities are calculated analytically. 

4. Example 

4.1. Case farms and parameters 

To illustrate the necessary input and the output produced using the model we applied it to two 
commercial farms in northern Norway. Farm A consists of 20 observations, which imply 
observations of several fields in some years. The youngest ley in the survey for farm A was 
one year old and the oldest one was fourteen years. For farm B we had 11 observations, the 
youngest leys being one year and the oldest seven. There was no (substantial) winter damage 
on the fields for these farms during the period we had data, 1985 to 1991.  

For each farm, based on the historical field-specific data, we estimated 
Lnyy σσ  and  , ,,0 . The standard deviation of estimated winter damage, Dσ , was subjectively 
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estimated, and a sensitivity analysis was carried out to examine the effects of changing the 
value.  

The probability for winter damage was assumed to follow a discrete distribution. 
Based on expert advice, we specified six discrete events, no winter damage (WD), 20%, 30%, 
40%, 50% and 75% winter damage, with probability 0.85, 0.06, 0.05, 0.02, 0.01 and 0.01,  
where the percentages are the decline in yield of “no WD” yield on the field. We assumed, 
again based on expert advice, that the step down in yield following damage is reduced by 2/3 
in the year after the year with winter damage due to a partial recovery of the damaged leys. In 
other words, β  is set to 0.666. Maximum ley age is assumed to be 20 years, i.e., the model 
specifies that a ley that reaches 20 years is re-seeded. The input parameters for case farm A 
and B are shown in Table 1.  

Table 1 Input parameters for farm A and farm B 

Parameter Farm A Farm B
Yield model parameters 
First year yield: 0y  7 652 8 524
Minimum yield: y  5 222 5 294
Age at minimum yield: n  11 4
Year-to year standard deviation: σ  2 109 1 219
Standard deviation of ley effect: Lσ  0.023 0.013
Standard deviation of damage estimate: Dσ  0.030 0.030
Damage decrease first year after damage: β  0.666 0.666
Prices and costs 
Coarse fodder price, NOK kg-1 DM 1.65 1.65
Variable costs, constant term, NOK ha-1 1 480.14 1 480.14
Variable costs, linear coefficient, NOK ha-1 0.9792 0.9792
Variable costs, quadratic coefficient, NOK ha-1 -0.0000235 -0.0000235
Net costs of re-seeding, NOK ha-1 2 310 2 310
 

4.2. Results 

Optimal policies maximising average net returns over time for the two farms were calculated.1 
Since farm-specific parameters are used, the results are specific for each outcome on that 
particular farm. Therefore, we report a small selection of the results for illustration. Table 2 
shows the consequences of the optimal policies in terms of dry matter produced, net returns, 
and years between re-seeding. The figures of the table are calculated by means of the Markov 
chain simulation facility of the MLHMP software. 
 
Table 2 Average net returns, average dry matter produced and average years between re-
seeding for the two farms under optimal policies 

Key figure Farm A Farm B
Average dry matter produced, kg DM per ha per year 6 018 5 752
Average net returns, NOK per ha per year 2 746 2 615
Average years between re-seeding of the leys 6.7 5.6

                                                 

1 The alternatives for optimality, maximisation of total expected discounted net returns and maximisation of 
average net returns over time, give about the same optimal policy (Kristensen, 1994).  
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That Farm B got a lower “average dry matter produced” than farm A is at first glance 

surprising, since farm B has a higher yield potential. But since farm B has a low minimum 
yield age (Table 1), the yield will be rather low in fields that are only three to four years old. 
For the same reason, after a winter damage of a ley that is not re-seeded, the future yield 
potential on farm B will be lower than on farm A. Farm B got a lower average net returns than 
farm A.  

In Figure 1 we illustrate average future loss in net returns per ha per year by following 
a “always re-seed in year X strategy”, where X varies from 1 to 20. Generally it is expensive 
to have an inflexible and short rotation strategy. Farm A showed considerable losses if, e.g., 
re-seeding every second or third year. Farm A has smallest losses with an “always re-seeding 
strategy” when the leys are six years. A strategy of always re-seeding older leys give 
increasing losses compared with the average optimal replacement age. Farm B shows much 
smaller losses, compared with farm A, with a fixed rotation strategy of three years. Farm B 
has smallest losses with a fixed rotation strategy when the leys are four years. 
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Figure 1 Farm A and farm B, average future loss in net returns in NOK per ha per year by 
following an “always re-seed in year X strategy”. 

