
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 

 

The Economic Benefits of Farm Diversification:  
An Empirical Analysis of Economies of Scope Using the Dual Approach 

 

 

 

Stefan Wimmer and Johannes Sauer 

Technical University of Munich, Department of Agricultural Economics 

Contact: stefan.wimmer@tum.de 

Selected Paper prepared for presentation at the 2017 Agricultural & Applied Economics 

Association Annual Meeting, Chicago, Illinois, July 30-August 1 

 
 

 
 
 

 
 

 
 

 

 

 

 

 

 

 

 
Copyright 2017 by Stefan Wimmer and Johannes Sauer.  All rights reserved.  Readers may make 
verbatim copies of this document for non-commercial purposes by any means, provided that this 
copyright notice appears on all such copies.  



 

2 

THE ECONOMIC BENEFITS OF FARM DIVERSIFICATION:  

AN EMPIRICAL ANALYSIS OF ECONOMIES OF SCOPE  

USING THE DUAL APPROACH  

 

Abstract 

Structural change in agriculture often comes along with a trend towards intensification and 

specialization as it allows farms to capture economies of scale and thus reduce costs. However, 

society rather favors diversified and less intensive farms. In this article, we aim to analyze the 

extent farms can economically benefit from diversification. To this end, we estimate an input-

oriented stochastic distance function (IDF) to evaluate diversification economies on dairy farms 

in Southern Germany in a Bayesian framework. Specifically, we empirically estimate scope 

economies between different farm outputs for a panel data set of Bavarian dairy farms covering 

the years 2006 - 2014. To be consistent with economic theory, we impose the regularity 

conditions of monotonicity and curvature on the IDF. The results show that smaller farms are 

more likely to benefit from diversification between milk and livestock production while larger 

farms are more likely to benefit from diversification between milk and crop production. This 

finding has clear management implications as it advises farm managers on how to optimize 

their farms’ production structure in terms of output combination and depending on farm size. 

Keywords 

Bayesian Estimation, Economies of Scope, Farm Diversification, Input Distance Function 

 

Introduction 

The optimal production structure of firms in terms of size and degree of specialization has been 

questioned for decades. Especially in agriculture, a significant structural change has been 

observed in recent years. While the number of farms in the EU-18 decreased by 25 per cent 

from 14.5 Mio in 2005 to 10.8 Mio in 2013, the average farm size increased by 31 per cent from 

21.4 to 28.1 hectares (Eurostat, 2016). This trend towards larger but fewer farms is often 

critically seen by society and politics. In order to slow down the structural change and to support 

rural development, the European Union promotes farm activities that go beyond agricultural 

production such as farm tourism or direct marketing. However, the concept of diversification 

is not limited to activities that take place outside agricultural production. Since our primary 

interest is in structural change in agriculture, which is defined by the number of farms and the 

average farm size expressed in utilized agricultural area, we put our focus on farm 
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diversification within agricultural production, for example the joint production of livestock 

products and cash crops. The article aims to investigate whether promoting diversification 

within agricultural production can be an effective measure to slow down the structural change. 

For this purpose, we empirically estimate economies of scope in a sample of dairy farms in 

Bavaria, a federal state in Southern Germany, and group the outputs into milk, other livestock 

products, crops sales, and other outputs such as electricity production or contract services. If 

considerable economies of scope exist between two or more outputs, costs could be reduced by 

jointly producing these outputs and thus farm diversification would increase competitiveness. 

A large body of previous literature has estimated economies of scope based on cost functions: 

In the agricultural sector, FERNANDEZ-CORNEJO et al. (1992) find cost complementarities 

between various pairs of milk, cattle, crop, and hog production in Germany. WU and PRATO 

(2006) show that cost complementarities exist between crop and livestock production in 

Missouri, US, even though challenged by a reduction of allocative efficiency. MELHIM and 

SHUMWAY (2011) show that the degree of scale and scope economies decreases with farm size 

in their respective sample of farms, implying that larger farms have less incentives to diversify 

production than smaller farms. Studies estimating economies of scope based on a cost function 

in non-agricultural sectors include CANTOS and MAUDOS (2001), FARSI et al. (2007), and 

TRIEBS et al. (2016).  However, estimating a cost function is problematic if input price data are 

not accessible or lack variation across firms. Thus, several studies interested in diversification 

economies used distance functions as an alternative approach to model multi-output 

technologies. For example, COELLI and FLEMING (2004) evaluate diversification economies 

between coffee, subsistence food and cash food production in Papua New Guinea using an input 

distance function, PAUL and NEHRING (2005) assess the impact of scale and scope economies 

on farm performance in the United States, RAHMAN (2009) finds evidence of diversification 

economies between various crop combinations in Bangladesh, and CHAVAS and DI FALCO 

(2012a) find complementarities among different field crops in Ethiopian farms. However, these 

studies measure scope economies purely based on output complementarities and thus do not 

consider the possibility of a change in input composition. In contrast, we apply the dual measure 

of economies of scope proposed by HAJARGASHT et al. (2008) that has also been applied by 

FLEMING and LIEN (2009) in the farm context, who calculated economies of scope in Norwegian 

agriculture. Since they restricted the analysis to the sample mean of their data, we contribute to 

the literature by estimating scale and scope economies at the farm level. This allows analyzing 

which farms are operated at optimal levels of diversification and whether farms have moved to 

more optimal levels of diversification over time. In a further step, it will also facilitate the 
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identification of factors that prevent farms from operating at the optimal level of output 

combination. Additionally, as opposed to previous literature in this field, we impose regularity 

conditions (monotonicity and curvature) to comply with economic theory and discuss how this 

affects the results.  

