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Diffusing to Level Fields: Evolution of Laser Land

Leveling Technology Markets in India

Abstract

We study the early phase of diffusion of a water-saving, land preparation technology
— laser land leveling (LLL) — in the eastern part of Uttar Pradesh, India where the
villages had relatively little exposure to the technology prior to 2010. We use a program
intervention that allowed random villages in the study area to obtain LLL in 2011 and
2012. Using this random LLL adoption, we examine the role of information in the early
diffusion of LLL. Identification of factors contributing to LLL adoption in villages is
problematic due to simultaneity between LLL adoption in villages and the emergence of
service providers and due to omitted variable bias from unobserved variables influencing
LLL demand. The study uses a procedure analogous to the Olley and Pakes (1996)
method to identify the parameters related to the influence of service providers in a
village’s LLL adoption. The research findings show the program intervention is not
critically associated with the diffusion of LLL in the study region. Moreover, private-
sector service providers are a critical source of LLL diffusion.

1 Introduction

The spatial and temporal heterogeneity in agricultural mechanization is linked to differences

in agricultural productivity, economic growth, and poverty reduction within and across de-

veloping and developed countries (Foster and Rosenzweig, 2010). Since the onset of the

Green Revolution in the 1960s, the diffusion of agricultural mechanization provided greater

input efficiency by transforming power- and labor-intensive operations and the adoption of

high-yielding crop varieties increased the use of other complementary inputs such as fertil-

izer and irrigation water (Biggs and Justice, 2015). However, the current wave of agricul-

tural transformation contrasts the mechanization experience during the Green Revolution

era (Zhang et al., 2017). The recent emergence of private-sector custom-hiring services in

many developing countries is changing the landscape of agricultural mechanization by mak-

ing mechanization profitable for smallholder farmers. Indian agriculture is also experiencing

rapid mechanization and the adoption of power-intensive equipment: tractor use increased
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by about 28 times between 1970 and 2010 and the use of power tillers grew by over 21 per-

cent in the same period (Kienzle et al., 2013). Whereas power use on farms has increased

from 0.3 to 1.7 kilowatt per hectare between 1971 and 2011, the share of agricultural workers

and draft animals has reduced from 60.5 percent to 13.2 percent in the same period (Mehta,

2013).

The “first wave” of mechanization literature, emerging during the Green Revolution, found

evidence of land size, tenure security, credit availability, education, and extension access

as being significant determinants of technological adoption during the early phases of the

adoption process (Feder and Umali, 1993). Public policy focused on alleviating demand

side considerations — by improving information access and providing subsidies to accelerate

technology diffusion — with the presumption that the private sector would respond with

appropriate supply provisions (Feder and Umali, 1993; Pingali, 2007). Larger landholdings

were considered more profitable for the adoption of heavy machineries, and many researchers

believed that mechanization would bypass the smallholder farmers in the absence of signifi-

cant land consolidation reforms (Pingali, 2007; Ruttan, 2002). Whereas mechanization was

synonymous with owning equipment during the Green Revolution, the emergence of private-

sector custom hire agricultural services in many developing countries is disentangling the

adoption and ownership decision, thereby allowing technology services to reach smallholder

farmers. Moreover, many small-scale farmers and rural entrepreneurs are experimenting with

and selling services with smaller machineries and engines (Biggs and Justice, 2015).

Many developing countries are witnessing this surge in custom hire service provision. For in-

stance, China has been experiencing rapid mechanization since 2004 due to not only increased

adoption through ownership but also because of the emergence of specialized outsourced

mechanization services (Zhang et al., 2017). These outsourcing services combine the provi-

sion of specialized labor and machinery, and enable small landholder farmers to adopt these

technologies. Similarly, most Ghanaian farmers hire tractors for land preparation activities

from private sector tractor services. To further improve access of machinery to smallholder

farmers, the Ghanaian government has subsidized the establishment of private-sector service

enterprise centers since 2007, with each center providing services for tractors, trailers, and

other small equipment such as plows and harrows (Houssou et al., 2013). In Nigeria, despite

the overall low level of tractor-use, more than double the share of farmers rent instead of

own tractors, and the private sector accounts for the largest (about 42 percent) share of the

tractor custom-hire market (Takeshima et al., 2013).

Indian agriculture is also undergoing rapid mechanization and the emergence of medium and

large farmers providing machinery custom-hire services (Keil et al., 2016). Formal custom

hiring centers (CHCs) for agricultural machinery were introduced in India in the 1960s,

with the highest number of formal and informal CHCs in agriculturally progressive states

2



of Punjab, Haryana, Uttar Pradesh, Uttarakhand, Gujarat, Maharashtra, Karnataka, and

Tamil Nadu (FICCI, 2015). Recently, there has also been an upsurge in the number of

farmers owning equipment and providing custom-hire services. For example, Keil et al.

(2016) find the practice of implementing zero-till wheat using tractor-run zero-till drillers

has spread in the state of Bihar primarily through the emergence of service provision: the

number of zero-till service providers increased from 17 to 264 between 2010-11 and 2012-

13 in the state. However, few studies have examined these recent trends in the diffusion

of agricultural technologies through the emergence of service providers in countries such as

India and China (Zhang et al., 2017; Keil et al., 2016; Lu et al., 2016; Yang et al., 2013).

The present study examines the diffusion of a water-saving agricultural technology — laser

land leveling (LLL) — through the emergence of service providers in the north Indian state

of Uttar Pradesh (UP). Laser land leveling allows farmers to reduce irrigation water use by

25 percent, lower irrigation pumping cost by Rs. 350 per acre, and potentially raise farm

yields (Lybbert et al., 2017; Jat et al., 2006). Whereas traditional leveling methods, such as

a wooden leveler attached to tractors, levels land with ± 5 centimeter precision, laser land

leveling uses a laser transmitter and an adjustable metal drag to level agricultural plots upto

± 1 cm precision (Jat et al., 2006). The laser leveler is attached to a tractor and generally

requires 2 workers to operate the equipment on the field.