 
So far we have only looked at what is optimal in average. To see what the farmers 

should do in each specific situation it is necessary to refer to the full set of solutions for that 
farm. In Figure 2 we have plotted the “future profitability” (also called retention pay-off, 
which show the profit by following the optimal strategy or losses by not follow the optimal 
strategy once (a negative value means that the leys should be re-seeded)) for different yields 
(represented as the relative yield potential, nL̂ ) and winter damage levels at a fixed ley age 

and a fixed variance of nL̂ , nC .2 
Figure 2 shows that it is only optimal to keep the leys (positive values) in states with 

no or modest level of winter damage and relative high yield potential. Note also that farm B 
should keep the leys in many more of the states than farm A when the leys are five years old. 

                                                 

2 We also did similar plots where “future profitability” was a function of Cn and nL̂  with fixed winter damage 

levels (WD) and ley age, and plots where “future profitability” was a function of Cn and WD with fixed nL̂  and 
ley age. These plots showed that Cn had insignificant influence on “future profitability”. To save space these 
plots are not reported in this article.  
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Note also that Figure 2 only say something about what the farmer should do in the specific 
states. The probabilities for the different states are different, so the figures do not say any-
thing about the average ratio of the cases that should be kept or re-seeded. 

An analysis of the sensitivity of the choice of the model parameter standard deviation 
for estimated winter damage, Dσ , showed negligible influence on the results, which are 
therefore not reported here. The same is the case with the coarse fodder price, a 10 per cent 
change up or down had not at all any effect on the optimal replacement strategy. 

As an illustration, Table 3 shows how the model can be used on specific fields with 
known field history (observed damage and yield in each year). The optimal policy for the 
field on farm A was calculated. Then the “future profitability” for the actual (constructed) 
field was identified using the field history for farm A. In this simple example we assume that 
the farmer considers to replace the leys that are five years old. In case 1 the farmer will lose 
NOK 1165 per ha if he re-seed the five years old leys, and in case 2 the gain is NOK 1972 per 
ha with a re-seeding choice. 

 

Figure 2 Farm A to the left, farm B to the right. “Future profitability” (as FP in the figure) as 
a function of the relative yield potential nL̂  (YP) and winter damage (WD), ley age is fixed to 
5 years, and nC  is fixed to 0.0007. Note: to make the figure to the right (farm B) easy to read 
the WD states are reported in the opposite direction of that in the figure to the left (farm A). 

 
 

Table 3 Some constructed actual field history data and “future profitability” on farm A, when 
the leys is replaced five years after re-seeding 

  Years after reseeding 1 2 3 4 "Future 
         profitability"
Case 1 Observed damage  0 0 0 0 
 Observed yield (kg DM/ha) 7850 7670 7620 7560 1165
Case 2 Observed damage  0 0 0.5 0 
  Observed yield (kg DM/ha) 7850 7670 3810 4300 -1972
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5. Concluding comments 
The application to the two case farms leads to two conclusions. First, the large variation in 
model parameters among fields/farms (as a consequence of differences in biological factors 
and management levels between fields/farms) implies that a ley replacement model should be 
at farm level rather than at an aggregated level intended to give general advice. Second, the 
farmers should have a flexible dynamic ley replacement strategy, and at each stage or year 
make decisions depending on yield level, winter damage, grass quality and coarse fodder 
price, re-seeding cost, age of the ley, loss of production during the establishment phase, 
fieldwork and other variable costs, etc.  

The dynamic programming model for individual farmers used in this analysis is 
applicable to all replacement problems of leys in areas with winter damage problems. With 
some modification, our model may be used for other similar replacement problems with 
jumps in the transformation functions, for example optimal rotation of a forest with natural 
disaster problems. 
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