Conceptual Framework 

Introduced by BAUMOL (1977), BAUMOL et al. (1982) and WILLIG (1979), economies of scope 

exist when less costs occur for a multi-output firm than for multiple firms producing the same 

amount of output separately, i.e., 

 𝐶 (∑ 𝑦𝑖

𝑖
; 𝑝) <  ∑ 𝐶(𝑦𝑖; 𝑝)

𝑖
 ,  (1) 

where C denotes costs, yi the i-th output, and p is a vector of input prices. Commonly in the 

literature, the relation in (1) is empirically evaluated based on the estimated parameters of a 

cost function (e.g. FERNANDEZ-CORNEJO et al. (1992), MELHIM and SHUMWAY (2011), WU and 

PRATO (2006)). However, by setting different output values to zero, the cost function is 

evaluated outside the data range in this approach, and it is implicitly assumed that firms with 

different specializations and different levels of diversification share one common technology. 

Moreover, estimating a cost function is problematic if input price data are not accessible (e.g. 

the price of capital) or lack variation across firms. In the empirical case of this study, nationwide 

price indices are available for many inputs but no price data on sub-regions or even farm-level. 

For these reasons, we prefer a dual approach in this study proposed by HAJARGASHT et al. 

(2008) that allows evaluating economies of scope based on the parameters of a distance function 

(IDF). The IDF describes the degree to which a firm can contract its input vector without 

changing its output vector (O’DONNELL and COELLI, 2005). As it is dual to the cost function, it 

allows to deriving point estimates of the latter. Another advantage of distance functions over 

cost functions is that they do not impose any behavioral assumptions such as cost-minimization. 

(see what recent AJAE publications write about distance functions here) 

To define the IDF, let 𝑦 be a firm’s output and 𝑥 its input. Then, the input set of the production 

technology is defined as 

 𝐿(𝑦) = {𝑥: (𝑦, 𝑥) 𝜖 𝑇} ,  (2) 
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where 𝑥 𝜖 𝑅+
𝑁 and 𝑦 𝜖 𝑅+

𝑁 are vectors of input and output quantities, respectively. The input 

distance function is then formally represented by 

 𝐷𝐼(𝑥, 𝑦) = 𝑚𝑎𝑥 {𝜆:  
𝑥

𝜆
𝜖 𝐿(𝑦)} .  (3) 

In equation (3), λ is a scalar between 1 and infinity. Firms with λ = 1 are called technically 

efficient, because they operate on the boundary of the input requirement set. If λ > 1, it is 

possible to produce the same amount of output with less input and therefore these firms are said 

to be technically inefficient. O’DONNELL and COELLI (2005) emphasize that the duality of input 

(or output) distance functions and cost (or revenue) functions rely on theoretical properties of 

the input (or output) distance functions: to be consistent with economic theory, the IDF must 

be non-decreasing, concave, and homogenous in inputs, and non-increasing and quasi-concave 

in outputs. As our empirical results strongly depend on duality, we put a particular focus on 

these regularity conditions. Specifically, we estimate and present both an unrestricted and a 

restricted distance function where monotonicity and concavity are imposed1.  

As shown in Färe and Primont (1995), duality theory allows specifying the cost function as a 

function of the input distance function: 

 𝐶(𝑝, 𝑦) = min{𝑝′𝑥: 𝐷(𝑥, 𝑦) ≥ 1}  (4) 

HAJARGASHT et al. (2008) use this relationship to derive an expression for the second order 

derivatives of the cost function, which are needed to evaluate economies of scope, in terms of 

the derivatives of an input distance function. Making use of Shephard’s (1954) lemma (𝑥 =

𝐶𝑝(𝑝, 𝑦)) and the envelope theorem, they show that the matrix of scope economies is given by 

 𝐶𝑦𝑦 = 𝐶{𝐷𝑦𝐷𝑦
′ − 𝐷𝑦𝑦 + 𝐷𝑦𝑥[𝐷𝑥𝑥 + 𝐷𝑥 ∗ 𝐷𝑥

′ ]−1𝐷𝑥𝑦},  (5) 

where Dx is a vector of first derivatives and Dxy, Dxx, and Dyy are matrices of second-order 

derivatives. It can be easily shown, that a sufficient condition for the presence of economies of 

scope is given by 

 
𝑆𝑐𝑜𝑚𝑛 =

𝜕𝑐(𝑦, 𝑝)

𝜕𝑦𝑚𝑦𝑛
< 0,𝑚 ≠ n .  (6) 

                                                 
1 At the time of submission of this draft, we did not have the results for the restricted model. However, we are 

confident to achieve this during the next few weeks.  
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Thus, equation (5) can be used to evaluate the presence of (dis-) economies of scope. The 

resulting matrix holds the economies of scope between product m and n as defined in (6) in the 

(m, n)-th element. Note that this measure does not require extrapolating the data to regions 

where there are no data points. Instead, it measures the change in marginal costs of producing 

the m-th output as a response to a change in the production of the n-th output.  