Since LLL’s first introduction in India in 2001, there has been significant heterogeneity in

LLL patterns across the primary agricultural states in the country (Jat, 2012). For instance,

farmers and agricultural cooperatives own over 2000 LLL units in Punjab and have leveled

approximately one-sixth of the cultivable land in the state (Larson et al., 2016). In contrast,

Uttar Pradesh is an interesting case of differential LLL adoption as the western part of the

state has witnessed high LLL diffusion as compared to almost no diffusion in eastern UP

(EUP) in the early 2000s. In fact, LLL was first introduced and rolled out commercially in

western UP.

The heterogenous LLL diffusion in UP is a reflection of low agricultural productivity in

eastern UP as compared to the western part of the state – whereas crop productivity in

western UP was 2577 kilogram per hectare in 2007-08, it was 1997 kg/ha in EUP (Pandey

and Reddy, 2012). Similarly, land productivity was Rs. 51000 per hectare in western UP and

only Rs. 30000 in EUP. Eastern UP is also associated with low levels of labor productivity

(Rs. 17000/hectare), net irrigated area (75 percent), and landholding size (0.64 hectares).

In contrast, labor productivity is Rs. 37000 per hectare, 91 percent area is irrigated, and

average cultivated land area is 0.92 hectares in western UP.

Despite low adoption initially, LLL uptake has been steadily increasing in EUP since 2010.

As part of a program intervention by the Cereal Systems Initiatives for South Asia (CSISA),

LLL was introduced in 25 randomly selected villages in three districts in EUP in 2011.
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These villages had not been exposed to LLL prior to the intervention, and the technology

intervention not only provided information on LLL use but also an opportunity to adopt the

technology. The program team brought four LLL units from western UP for providing LLL

custom hire services to farmers and left the intervention site when the intervention ended

in 2012. These villages were offered LLL services for two consecutive years and received

random levels of exposure to the technology. Whereas only two farmers owned LLL in 2010,

20 farmers owned and custom hired LLL services to other farmers in 2015. Moreover, the

technology has been adopted in 288 villages across the three districts in 2015.

The present study examines the role of this program intervention in LLL diffusion. Specifi-

cally, the program intervention created a random set of adopters who may have potentially

spread information about the technology and accelerated the pace of LLL diffusion in the

region. Because LLL provision was random, the intervention allows us to identify the ef-

fect of exogenous technology adoption by a few villages. While we study the role of other

factors such as access to roads and area cultivated in a manner similar to other technology

diffusion studies, we especially focus on the role of service providers in the spread of LLL in

EUP.

Most previous studies in technology diffusion assume the technology becomes available to

everyone once it is made commerical (Feder and Umali, 1993). However, the simultaneous

emergence of service providers — in response to perceived LLL demand in EUP — poses a

key identification challenge in modeling LLL adoption. We use the Olley and Pakes (1996)

procedure to examine the influence of service provider availability in increasing the proba-

bility of LLL adoption. The study provides evidence that the random set of LLL adopters

did not accelerate the pace of LLL adoption in the study site. As expected, the emergence of

service providers appears to be the biggest factor contributing to the increased probability of

LLL adoption across villages. The evolution pattern of LLL in EUP contrasts the trajectory

of diffusion in western UP, suggesting low LLL adoption in EUP was not likely due to lack

of information, but perhaps due to low LLL demand in the region.

The contributions we make are twofold. Our first contribution is methodological: we apply

an approach developed for structural identification of production functions and use it to

identify the role of supply shifts in LLL demand. The application is especially relevant

when instruments, like exogenous market prices, are not readily available to identify demand

systems, as is the case in our study. Second, the research analyzes the role of information in

the diffusion of agricultural technologies through the lens of a random initial exposure to the

technology. It elucidates the mechanisms through which market failures, such as the lack of

information about smallholder farmers’ needs, may prevent the private sector from entering

new markets. Although we do not find supporting information for the lack of information

about LLL demand, the steady rise in LLL custom-hire services in response to the market
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information appears to be critical in LLL diffusion in EUP.

2 Research Setting and Data

This section describes the initial LLL program intervention and the spatial and temporal

evolution of LLL in EUP since 2010. The research team implemented the data collection

activities in 2015 to map the LLL diffusion pattern for the six years of LLL adoption.

Although EUP comprises 20 districts in UP, we focus on LLL diffusion in only three districts

— Maharajganj, Gorakhpur, and Deoria — because the initial LLL program intervention was

confined to this geographical area. We also have data from two other neighboring districts,

namely Basti and Sant Kabirnagar, but the core of our analysis is based on data from the

program intervention districts.

2.1 Initial LLL Program Intervention

In 2011-2012, a research intervention provided LLL custom hire services in 24 randomly

selected villages in Maharajganj, Gorakhpur, and Deoria districts as part of the Cereal

Systems Initiative in South Asia project, which aims to improve access to resource-conserving

technologies in the cereal-growing belt of north India (see Lybbert et al. (2017) and Magnan

et al. (2015) for more details). The intervention had chosen four village pairs in each district,

with each village pair selected within a 5 kilometers radius of each other and with no prior

exposure to LLL. In fact, other villages within a 20 kilometer radius of the selected treatment

villages had also not been exposed to LLL before. Before the program intervention, LLL had

been introduced in 10 (non-random) villages in EUP in 2010 due to other complementary

efforts by CSISA.

In 2011, information about LLL was provided to randomly-selected farmers in the 24 villages

(referred to as program villages in the remainder of the paper), and LLL custom hire services

were offered at a pre-determined per hour rental price during the 2011 kharif (rice) land

preparation season. In collaboration with an LLL machine manufacturer, the research team

had brought four LLL units and leveled a total of 218.6 acres in custom hire services in

the program villages in 2011 (see Table 1). Similar to the first year’s intervention, LLL

was again offered in the program villages in 2012 and another 128.1 acres were leveled in

the program villages.1 In addition to the sample farmers, the second year intervention also

provided leveling services to other farmers in the program villages and to another set of

1Benefits from LLL adoption can last for upto 4 years. Since the sample remained the same in both the
intervention years, the plots leveled in the first year were not leveled in 2012, and therefore, the total area
leveled in 2012 was less than the area covered in 2011.
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randomly-selected villages within a 20 kilometer radius of the original program villages. A

total of 30.8 extra acres were leveled in the 24 original sample villages and in one other out-of-

sample village. By the end of the two program intervention years, 245 farmers had adopted

the technology in 25 villages. Deoria had received the highest proportion of LLL services

amongst the three districts (50.4 percent), with Maharajganj and Gorakhpur receiving 30.0

and 19.6 percent, respectively. Figure 1 shows the LLL program villages in 2011 and 2012

and the 2010 CSISA LLL villages.