It also becomes clear from equation (5) that a positive (negative) sign in Dyy is not a sufficient 

condition for scope (dis-)economies. It purely reflects output complementarities, which 

neglects the possibility of changing the input mix. This is the reason why CHAVAS and DI FALCO 

(2012a), COELLI and FLEMING (2004), or PAUL and NEHRING (2005) refer to diversification 

economies rather the economies of scope in their analysis of diversification benefits using Dyy.  

Empirical Model 

The IDF is specified in a transcendental logarithmic (translog) form for M outputs and K inputs: 

 
𝑙𝑛 𝐷𝑖𝑡

𝐼 (𝑥, 𝑦, 𝑡) =  𝛼𝑖 + ∑𝛽𝑚 ln 𝑦𝑚𝑖𝑡

𝑚

+ ∑𝛽𝑘 ln 𝑥𝑘𝑖𝑡

𝑘

+
1

2
∑∑𝛽𝑚𝑛 𝑦𝑚𝑖𝑡𝑦𝑛𝑖𝑡

𝑛𝑚

  

+
1

2
∑∑𝛽𝑚𝑛𝑥𝑘𝑖𝑡𝑥𝑙𝑖𝑡

𝑙𝑘

+  ∑∑𝛽𝑚𝑘 𝑦𝑚𝑖𝑡𝑥𝑘𝑖𝑡

𝑘𝑚

 

+𝛽𝑡 𝑡𝑖 + ∑𝛽𝑚𝑡 𝑦𝑚𝑡

𝑚

+ ∑𝛽𝑘𝑡𝑥𝑚𝑡

𝑘

  

= 𝑇𝐿(𝑦, 𝑥, 𝑡) 

 (7) 

Since the distance is not observable, equation (7) must first be transformed to make it 

empirically estimable. Following LOVELL et al. (1994), 𝐷𝑖 is normalized by one of the inputs to 

impose linear homogeneity with respect to inputs as required by economic theory. Homogeneity 

implies that 𝐷𝑖(𝑥, 𝜔𝑦) = 𝜔𝐷𝑖(𝑥, 𝑦) for any 𝜔 > 0. Using the M-th input as normalizing factor 

and setting 𝜔 = 1/𝑥𝑚 yields 𝐷𝑖(𝑥/𝑥𝑀, 𝑦) = 𝐷𝑖(𝑥, 𝑦)/𝑥𝑚. After rearranging and including 

error terms, equation (7) can be written in the estimable form of 

 − ln 𝑥𝑘𝑖𝑡 = 𝑇𝐿(𝑥̃𝑘𝑖𝑡, 𝑦𝑚𝑖𝑡 , 𝑡𝑖𝑡) − 𝑢𝑖𝑡 + 𝑣𝑖𝑡  ,  (8) 

where 𝑣𝑖𝑡 is an independently and identically distributed error term with mean zero and variance 

𝜎𝑣
2 and 𝑢𝑖𝑡 = ln𝐷𝐼(𝑥, 𝑦, 𝑡) is a one-sided error term that is also independently and identically 

distributed but truncated at the mean to reflect inefficiency. To allow firm-specific technical 

efficiency to be varying over time, we adopt the approach proposed by BATTESE and COELLI 
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(1992) to model 𝑢𝑖𝑡 = (𝑢𝑖 exp(−𝜂(𝑡 − 𝑇))), where 𝜂 is a parameter to be estimated. Some of 

the outputs considered in this study take zero values for a considerable number of observations, 

which cannot be accommodated in a translog functional form as the logarithm of zero is not 

defined. Excluding these observations from the analysis would lead to a significant loss of 

information, and replacing zero values with arbitrarily small numbers to a serious bias in the 

estimation of parameters. Therefore, to obtain the true estimation parameters, we use dummy 

variables that indicate whether output m is zero or greater than zero as described in BATTESE 

(1997).  

Several concerns about endogeneity have been raised in the context of the estimation of input 

distance functions. The assumption of exogenous outputs can be justified by the premise of cost 

minimizing behavior by firms, because the production of milk was limited by a dairy quota 

during the period of the data2. However, there is concern that the distance functions still suffers 

from endogeneity because of the input ratios used as explanatory variables. Due to the 

normalization of inputs in the estimation process, the left-hand-side variable appears in the 

denominator of some right-hand-side variables. This simultaneity of the input allocation leads 

to correlation with the error term. As we do not have any valid instrumental variables at hand, 

we do not attempt to correct such potential bias.  