2.2 Evolution of LLL Service Provision

As a first step in understanding the evolution of LLL markets, the research team mapped

the population of LLL service providers (SPs) operating in EUP (see Figure 1 for their

location). These service providers had purchased the machine with the purpose of leveling

their own farms and providing custom hire services to other farmers. First, we created a

service providers’ list with the help of CSISA members and LLL dealers selling the machinery

in the area. Next, we surveyed these service providers to collect information on their LLL

custom-hiring business and the village locations where they had provided LLL services since

purchasing the machinery.

As Figure 2 shows, the number of LLL service providers increased from 2 to 20 between 2010

and 2015 in all five districts, and 2 service providers amongst this group had purchased 2

LLL units each. Maharajganj had the highest number of service providers in 2015, followed

by Deoria and Gorakhpur. As a result of the rise in service provision, the area under LLL has

steadily increased from 228 to 2222 acres (as per service provider reports). Figure 3 shows

the rise in LLL area serviced since 2010. Moreover, the number of villages adopting LLL

had increased from 10 in 2010 to over 300 villages in 2015 in the five EUP districts (Figure

4). The average distance of all service providers from an adopting village reduced from 65.3

kilometers in 2010 to 58.3 kilometers, and the average distance to the closest service provider

from an adopting village reduced from 38.0 to 6.5 kilometers in 2015 (see 2).

These service providers had purchased the machinery for approximately Rs. 350,000 and

availed a government subsidy of Rs. 150,000 upon purchase (see Table 3).2 Depending on

the distance travelled, the total per day cost of operating LLL (including diesel cost) in

2015 was approximately Rs. 2533, along with Rs. 774 paid to drivers in wages. An average

LLL season typically is 75 days – beginning after wheat harvest in April/May and ending

before the onset of rice transplanting in July. Although no prior market existed in LLL

service provision, the average custom-hire price has been steadily rising from Rs. 516 per

hour to Rs. 811 per hour between 2011 and 2015. Figure 5 indicates the heterogeneity in

2The amount of the government subsidy has remained the same since it became available in UP in 2010.
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LLL custom hire price across districts: in Gorakhpur, the average price in 2015 was Rs.

925 per hour as compared to the average price of Rs. 767 and 783 per hour in Deoria and

Maharajganj, respectively.3

2.3 Diffusion of LLL Rental Services

Using the information collected from service providers on LLL-adopting villages, the research

team conducted village-level surveys in a sub sample of LLL villages. The village surveys

also allowed us to verify the LLL village names received from the SPs and construct a

final mapping of LLL villages in EUP, as shown in Figure 1. In 2015, 288 villages had

adopted LLL using custom hire services in the three program intervention districts. Whereas

the average closest distance between two LLL adopting villages was 15.4 kms in 2010, it

had reduced to just 2.2 kms by 2015. We also obtained rural infrastructure, demographic,

and agricultural production data on all villages in EUP from the 2011 census databased

maintained by the Government of India (GOI, 2011). Moreover, these adopting villages had

an average population size of 361.7 households, more than three-fourths had access to a well-

built road, and an average of 83.8 percent land was under irrigation in these villages. Over

63 and 61 percent villages cultivated rice and wheat, respectively. Moreover, the distance

to the closest program intervention village ranges from 1.1 km to 26.9 kilometers. Table

4 shows these characteristics of the adopting villages. In the remainder of the paper, we

examine the factors contributing to the diffusion of LLL in EUP.

3 Estimation

3.1 Model

As described in Section 2, the LLL program intervention in 2011-2012 created a set of

LLL adopters in 25 randomly-selected villages in EUP. We are interested in examining the

influence of the program intervention on the diffusion of LLL in the study area: we want to

estimate if the program intervention raised the probability of LLL adoption in other EUP

villages. The program intervention may have allowed farmers in other villages to learn about

LLL, thereby potentially increasing the probability of adoption in a given year. We assume

the probability of LLL adoption of a village v in year t depends on a set of village-level

characteristics, such as access to roads and markets. For instance, low connectivity to a

road may prevent taking the LLL equipment to a village, thereby lowering the adoption

3One Indian Rupee (Rs.) is roughly equal to 0.016 US Dollars.
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probability. We also assume the probability of LLL adoption depends on the stock of service

providers and the proximity to them from a village. More service providers increase the

probability of LLL in a village. Moreover, as the distance to a service provider’s village

reduces, the probability of adoption by a village may increase. In this village adoption

model, we can test the influence of the program intervention by estimating the following

equation.

Adoptvt = β0 + x′vβ + sp′vtα + prog′vγ + [Ωvt + εvt] (1)

Here Adoptvt is a binary variable and equals 1 if village v adopts LLL in year t and 0 if

the village does not adopt in that year. xv represents a vector of time-invariant, village-

level characteristics that may influence the probability of LLL adoption in a village, such as

access to a road and the level of irrigation in a village. spvt is the stock of service providers

and the distance to the closest service provider in year t. progv denotes a vector of two

program intervention variables: the stock of program villages within a 10 kilometer radius

of the village and the distance to the closest program village. Beyond 10 kilometers, it

is unlikely that information from a program intervention village would flow to village v.4

Note the program intervention variables are exogenous due to the random selection of these

villages.