A Bayesian approach was selected to empirically estimate equation (8) for two reasons. First, 

the dual measure of economies of scope as defined in equation (5) is a complex non-linear 

function of the estimated parameters of the IDF. Thus, it is not straightforward to compute 

standard deviations of the resulting scope measures in a frequentist statistic approach. In 

contrast, estimating the IDF in a Bayesian framework allows us to calculate credibility intervals 

for the resulting scope economies based on the results from numerous successive draws from 

the posterior distribution. Second, the Bayesian approach offers a convenient and intuitively 

appealing method to impose regularity conditions on (8) (O’DONNELL and COELLI, 2005) 

without destroying the flexibility of the translog functional form.  

To this end, we adopt a stochastic frontier model with farm-specific individual effects as 

described in KOOP (2010). Following this approach, we use independent Normal-Gamma priors 

for the individual effects and coefficients of the IDF and a hierarchical prior for the 

inefficiencies. The best fitting model was achieved with an exponential distribution for 

inefficiency. For a more rigorous explanation of the priors used, please refer to  KOOP (2010, 

p. 170). The likelihood function depends on assumptions about the error terms. The usual 

                                                 
2 It is often stated that an advantage of IDF over cost functions is that no behavioral assumptions have to be made. 

This is true for the general concept of distance functions and does not refer to econometric issues. 
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assumptions are that 𝜀𝑖 is normally distributed around 0𝑇 with the covariance matrix ℎ−1𝐼𝑇, 𝜀𝑖 

and 𝜀𝑗 are independent for 𝑖 ≠ j, and all variables are independent of the error terms. In the 

stochastic frontier model, it is further assumed that 𝑧𝑖 and 𝜀𝑗 are independent of each other. 

Together with the IDF specification in equation (8), these assumptions imply the likelihood 

function  

 

𝑝(𝑦|𝛽, ℎ, 𝑣) =  ∏
ℎ

𝑇𝑖
2

(2𝜋)
𝑇𝑖
2

𝑁

𝑖=1

 {exp [−
ℎ

2
(𝑦𝑖 − 𝑋𝑖𝛽 + 𝑣𝑖𝜄𝑇)′(𝑦𝑖 − 𝑋̃𝑖𝛽

+ 𝑣𝑖𝜄𝑇)]}, 

 (9) 

where 𝑁 denotes the number of observations and 𝑇𝑖 is the number of observations for the i-th 

farm to account for the unbalanced panel data set. The dependent variable is represented by 𝑦 

and 𝑋 is the vector of independent variables. Further, 𝜄𝑇 is a T-vector of ones, ℎ is the error 

precision 1/𝜎2, and 𝛽 is the vector of unknown parameters to be estimated. Statistical inference 

about the marginal posterior distributions of 𝛽 is made by successively drawing sample 

observations from the posterior 𝑝(𝛽|𝑦) using MCMC methods. In the unrestricted model, we 

make use of the basic Gibbs sampler, a sampling algorithm that draws from the joint posterior 

density by sampling from a series of conditional posteriors (see GELFAND and SMITH (1990) 

for a detailed explanation). A burn-in period of 5000 replications followed by 45000 sampling 

replications proved to be enough for the model to converge and provide consistent estimates of 

the parameters. In the restricted version of the model, we employed a Metropolis-Hastings 

algorithm that assigns zero weights to all likelihood values for proposed vectors of parameters 

where the monotonicity or curvature conditions are violated. This procedure was adopted in the 

WinBUGS software as outlined in GRIFFIN and STEEL (2007). We first attempted to impose the 

regularity conditions on each observation in the data set but this procedure was computationally 

too hard to solve3. In addition, if the conditions are imposed at every data point, the restrictions 

would become close global and therefore suffers from a loss in flexibility. As RYAN and WALES 

(2000) argue, imposing constraints on an appropriate reference point can lead to satisfaction of 

the regularity conditions at most data points in the sample. While GRIFFITHS et al. (2000) 

imposed the regularity conditions on 23 representative price points in a cost function 

                                                 
3 With 11,459 observations in the dataset, imposing regularity conditions on each individual data point would 

require more than 100,000 constraints. With that many constraints, the probability that none of them is violated 

approaches zero.  
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framework, we chose to imposed the restrictions on the sample mean only to keep it 

computationally simple. By dividing all variables by their sample mean prior to estimation (i.e., 

the logarithm of these means become equal to zero), the translog IDF is non-decreasing in inputs 

and non-increasing in outputs at the sample mean if 𝛽𝑥𝑛
≥ 0 and 𝛽𝑦𝑛

≤  0. Concavity in inputs 

and quasi-concavity in outputs is satisfied if the (bordered) Hessian matrix of inputs (outputs) 

is negative semidefinite. For translog functional forms, as it is shown by DIEWERT and WALES 