There are two terms in Equation 1 that are not directly observable, Ωvt and εvt. Ωvt denotes

the unobserved heterogeneity in village-level adoption in year t. Intuitively, Ωvt represents

the unobserved village-level heterogeneity influencing LLL demand, such as learning about

LLL in each year, and is also potentially influencing the probability of LLL adoption. The

index of unknown heterogeneity, Ωvt, is known to the village. εvt denotes any other stochastic

shock or measurement error in adoption by a village v in year t. εvt captures factors such

as unexpected rainfall during the LLL season that may prevent LLL adoption or any other

random event that may not allow the service provider from visiting the village. The stochastic

shock, εvt, is random and cannot be anticipated by the village.

We are interested in estimating γ to test the influence of the program intervention villages

on LLL diffusion. α is also a parameter of interest to us: we want to examine the role of

the service providers’ emergence in the diffusion of LLL across villages. However, estimating

Equation 1 leads to biased and inconsistent estimates in the presence of omitted variable bias

and endogeneity. Omitted variable bias arises due to the presence of unobserved heterogene-

ity as E[Ωvt] 6= 0. Endogeneity arises from the simultaneous emergence of service providers

and adopters. Moreover, it is likely that the stock of and distance to service providers, spvt, is

4Based on data collected from the program intervention villages, Magnan et al. (2015) found evidence that
farmers in the intervention villages had no agricultural information networks in villages located 5 kilometers
away.
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correlated with the unobserved heterogeneity shock, Ωvt, causing endogeneity in estimation.
5

In order to deal with endogeneity and omitted variable bias in our estimation, we use an

analog of the control function, semi-parametric approach developed by Olley and Pakes

(1996) (OP) and widely used in many applications for estimating production functions in

the presence of endogeneity and selection.6 Although previous approaches on the diffusion of

technologies have modeled diffusion as a logistic model, modified exponentials such the log-

normal and Gompertz, or as a Weibull distribution, dealing with endogeneity and omitted

variable bias together in these models is a non-trivial exercise and does not allow for obtaining

consistent estimates (Genius et al., 2013; Abdulai and Huffman, 2005; Feder and Umali, 1993;

Karshenas and Stoneman, 1993). Instead, we use the linear probability model (LPM), similar

to the OP procedure, to obtain our estimation coefficients of Equation 1 after controlling

for endogeneity and omitted variable bias. Linear probability models only give information

about the marginal effects of factors influencing the probability of LLL adoption, without

giving any information about the shape parameters of the diffusion process. Despite this

limitation, we use LPM to obtain consistent estimates for Equation 1.

Given our set-up in Equation 1, we model the adoption and service provider entry decisions in

LLL markets. We assume a village’s best guess of its unobserved demand in year t, Ωvt, is its

value from last year, t−1. Moreover, for a given level of service providers in year t, it is likely

that a village’s probability of adoption increases as the unobserved demand heterogeneity

increases. For example, if the unobserved demand heterogeneity includes LLL learning, then

villages that have had greater opportunities to learn about LLL have a higher chance of

adoption. Next, we model the decisions made by service providers to enter LLL markets

and enter a village v in year t. The service providers decide to enter LLL service provision

business based on the previous year’s LLL market, that is, they make their decision based on

the number of LLL adopters and the number of service providers in t−1. We assume service

providers are totally naive and do not form any expectations about future demand. This

assumption about the service provider’s decision to enter LLL markets in year t − 1 allows

us to resolve the simultaneity between the emergence of service providers and the adoption

in villages in year t. However, the entry of a service provider in a village v in year t is not

resolved by this assumption. The service provider enters a particular village in response to

existing LLL demand, that is, we assume that the timing of a service provider’s entry in a

particular village depends on the unobserved demand heterogeneity surpassing a threshold

level of demand.

5For example, if unobserved heterogeneity includes unobserved learning, it could also influence the stock
of service providers, and the service providers could also influence the unobserved learning.

6In order to account for endogeneity between unobserved productivity shock and capital, and selection
bias due to exit of low productivity firms, Olley and Pakes (1996) developed a control function approach to
identify parameter estimates related to the effect of the firm’s capital on the firm’s output.
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The behavioral set-up of unobserved heterogeneity, and LLL adoption and service provider

decisions allows us to make four assumptions to structurally identify Equation 1. First, we

assume that unobserved demand heterogeneity, Ωvt follows a first-order exogenous Markov

process. This follows from the way a village makes the best guess of the unobserved de-

mand heterogeneity. Second, we assume that the stock of adopters is strictly increasing in

unobserved demand heterogeneity for a given stock of service providers. Intuitively, this

assumption implies that given the stock of adopters in each period depends on the service

providers and the unobserved demand heterogeneity, and given that advt and spvt are ob-

servables and Ωvt is the only unobservable, we can invert advt to obtain Ωvt. We use this

assumption to form an estimate of the unobserved demand heterogeneity. The third assump-

tion is about the timing of a service provider in LLL markets. We assume the stock of service

providers in each year depends on the previous year’s stock of service providers, spvt−1 and

advt−1. This assumption allows us to remove the simultaneity in the emergence of service

providers and LLL adopting villages. Fourth, in an analogy to Olley and Pakes’s (1996) exit

decision rule, we assume that service providers enter a village when the unobserved demand

heterogeneity is greater than a threshold demand. We explain these assumptions in greater

detail below.

3.2 Assumptions

This sections describes the assumptions to identify the model specified in Equation 1.

Assumption 1: Unobserved heterogeneity, Ωvt, follows a first-order exogenous Markov pro-

cess.

Similar to the OP set-up, we assume unobserved heterogeneity follows a first-order exogenous

Markov process, that is:

E[Ωvt|Ωvt−1,Ωvt−2...Ωv1] = E[Ωvt|Ωvt−1]

Ωvt = E[Ωvt|Ωvt−1] + ζvt
(2)

This assumption implies future expectations of unobserved heterogeneity in demand in year

t only depends on the previous period’s realization of Ωvt−1. Equation 2 represents Ωvt as a

sum of its conditional expectation in year t − 1 and a deviation component, ζvt, in moving

from year t− 1 to year t. By the properties of the Markov process, the expected value of ζvt
conditional on the realization of the previous period Ωvt−1 is zero, and forms one exclusion

restriction in the identification of α.