(1987) for the case of cost functions, the Hessian matrix of inputs is negative definite if and 

only if 𝐴 − 𝑆𝑆′ − 𝑆𝑘 is negative semidefinite. A is the matrix of the second-order derivatives 

of ln 𝐷 with respect to ln 𝑥𝑚𝑛, 𝑆 are the elasticities, and 𝑆𝑘 is a 𝑘 𝑥 𝑘 diagonal matrix of 

elasticities. Therefore, to impose the restrictions at the sample mean, we only accept draws 

where the following matrix has non-positiv eigenvalues: 

 
𝑀𝑖𝑛𝑝 = [

𝛽𝑥1𝑥1 + 𝛽𝑥1𝛽𝑥1 − 𝛽𝑥1 ⋯ 𝛽𝑥1𝑥𝑛 + 𝛽𝑥1𝛽𝑥𝑛

⋮ ⋱ ⋮
𝛽𝑥𝑛𝑥1 + 𝛽𝑥𝑛𝛽𝑥1 ⋯ 𝛽𝑥𝑛𝑥𝑛 + 𝛽𝑥𝑛𝛽𝑥𝑛 − 𝛽𝑥𝑛

]  (10) 

Analogously, to ensure quasi-concavity in outputs at the sample mean, we impose non-positive 

eigenvalues on the bordered matrix 

 

𝑀𝑜𝑢𝑡𝑝

[
 
 
 
 

0 𝛽𝑦1

 𝛽𝑦1
𝛽𝑦1𝑦1

+ 𝛽𝑦1
𝛽𝑦1

− 𝛽𝑦1

⋯
⋯

𝛽𝑦𝑛

𝛽𝑦1𝑦𝑛 + 𝛽𝑦1𝛽𝑦𝑛

⋮                      ⋮                ⋱ ⋮
𝛽𝑦𝑛

 𝛽𝑦𝑛𝑦1
+ 𝛽𝑦𝑛

𝛽𝑦1
     ⋯ 𝛽𝑦𝑛𝑦𝑛

+ 𝛽𝑦𝑛
𝛽𝑦𝑛

− 𝛽𝑦𝑛]
 
 
 
 

  (11) 

 

Data Description 

Farm accounting data were obtained from the Bavarian State Ministry for Food, Agriculture, 

and Forestry, which annually collects data from a representative rotating sample of farmers as 

part of the German contribution to the EU Farm Accountancy Data Network. In addition to 

balance sheets and income statements, the data set contains information on animal stock, land 

use, farm equipment, inventories, labor, crop yields, received prices, and further details on the 

farm and the farm manager. From this data set, we created an unbalanced panel that covers nine 

years from 2006 to 2014. To secure a homogenous technology for the analysis, the sample has 

been reduced to farms that made at least 66 per cent of total revenue from the dairy enterprise 

with a share of at least 66 per cent from milk production on average over the 9 years of data. 

Thus, the data set consists of specialized dairy farms but still contains a wide range of farming 
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activities in order to evaluate diversification economies. The final sample consists of 1554 

farms and 11,459 total observations.  

Since our focus is on diversification economies between multiple farm outputs, we illustrate 

the revenue shares from the resulting sample in figure 1. As a consequence of the sample 

construction, the dairy enterprise accounts for the major portion of farm revenue. On average, 

milk sales account for 72 % of the obtained revenue, and livestock sales intrinsically linked to 

milk production (mainly the sale of calves and old dairy cows) contribute 8 %. Revenue from 

downstream fattening of cattle contribute 11 % to the total revenue, and crop sales and other 

output account for only 3 or 4 % of revenue, respectively.  

 

Figure 1. Share of various activities of farms in the sample 

 

 

To estimate the empirical model, we reduce the outputs to four groups by combining dairy 

without milk and cattle. All outputs are measured in revenues deflated by their respective 

nationwide price indices from the Destatis database. This way, we obtain implicit quantities 

that also reflect quality differences. As discussed in REINHARD et al. (1999), dividing the 

revenue by price indices that do not vary across farms cancels out price differences that result 

from a variation in quality. Regarding the inputs, land is measured in hectares and labor in 

annual working units. Intermediate inputs include both animal-specific inputs (feed and 

veterinary inputs) and crop-specific inputs (seed, fertilizer, pesticides, and other crop material) 

and also other intermediate inputs such as electricity, fuel, or heating material.  

         Milk             Dairy              Cattle             Crops        Other output    

                           w/o milk      
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Like the output measures, the individual components of the intermediate inputs are deflated by 

their respective price indices to obtain implicit quantities. Lastly, capital is proxied by 

depreciation costs. We categorize the farm inputs into fewer groups than most empirical studies. 

The reason is purely mathematical, as more variables lead to larger matrices in equation (5) 

which complicates and considerably slows down the Markov chain process. The summary 

statistics of the variables used in the empirical model are presented in table 1. 