E[ζvt|Ωvt−1] = 0 (3)

10



Assumption 2: The stock of adopters (advt) is strictly increasing in Ωvt for a given stock of

service providers.

We assume the stock of adopters is a function of service providers and the unobserved demand

heterogeneity, and the stock of adopters is strictly increasing in Ωvt. This assumption is also

directly based on the OP assumptions for unobserved demand heterogeneity. We represent

this assumption as follows.

advt = ht(Ωvt, spvt) (4)

We do not include the vector of village-level characteristics and the program-intervention

variables in ht(·) because these variables are time-invariant, and the previous values of Ωvt

are not included in the function because of the first-order Markov assumption on Ωvt. Note

ht is an EUP market function and is not village-specific, and we assume that ht changes over

time due to changes in the overall LLL market space but does not vary across villages. For

example, any changes in LLL subsidy will be captured by ht(·).

Because we observe the stock of service providers and adopters and because Ωvt is the only

unobservable in Equation 4, the second assumption implies we can invert the function to

obtain Ωvt. That is:

Ωvt = h−1t (advt, spvt) (5)

Equation 5 allows us to re-write Equation 1 as follows.

Adoptvt = β0 + x′vβ + sp′vtα + prog′vγ + h−1t (advt, spvt) + εvt (6)

Assumption 3: The stock of service providers in year t is decided based on the stock of service

providers and the stock of adopters in year t− 1.

The third assumption pertains to the timing of the service provider’s entry in LLL markets.

We assume the stock of service providers in year t depends on the stock of (and the distance

to) LLL adopting villages, and the stock of (and the distance to) service provider villages in

the previous period (t− 1). This assumption suggests a service provider, providing services

in year t, had already made the decision to enter the market in the previous year after

observing the previous year’s adopters and service providers, and making an assessment

about the profitability of entering LLL markets. We represent the service provider’s entry

decision as follows.

spvt = f(spvt−1, advt−1) (7)
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Equation 7 shows the stock of service providers in year t is a function of the previous year’s

stock of service providers (spjt−1) and adopters (adjt−1).
7

Because spvt was decided in the previous year, the third assumption implies that spvt is

uncorrelated with the deviation (ζvt) in Ωvt between year t − 1 and t because ζvt = Ωvt −
E[Ωvt|Ωvt−1]. spvt belongs to the previous year’s information set, and therefore, by the

Markov assumption, it is uncorrelated with ζvt. This orthogonality between spvt and ζvt
means E[ζvt|spvt] = 0 and forms another exclusion restriction to identify α. Moreover, we

resolve the simultaneity between the emergence of service providers and the adoption in

villages in year t by this assumption.

Assumption 4: A service provider enters a village in year t because the unobserved demand

heterogeneity in year t is greater than a threshold demand value.

We only observe LLL demand conditional on a service provider going to a village in a given

year t. 8 Assumption 4 implies a service provider j enters village v in year t if the unobserved

heterogeneity in LLL demand is greater than a threshold value. Intuitively, this assumption

implies that a service provider entered a given village because LLL demand existed in the

village already and his entry was in response to the existing demand in the village.

Let djt represent an indicator variable, which equals 1 when a service provider enters a village

in year t and is 0 otherwise.

djt = 1 if Ωvt ≥ Ω∗t (spvt) for jε[1, J ]

= 0, otherwise
(8)

Equation 8 implies a service provider j (out of the J service providers) entered a village v in

year t, that is djt = 1, because the unobserved heterogeneity in demand for that village was

greater than a threshold demand value. The threshold demand value is a market variable

and depends on the stock of service providers present in the market each year.

Using Assumption 1, we can re-write Equation 8 as follows.

djt = 1 if E[Ωvt|Ωvt−1] + ζvt ≥ Ω∗t (spvt) for jε[1, J ]

= if ζvt ≥ Ω∗t (spvt)− E[Ωvt|Ωvt−1] for jε[1, J ]
(9)

Equation 9 allows us to write the probability of a service provider’s entry as follows.

7This assumption implies we could represent the stock of service providers as a sum of previous year’s
stock of service providers and new service providers added based on the level of previous year’s adopters.

8Because we observe demand only when a service provider enters a village, our dataset results in an
unbalanced panel.

12



Pr{djt = 1} = Pr{ζvt ≥ Ω∗t (spvt)− E[Ωvt|Ωvt−1]} for jε[1, J ]

Pr{djt = 1} = e(Ω∗t (spvt),Ωvt−1)
(10)

Equation 10 shows the probability of a service provider j entering a village v is a function,

e(·), depending on the threshold demand value Ω∗t (spvt) and Ωvt−1.

Based on the notation above, we define an indicator term dvt for any service provider entering

a village in year t as follows.

dvt = 1 if
∑

djt ≥ 1 for jε[1, 20]

= 0, otherwise
(11)

Similarly, using Equation 10, we can represent the average probability of entry of service

providers in a village as Pvt = Pr{dvt = 1} = ẽ(Ω∗t (spvt),Ωvt−1), where ẽ encompasses the

probability of entry of each service provider in a village in year t. Moreover, given the stock

of service providers depends on the stock of previous year’s service providers and adopters

(Assumption 3), we can re-write the probability of entry of a service provider in a village in

year t as follows.

Pvt = Pr{dvt = 1} = ẽ(Ω∗t (spvt−1, advt−1),Ωvt−1) (12)

Note, the endogeneity issue in the estimation of Equation 1 is because the probability of a

service provider’s entry is related to Ωvt and because the probability of a service provider’s

entry depends on the stock of service providers (through Ω∗t (spvt)). However, given the

Markov assumption for Ωvt and the assumption that the stock of service providers are de-

termined based on the previous year’s stock of adopters and service providers (Assumption

3), Equation 12 implies the the average probability of entry depends on factors that are

determined based on t− 1 variables. Therefore, Pvt is uncorrelated with ζvt – the deviation

in previous period Ωvt−1 and Ωvt. This condition forms another exclusion restriction for

identification.