 

Table 1. Summary Statistics of Variables 

Variables Unit      Mean  St. Dev.  Min       Max 

Milk 1000 c€ 94.21   55.49 0.62 599.02 

Livestock 1000 c€ 25.97 17.14 0.30 276.93 

Crops 1000 c€ 6.60 12.68 0.00 156.67 

Other outputs 1000 c€ 6.05 10.82 0.00 367.11 

Capital 1000 c€ 230.71 175.19 4.05 2753.34 

Land ha 48.15 27.67 0.14 291.77 

Interm. Inputs 1000 c€ 51.42 31.02 3.72 382.28 

Labor Labor awu 1.59 0.48 0.30 4.97 

n = 11,459 

c€ = constant €, ha = hectares, awe = annual working units 

    

Results and Discussion 

All variables have been divided by their sample mean prior to estimation so that first-order 

coefficients can be interpreted as elasticities at the sample mean. The capital variable is used as 

numeraire, and parameter estimates that contain the numeraire are recovered after the 

estimation by making use of the homogeneity conditions as outlined in COELLI and PERELMAN 

(1999), for example. The Bayesian first-order estimates of the unrestricted IDF and the 

corresponding first-order ordinary derivatives are presented in table 2. As a robustness check 

to the Bayesian estimation method, we also present the corresponding parameter estimates of a 

maximum likelihood (ML) estimation. 
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Table 2. Bayesian MCMC and ML Estimates of the IDF First-Order Terms 
 mean St. Dev. 95%-credible 

interval 

Parameter 

estimate ML 

St. Err. 

ML 

Output milk -0.3064  0.0065 -0.3190 -0.2928 -0.3029 0.0062 

Output livestock -0.0303  0.0034 -0.0367 -0.0237 -0.0304 0.0033 

Output crops -0.0189 0.0014 -0.0219 -0.0161 -0.0190 0.0014 

Output other -0.0071 0.0010 -0.0090 -0.0053 -0.0071 0.0010 

Capital  0.0272 0.0030  0.0210  0.0330 0.0275 0.0028 

Land  0.4799  0.0074  0.4644  0.4937 0.4750 0.0071 

Interm. Inputs  0.2706 0.0064  0.2570  0.2828 0.2711 0.0065 

Labor  0.2223 0.0053  0.2120  0.2332 0.2264 0.0052 

 

As shown in table 2, parameter estimates obtained from Bayesian and ML estimation proved to 

be almost identical. Thus, we are confident that the Bayesian framework is adequately adopted. 

In total, 42 of 54 parameters are statistically significant at the 10 % significance level and the 

hypothesis that a Cobb-Douglas functional form is a better fit is clearly rejected.  

With regard to regularity conditions of the IDF, it becomes clear from table 2 that the IDF is 

decreasing in outputs and increasing in inputs at the sample mean. Checking the distance 

elasticities 
𝜕 ln𝐷𝐼

𝜕 ln𝑥
 and 

𝜕 ln𝐷𝐼

𝜕 ln𝑦
 for each individual observation reveals that monotonicity in inputs 

and outputs are satisfied at most data point in the sample (see table 3). For the distance function 

to be concave in inputs, the Hessian matrix of inputs must be negative-semidefinite. We find 

that this not only the case at the sample mean but also for the vast majority of observations 

except for the land variable. KUMBHAKAR et al. (2008) also find some concavity violations for 

land, arguing that this might arise from the fact that land is a less variable input. In contrast, 

quasi-convexity in outputs is fulfilled neither at the sample mean nor in many observations. 

This observation underlines the importance of imposing curvature conditions as emphasized by 

SAUER (2006).  
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Table 3. Farm-level Elasticities and Regularity Violations, Unrestricted Model 
 Mean Std. Dev. Min Max Violations 

Monotonicity      

   Ey1 -0.3104 .0598 -.9816 0.0299 1 

   Ey2 -0.0297 .0211 -.1897 0.1633 871 

   Ey3 -0.0182 .0069 -.0432 0.0207 333 

   Ey4 -0.0055 .0050 -.0269 0.0155 1608 

   Ex1 0.0294 .0167 -.0316 0.1036 393 

   Ex2 0.4556 .1042 -.8681 0.8231 11 

   Ex3 0.2689 .0669 -.0376 1.0519 1 

   Ex4 0.2461 .0745 -.0241 0.7508 2 

Curvature      

   Quasi-concavity in outputs 11113 

   Concavity in inputs 7124 

n = 11,459  

 

The full parameter estimates of both the restricted and unrestricted model are presented in table 

A1 in the appendix. Due to the trade-off between statistical fit and theoretical consistency (see, 

e.g., TERRELL, 1996), we present and compare the results of both models in the following. The 

measures for the sufficient condition for (dis-)economies of scope, 𝑆𝑐𝑜𝑚𝑛 , are presented in table 