3.3 Estimation Procedure

Based on these assumptions, we now use the steps analogous to the OP procedure to obtain

the estimates for α. Intuitively, the estimation method includes two steps. In the first

step, we obtain consistent estimates of all other parameters except α by controlling for the

unobserved heterogeneity using Assumption 2. In the second step, we identify α by using
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the Markov assumption on Ωvt together with Assumption 2 to form a proxy for Ωvt and by

forming a proxy for the probability of entry of service providers using Assumptions 3 and 4.

Using these two proxies in a control function approach, we obtain a consistent estimate of

α. We describe the details of the procedure below.

The first step involves using Equation 5 to re-write Equation 6 as follows.

Adoptvt = x′vβ + prog′vγ + [β0 + sp′vtα + h−1t (advt, spvt)] + εvt

Adoptvt = x′vβ + prog′vγ + φt(advt, spvt) + εvt

s.t. φt = β0 + sp′vtα + h−1t (advt, spvt)

(13)

As a first step, we estimate Equation 13: we regress Adoptvt on the vector of village-level

characteristics (xv), the vector of initial intervention village variables (progv), and a fourth-

order polynomial approximation of φt using advt and spvt. This step allows us to obtain a

consistent estimate of β and γ because we have controlled for the unobserved heterogeneity

and because xv is time-invariant and progv is exogenous. However, this step does not identify

α.

The second step involves using the exclusion restrictions from the assumptions to identify α

and uses the following procedure. We first shift terms in the last equation in 13, and express

Ωvt and Ωvt−1 as follows.

h−1t (advt, spvt) = φt − β0 − sp′vtα
Ωvt = φt − β0 − sp′vtα

Ωvt−1 = φt−1 − β0 − sp′vt−1α
(14)

Next, we also shift terms in Equation 1 and re-write it as follows.

Adoptvt − x′vβ − prog′vγ = β0 + sp′vtα + Ωvt + εvt (15)

If we take the expectations on both sides, we get:

E[Adoptvt − x′vβ − prog′vγ|Ωvt−1, dvt = 1] = E[β0 + sp′vtα + Ωvt + εvt|Ωvt−1, dvt = 1]

= β0 + sp′vtα + E[Ωvt|Ωvt−1, dvt = 1]

= β0 + sp′vtα + E[E[Ωvt|Ωvt−1] + ζvt|Ωvt−1, dvt = 1]

= β0 + sp′vtα + E[E[Ωvt|Ωvt−1|Ωvt−1, dvt = 1]
(16)
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Equation 16 follows because spvt is determined at t− 1 based on the third assumption and

Ωvt−1 is uncorrelated with εvt due to Assumption 1. Based on Equation 16, the second

stage of the identification procedure solves endogeneity and omitted variable bias together

by controlling for dvt = 1 (endogeneity since the entry of service provider in a village depends

on Ωvt) and Ωvt (omitted variable bias due to unobserved demand heterogeneity).

Based on Equation 16, we substitute terms using Equations 12 and 14 and re-write Equation

1 as:

Adoptvt − x′vβ − prog′vγ = β0 + sp′vtα + E[Ωvt|Ωvt−1, dvt = 1] + ζvt + εvt

= β0 + sp′vtα + g(Ωvt−1, Pvt) + ζvt + εvt

= sp′vtα + g̃(Ωvt−1, Pvt) + ζvt + εvt

= sp′vtα + g̃(φt−1 − sp′vt−1α, Pvt) + ζvt + εvt

(17)

Note, by our exclusion restrictions, E[ζvt + εvt|Ωvt−1, Pvt] = 0. In the above equation, g(·) is

a function of Ωvt−1 and Pvt and g̃(·) accounts for both β0 values. We do not have β, γ, φt−1,

and Pvt. However, from the first step, we can obtain β̂, γ̂, ˆφt−1. We obtain an estimate of

P̂vt as follows. We first estimate the predicted probability for each service provider (P̂jt) by

fitting a probit model on lagged service provider variables spvt−1, lagged adopter variables

advt−1 (based on the set-up in Assumption 3), as well as their squares and cross products.

Using (P̂jt), we estimate the average predicted probability of all service providers entering

a district in year t and use the average predicted probability as a proxy for P̂vt.
9,10 We

approximate g̃(·) as a fourth-order polynomial in ˆφt−1− sp′vt−1α and P̂vt, and use non-linear

least squares to estimate Equation 17 and obtain α̂.

4 Estimaton Results

In this section, we present our results on the model estimating the determinants of LLL

adoption in the study area. As discussed in Section 3, we follow an approach similar to the

OP method to deal with endogeneity and omitted variable bias in the estimation of our LLL

9In an ideal scenario, we would have used the predicted probability of the service provider that entered
a given village. However, we do not have complete data on all the service providers and on which service
provider entered which village. Implicitly, we also assume that service providers do not provider services
outside their district. This assumption is reasonable because service providers are also farmers and engage
in LLL service as a side business.

10This part of the procedure varies from the OP approach because Olley and Pakes (1996) use the
probability of the firm exiting and estimate the capital coefficient associated with that same firm. Here, we
use the probability of a service provider entering villages in his district in year t and estimate the α related
to his entry on the adoption decision by a village.
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adoption model. We aim to identify the role of service provider emergence and the initial

program intervention in LLL adoption across villages in EUP.

We first estimate LLL adoption using linear probability (LP) and probit models. In each

estimation, we use a set of time-invariant village-level characteristics including access to a

road, the total cultivated area in a village (measured in hectares), the percentage of land

irrigated, the percentage of land not irrigated using canals, lakes, and rivers, and the per-

centage of agricultural population in a village. Heterogeneity in these characteristics may

lead to heterogeneity in the timing of adoption across villages. For instance, villages relying

heavily on diesel pumps for irrigation may tend to adopt sooner as compared to villages

where farmers do not pay for water-use. In addition to these village-level characteristics, we

also include the number of program villages within a 10 kilometer radius of the village and

the distance to the closest program village to test the role of information flows on diffusion

after the LLL intervention. Villages close to the program village may have an increased

likelihood for adopting LLL if they gained any exposure to the technology from the set of

initial LLL adopters.