A2. At the sample mean, we observe economies of scope between milk and other outputs, and 

crop and other outputs, and diseconomies of scope between milk and livestock production, milk 

and crops, livestock and crops, and livestock and other outputs in the unrestricted model. In the 

restricted model, we observe economies of scope between milk and crops, milk and other 

outputs, and crops and other outputs, and diseconomies of scope between milk and livestock, 

livestock and crops, and livestock and other outputs. However, none of these measures are 

statistically significant at the 10 % significance level, and thus it is not surprising that these 

results are not robust compared to the restricted model. As we analyze specialized dairy farms, 

we are mainly interested in scope economies between milk and livestock production and milk 

and crop production. The share of observations with scope economies between milk and 

livestock and milk and crops is roughly the same between the two models. One interesting 

question is the impact of farm size on potential benefits from diversification. To address this 

point, observations associated with economies of scope and diseconomies of scope are plotted 

against the number of dairy cows at the farm (as proxy of farm size) and the level of 

specialization in figures A1 and A2 in the appendix. Figure A1 indicates that farms that benefit 

from diversification between milk and livestock production are more dominant among smaller 

farms in terms of herd size, while larger farms are more likely to benefit from specialization 

(i.e. show diseconomies of scope). On the other hand, larger farms are more likely to benefit 

from diversification between milk and crop production than smaller farms (Fig. A2). These 
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findings are backed up by numbers: The average herd size among farms with economies of 

scope between milk and livestock production is 37.89 cows and the number of cows among 

farms with diseconomies of scope is 57.21 on average. Further, farms that experience 

economies of scope between milk and crop production milk 58.65 cows on average while farms 

that experience economies of scope between milk and crop production keep 42.69 cows on 

average. Simple t-tests confirm that the differences are statistically significant at the 1 % 

significance level. 

 

Conclusion 

In this study, we analyzed economies of scope for a representative sample of Bavarian dairy 

farms. As curvature conditions of the estimated input distance function where considerably 

violated, we estimated an alternative model where regularity conditions were imposed at the 

sample mean. Economies of scope differed between the models, but turned out to be non-

significant in neither of them if evaluated at the sample mean. However, the share of farms that 

experience economies of scope between milk and livestock and milk and crop production, 

respectively, was in a similar range. Further analysis showed that smaller farms are more likely 

to benefit from diversification between milk and livestock production, whereas larger farms 

tend to benefit from diversification between milk and crop production. One possible 

explanation is that farms with larger herd sizes adopt new technologies that are less labor-

intensive, and thus more labor is available for engaging in crop production. Smaller farms, on 

the other hand, tend to be operated with older technologies that require a larger amount of labor. 

Still, these farms can benefit from diversification between milk and livestock production, as 

these two production systems share more common inputs than milk and crop production. A 

second explanation may be that smaller farms accumulate in less-favored areas that do not allow 

crop production because of the soil quality. Thus, these farms experience diseconomies of scope 

between milk and crop production. 

Finally, it has to be noted that not only economies of scope but also risk considerations 

determine production decisions. In this study, we only looked at the technological relationship 

between multiple outputs. If a farm manager’s strategy is to reduce price risk and production 

risk by output diversification, it can be beneficial to diversify even if experiencing diseconomies 

of scope between two or more outputs. CHAVAS and DI FALCO (2012b), for example, provide 

an empirical analysis on the relative contribution of risk and scope economies towards 

production decisions. 
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Appendix 

 

Table A1. Bayesian Estimates for Unrestricted and Restricted IDF 

 
Unrestricted Model  Restricted Model 

Parameter 

Posterior  

   mean 

St. 

Dev. 95% CrI 

 Posterior  

mean 

St. 