In addition to these time-invariant characteristics, we also use two variables for capturing the

availability of service providers in the area: the stock of service providers in each time period

and the distance to the closest service provider in each period. However, as discussed in

Section 3, the estimates associated with these variables may be endogenous to the unobserved

heterogeneity in learning across villages. As a first test of omitted variable bias in our

estimation, we use the lagged stock of adopters in each time period and the closest distance

to an LLL adopting village in the previous period as a proxy for unobserved heterogeneity

in learning. However, we should take these estimates with caution because of the stock

of service providers and previous period adopters are likely to be endogenous, as discussed

in Assumption 2. Because the lagged stock of LLL adopters and current period service

providers are positively correlated and because unobserved heterogeneity is also positively

related to the probability of LLL adoption in a village, we expect our service providers to

have an upward bias if we do not account for unobserved heterogeneity.

Table 5 shows our estimation results from the linear probability and the probit models.

We find access to a road increases the probability of adoption by at least 4.6 percentage

points based on the two models and is significant in all the models. The point estimate

for percentage area under irrigation is very small and significant, but the sign is negative

and unintuitive. Specifically, we would expect the probability of adoption to increase with

a percent increase in the irrigated area and a percent increase in the area not under lake

or canal irrigation. An one percent increase in the number of cultivators in a village is also

associated with a 0.3 percent increase in the probability of LLL adoption, which is expected

because technology adoption will be higher in villages where more people are engaged in
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agriculture.

An increase in the number of program villages within a 10 km proximity to the village

raises the probability of LLL adoption of a village. However, the point estimate is not

statistically significant in all the specifications. The minimum distance of these villages from

the program villages ranges from 1.1 to 29.6 kilometers. The results show the probability of

LLL adoption increases with an increase in the distance to a program village. Although the

sign is unintuitive, these results are also statistically insignificant.11

Next, we consider the role of service provider emergence in LLL adoption. When we add

the stock of previous year’s adopters and the closest distance to a previous year LLL adopt-

ing village, we find the point estimates of the service providers’ stock significantly reduces

suggesting the presence of omitted variable bias. The point estimates associated with the

program intervention variables also reduce because of the positive correlation between un-

observed heterogeneity and learning due to the program intervention. An increase in the

stock of service providers is associated with an increase in the probability of adoption and is

significant in all specifications. Moreover, as the distance to a service provider decreases by

a kilometer, the probability of adoption increases. The stock of previous period adopters in-

crease the probability of adoption and a reduction in the distance to previous period adopting

villages appears to raise the probability of adoption. The estimates for the service providers

and the previous-period adopters suggests the presence of two issues: an upward bias in the

estimates associated with service providers and program intervention if we do not account

for unobserved heterogeneity in learning; and endogeneity resulting from the relationship

between unobserved demand heterogeneity and the stock of service providers.

Given the issues of endogeneity and omitted variable bias, we identify our LLL model using

the estimation procedure described in Section 3. However, there are two limitations of

our empirical approach. First, we can only use a linear probability model as modeling

the procedure in other functional forms is a non-trivial exercise. Second, the procedure

only identifies the influence of service providers on the probability of adoption. We cannot

identify the role previous year’s LLL adopters play in increasing the probability of adoption.

Table 5 (column 5) shows the OP estimates and the bootstrapped standard errors of the

stock of service providers and the minimum distance to them from a village. An increase in

the availability of a service provider increases the probability of adoption by 4.2 percentage

points. The point estimates related to the minimum distance from a service provider is lower

than the LPM estimate, but higher than the probit model’s estimate. A kilometer reduction

in distance to the service provider increases the likelihood of adoption by 0.2 percentage

points.

11We also estimated a first-stage regression using village adoption data for 2012 and 2013, but the results
did not change significantly in significance or magnitude.
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Overall, our three key findings are as follows. First, identifying the role of service providers

is fraught with endogeneity and omitted variable bias. As expected, the entry of service

providers is a significant contributor in increasing the likelihood of LLL adoption across

villages in EUP. Figure 6 shows that the predicted probability of adoption obtained from the

probit specification 3 increases in the stock of service providers. Second, the initial program

intervention, as proxied by the minimum distance to the intervention and the number of

villages within a 10 kilometer proximity to a village, is not significantly associated with

increasing the probability of LLL adoption. Third, access to roads, as a proxy of rural

infrastructure, seems to significantly accelerate the diffusion of LLL, both in terms of access

to information and the travel costs associated with service provision. The effect in magnitude

appears to be as large as the effect of service providers in increasing LLL adoption.

5 Conclusion

The present study highlights the significance of service providers, along with access to roads

and infrastructure, in the diffusion of LLL in the study region. Whereas the importance

of rural infrastructure in improving agricultural productivity is well-known, understanding

the characteristics of service providers and the differences between technology adopters and

diffusers is gaining greater attention in agricultural policy work in many developing coun-

tries. For instance, the Government of Ghana is establishing technology groups that receive

about five tractors at subsidized prices and have the potential of reaching 500 farmers in

an agricultural season (Houssou et al., 2013). In Kenya, Chassang et al. (2017) are imple-

menting selective trials to identify farmers having a higher willingness to experiment and

share information with others. In India, both the government and the private sector are

developing innovative business models, such as providing a suite of technologies to custom

hire, in order to expand the reach of these services to smallholder farmers. Our study shows

that, on average, a service provider reached 16 villages in 2015 as compared to 5 villages in

2010. This scale has steadily increased from 2010 and 2015, and is further expected to rise as

service providers gain greater experience with the technology and service provision. Future

research work on service provider traits and models analyzing the scalability and expansion

of service providers’ businesses will further contribute to expanding the reach of agricultural

technologies to smallholder farmers.

The research findings also show the program intervention is not critically associated with

the diffusion of LLL in EUP. We find the area under LLL steadily increased from 228 to

2222 acres in this period, and the number of service providers rose 9 times from their 2010

level. The research intervention added another 377.5 acres under LLL in 2011 and 2012.

The experience of diffusion in western UP contrasts the diffusion trajectory in EUP where
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LLL was introduced in 2002 and bought by only a few farmers in 2003. By 2006, 37 farmers

owned LLL and the acreage had reached approximately 10, 000 acres in over 10 districts

(Jat et al., 2006). The rate of early diffusion in EUP — given the same duration of exposure

— is slower than western UP, suggesting the delay in the introduction of LLL in EUP was

perhaps not a coincidence and that the evolution of LLL markets was likely due to low LLL

demand. However, with the right policy levers — encouraging the development of service

providers and the incentives to create demand for smallholder farmers — the pace of LLL

adoption in EUP can be accelerated. Ultimately, the way agricultural technologies diffuse

across agricultural zones and the factors accelerating mechanization process are fundamental

to future agricultural productivity gains for at least the next decade in India.
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Figure 1: Diffusion of Laser Land Leveling in Eastern U.P.
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Figure 2: Evolution of LLL Service Providers

24



Figure 3: Land Area Under Laser Land Leveling
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Figure 4: Number of Villages Adopting Laser Land Leveling
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Figure 5: LLL Custom-Hire Prices in Study Districts
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Figure 6: LLL Adoption Increases as the Stock of Service Providers Rises
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Table 1: Initial LLL Adoption Due to Program Intervention

SAMPLE VILLAGES
District Area Leveled in 2011 Adopters in 2011 Area Leveled in 2012 Adopters in 2012

(Acres) (Acres)

Maharajganj 42.7 47 46.1 34
Gorakhpur 56.9 42 11.5 10
Deoria 119.0 54 70.5 27

OUT OF SAMPLE HOUSEHOLDS
Maharajganj 24.5 25
Gorakhpur 5.6 5
Deoria 0.7 1
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Table 2: Spatial and Temporal Diffusion of LLL Across Villages

Year Adopting Villages Service Providers
Stock Average Distance (kms) Closest Distance (kms) Stock Average Distance (kms) Closest Distance (kms)

2010 10.00 55.88 15.44 2.00 65.28 37.96
2011 21.00 61.43 13.46 3.00 58.34 27.13
2012 27.00 60.72 10.16 4.00 54.72 28.01
2013 99.00 53.93 4.53 12.00 54.48 10.61
2014 184.00 55.54 3.48 13.00 55.51 11.35
2015 288.00 59.11 2.16 18.00 58.32 6.53
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Table 3: Laser Land Leveling Cost Structure

Obs Mean Std. Dev.
Purchase Price (Rs.) 20 307050 111439.6
Government Subsidy on LLL Purchase (Rs.) 20 91250 76637.82
Machine Operating Days 19 75 34.64
Driver Cost Per Day (Rs./Day) 18 773.89 1403.14
Operating Cost Per Day (Rs./Day) 16 2131.34 1049.77
Transportation Cost Per Day (Rs./Day) 17 401.76 102.12
Repair Cost Per Season (Rs.) 19 821.05 2288.76

31



Table 4: Descriptive Characteristics of Adopting Villages

Variable Mean Std. Dev. N
Total households 361.61 311.93 275
Black topped road (=1) 0.78 0.42 274
Net area sown (in hectares) 169.71 156.97 275
Percent area irrigated 83.83 20.81 272
Percent area not irrigated by canal/lake 37.75 45.49 270
Number of cultivators 5.48 4.88 275
Village grows rice (=1) 0.63 0.48 275
Village grows wheat (=1) 0.61 0.49 275
# of prog. vill. within 10 kms radius 1.28 1.34 275
Closest prog. vill (kms) 10.11 6.01 275

32



Table 5: Adoption of Laser Land Leveling in EUP

Dependent Variable = (1) (2) (3) (4) (5)
Adoption in time t {0,1} LPM LPM Probit Probit OP Estimates
Access to Road (=1) 0.04682∗∗ 0.05379∗∗ 0.05583∗∗ 0.05434∗∗ 0.02446

(0.022) (0.027) (0.025) (0.027) (0.018)

Net Area Sown (in Hectares) 0.00005 0.00006 0.00006 0.00006 0.00008
(0.000) (0.000) (0.000) (0.000) (0.000)

Percent Irrigated -0.00122∗∗ -0.00144∗∗ -0.00156∗∗∗ -0.00150∗∗∗ -0.00096∗∗

(0.001) (0.001) (0.001) (0.000) (0.000)

% Irrigated Not Under Canal/Well 0.00001 0.00011 -0.00016 -0.00007 -0.00007
(0.000) (0.000) (0.000) (0.000) (0.000)

% of Agricultural Population 0.00353∗ 0.00417∗ 0.00345∗ 0.00338∗ 0.00408∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Village Grows Rice (=1) 0.02070 0.02938 -0.00233 0.00410 -0.01076
(0.020) (0.025) (0.025) (0.026) (0.017)

# of Program Villages Within 10 kms 0.01060 0.00853 0.01040 0.00404 0.00778
(0.011) (0.013) (0.013) (0.013) (0.009)

Dist. to Closest Program Village (kms) 0.00492 0.00267 0.00711∗ 0.00362 0.00058
(0.003) (0.004) (0.004) (0.004) (0.002)

Stock of Service Providers 0.05632∗∗∗ 0.02223∗∗∗ 0.06328∗∗∗ 0.03671∗∗∗ .04285∗∗∗

(0.002) (0.004) (0.005) (0.007) (0.0036)

Distance to Closest SP (kms) -0.00121∗∗ -0.00155∗∗∗ -0.00780∗∗∗ -0.00670∗∗∗ -.0022∗∗∗

(0.001) (0.001) (0.002) (0.002) (0.0004)

Lagged Stock of Adopters 0.00334∗∗∗ 0.00141∗∗∗

(0.000) (0.000)

Lagged Dist. to Closest Adopting. Vill.(kms) -0.00489∗∗ -0.00452∗∗

(0.002) (0.002)

Constant -0.27817∗∗∗ -0.05434
(0.072) (0.090)

Observations 792 792 792 792 792

All standard errors are clustered at the village-level. Specification 5 has bootstrapped standard errors clustered at the village-level

Marginal effects shown for specification (3) and (4) in the probit specification
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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