Dev. 95% CrI 

b_ycro0 0.033 0.003 0.027 0.038  -0.291 0.013 -0.315 -0.257 

b_yoth0 0.025 0.004 0.018 0.032  -0.11 0.027 -0.161 -0.066 

b_y1 -0.306 0.006 -0.319 -0.293  -0.22 0.003 -0.228 -0.217 

b_y2 -0.030 0.003 -0.037 -0.024  -0.079 0.005 -0.086 -0.073 

b_y3 -0.019 0.001 -0.022 -0.016  -0.132 0.003 -0.134 -0.127 

b_y4 -0.007 0.001 -0.009 -0.005  -0.198 0.001 -0.201 -0.195 

b_y1y1 -0.031 0.006 -0.043 -0.019  -0.382 0.006 -0.391 -0.37 

b_y1y2 0.029 0.004 0.020 0.037  -0.084 0.006 -0.094 -0.076 

b_y1y3 0.004 0.002 0.001 0.008  0.014 0.001 0.011 0.016 

b_y1y4 0.002 0.001 -0.001 0.004  0.022 0.002 0.019 0.026 

b_y2y2 -0.005 0.004 -0.014 0.004  -0.148 0.004 -0.156 -0.144 

b_y2y3 -0.001 0.001 -0.003 0.002  0.019 0.003 0.014 0.024 

b_y2y4 0.000 0.001 -0.002 0.002  0.032 0.007 0.024 0.043 

b_y3y3 -0.005 0.001 -0.007 -0.004  -0.286 0.000 -0.287 -0.286 

b_y3y4 0.000 0.000 -0.001 0.000  0.08 0.003 0.077 0.083 

b_y4y4 -0.003 0.001 -0.004 -0.002  -0.23 0.004 -0.235 -0.226 

b_y1x2 0.149 0.007 0.135 0.163  -0.081 0.029 -0.132 -0.021 

b_y1x3 -0.083 0.008 -0.100 -0.067  0.31 0.025 0.262 0.354 

b_y1x4 -0.053 0.007 -0.065 -0.040  -0.37 0.026 -0.419 -0.316 

b_y2x2 -0.040 0.006 -0.051 -0.029  -0.01 0.032 -0.061 0.056 

b_y2x3 0.002 0.006 -0.010 0.014  0.064 0.033 -0.007 0.129 

b_y2x4 0.040 0.006 0.028 0.051  -0.091 0.024 -0.137 -0.048 

b_y3x2 0.001 0.002 -0.003 0.005  0.057 0.012 0.030 0.079 

b_y3x3 -0.002 0.002 -0.006 0.003  0.16 0.014 0.136 0.189 

b_y3x4 0.000 0.002 -0.004 0.004  -0.216 0.010 -0.240 -0.196 

b_y4x2 0.004 0.002 0.001 0.007  -0.052 0.010 -0.073 -0.035 

b_y4x3 0.002 0.002 -0.002 0.005  -0.058 0.009 -0.073 -0.04 

b_y4x4 -0.006 0.002 -0.009 -0.002  0.000 0.009 -0.014 0.017 

b_x2 0.480 0.007 0.464 0.494  0.121 0.025 0.073 0.164 

b_x3 0.271 0.006 0.257 0.283  0.242 0.023 0.203 0.293 

b_x4 0.222 0.005 0.212 0.233  0.486 0.024 0.443 0.52 

b_x2x2 0.243 0.007 0.229 0.256  0.042 0.026 -0.009 0.091 

b_x2x3 -0.160 0.011 -0.182 -0.139  0.074 0.030 -0.012 0.136 

b_x2x4 -0.080 0.011 -0.101 -0.059  -0.167 0.021 -0.199 -0.122 

b_x3x3 0.177 0.014 0.148 0.205  -0.186 0.041 -0.287 -0.122 

b_x3x4 -0.054 0.011 -0.074 -0.033  0.255 0.017 0.224 0.282 

b_x4x4 0.148 0.014 0.121 0.174  -0.188 0.023 -0.248 -0.139 

b_t 0.000 0.007 -0.019 0.009  0.032 0.006 0.024 0.042 



 

16 

b_t2 -0.055 0.008 -0.068 -0.042  -0.054 0.004 -0.061 -0.045 

b_y1t -0.005 0.001 -0.007 -0.003  -0.003 0.005 -0.012 0.008 

b_y2t 0.003 0.001 0.002 0.004  0 0.005 -0.009 0.009 

b_y3t 0.000 0.000 0.000 0.000  0.014 0.002 0.010 0.017 

b_y4t 0.000 0.000 -0.001 0.000  -0.002 0.002 -0.005 0.001 

b_x2t 0.002 0.001 0.000 0.004  0.002 0.005 -0.008 0.013 

b_x3t 0.003 0.001 0.001 0.005  0.006 0.006 -0.004 0.019 

b_x4t -0.001 0.001 -0.002 0.001  0.006 0.005 -0.004 0.016 

b_year2 -0.237 0.024 -0.269 -0.193  -0.272 0.022 -0.317 -0.238 

b_year3 -0.245 0.037 -0.293 -0.173  -0.389 0.027 -0.438 -0.339 

b_year4 -0.397 0.045 -0.454 -0.307  -0.558 0.032 -0.613 -0.494 

b_year5 -0.468 0.047 -0.531 -0.373  -0.684 0.036 -0.750 -0.622 

b_year6 -0.396 0.041 -0.455 -0.310  -0.689 0.04 -0.762 -0.615 

b_year7 -0.282 0.034 -0.339 -0.218  -0.653 0.036 -0.721 -0.599 

b_year8 -0.221 0.040 -0.280 -0.132  -0.582 0.033 -0.644 -0.534 

b_year9 0.075 0.063 -0.001 0.229  -0.355 0.037 -0.420 -0.281 

b_x1 0.027 0.003 0.021 0.033  0.151 0.019 0.109 0.184 

b_y1x1 -0.012 0.004 -0.021 -0.004  0.141 0.02 0.096 0.177 

b_y2x1 -0.002 0.004 -0.009 0.006  0.038 0.024 -0.009 0.089 

b_y3x1 0.001 0.001 -0.002 0.003  0 0.008 -0.017 0.016 

b_y4x1 0.000 0.001 -0.002 0.002  0.11 0.008 0.095 0.127 

b_x1x2 -0.003 0.006 -0.014 0.008  0.051 0.024 -0.000 0.095 

b_x1x3 0.037 0.007 0.023 0.051  -0.143 0.038 -0.200 -0.042 

b_x1x4 -0.014 0.006 -0.025 -0.003  0.1 0.025 0.046 0.151 

b_x1x1 -0.020 0.006 -0.031 -0.009  -0.008 0.034 -0.089 0.042 

n = 11459 
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Figure A1. Farm size and (dis-)economies of scope between milk and livestock production 

 

 

Figure A2. Farm size and (dis-)economies of scope between milk and crop production 
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