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Title: The Economic Benefits of Irrigation Districts under Prior Appropriation Doctrine: An

Econometric Analysis of Agricultural Land-allocation Decisions

Abstract: The economic literature has established that prior appropriation doctrine induces het-

erogeneity in risk among water users, which leads to an inefficient allocation of resources. In this

study, we show that irrigation districts alleviate that risk by deviating from the strict application

of prior appropriation doctrine. As a result, farmers inside irrigation districts are able to plant

more water-intensive crops than farmers outside irrigation districts, which increases average prof-

itability. We empirically examine this hypothesis by leveraging a geo-referenced dataset in Idaho’s

Eastern Snake River Plain spanning 2007-2014 at the spatial scale of the individual water right.

Our results indicate that on average, irrigation districts allocate larger portions of their land to

drought-sensitive, high-value crops such as sugarbeets and potatoes. As a result of differences in

planting decisions, members of irrigation districts earn on average $16.20 per acre, or 6.0% more

per year than those outside of irrigation districts. (JEL codes: Q15, Q12, C35)

Keywords: irrigation districts; land allocation; risk pooling; water rights; water scarcity
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Throughout the western United States, water use is governed by the doctrine of prior ap-

propriation, which allocates water based on the principle of “first in time, first in right.” Water

rights that were established later in time (junior rights) will be curtailed during a water shortage to

ensure sufficient water to satisfy those established earlier in time (senior rights). In the absence of

competitive water markets, this feature of prior appropriation doctrine has the potential to create

heterogeneity in risk among water users and an economically inefficient allocation of resources

(Burness and Quirk, 1979). Recent studies have found empirical evidence in support of the hy-

pothesis that the seniority based structure of prior appropriation drives differences in the behavior

of otherwise similar farmers. When facing water constraints, farmers often respond by adjusting

their land allocation in the medium to long run, with the result that farmers with junior rights tend

to plant a greater share of their land to drought-tolerant, low-value crops than otherwise similar

farmers with senior rights (Hornbeck and Keskin, 2014). The economic literature suggests that

these differences in planting decisions result in a 5-10% loss in land rent (Brent, 2017; Cobourn

et al., 2017).

Given that prior appropriation has been slow to evolve in response to increased water scarcity,

a question that arises is whether and how irrigators mitigate risk in water availability within the

constraints imposed by current institutions (Libecap, 2011). Previous studies have looked at two

potential means of mitigating risk in water availability. One is diversification across water source

(i.e., a water portfolio), the other is access to water markets. With respect to diversification across

source, Hornbeck and Keskin (2014) show that access to groundwater enables farmers switch from

non-irrigated to irrigated agriculture and from drought-tolerant to water-intensive crops, generating

an increase in farmland value. Mukherjee and Schwabe (2015) find that in addition to groundwater,

access to supplementary water from water districts increases farmland value. With respect to ac-

cess to water markets, Burness and Quirk (1979) show theoretically that competitive water markets

achieve an efficient allocation of water in an appropriative system. Empirical studies demonstrate
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that the efficiency gains from water markets are likely to be substantial (e.g. Calatrava and Garrido,

2005; Ghosh et al., 2014; Hansen et al., 2008; Howitt, 1998; Howitt and Hansen, 2005). However,

diversification across water sources and access to water markets are constrained by the current

geographical and institutional environment in the US West. Access to groundwater is subject to

the geographical distribution of underground aquifers and large-scale water markets remain thin

(Bretsen and Hill 2006; Brewer et al. 2007).

In this paper, we investigate whether access to irrigation districts enables farmers to miti-

gate risk in water availability. Irrigation districts are semi-governmental farmer cooperatives that

allocate water acquired under prior appropriation rights to their members (Griffin, 2006; Libecap,

2011; Rosen and Sexton, 1993).1 They differ from individual farmers in an appropriative system

in several respects. First, irrigation districts typically hold a broad set of water rights that spans

different seniorities, which reduces risk in water deliveries due to curtailment. Second, water is

proportionally allocated among farmers within irrigation districts (Michelsen et al., 1999). The

proportional allocation of water spreads risk from individuals across all district members, anal-

ogous to the function of insurance pools. Third, water transfers between district members are

subject to lower transactions costs than transfers among farmers outside of irrigation districts. As

a result, irrigation districts often facilitate informal transfers, thereby offering the advantages of a

small-scale water market. These features of irrigation districts all reduce the chance of a critical

curtailment in water deliveries for an individual farmer inside the district, thereby reducing the risk

in water availability borne by members of irrigation districts relative to irrigators outside districts.

The objective of this study is to test empirically whether there exist systematic differences in

land-allocation decisions between farmers inside and outside of irrigation districts. Our empirical
1Irrigation districts are often state government entities. The district acts as a trustee for its members and receives

and distributes irrigation water among them. Functioning as a local governing body, they are granted tax-exempted
status and the ability to issue bonds.
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analysis focuses on the Eastern Snake River Plain (ESRP) of Idaho, a major agricultural produc-

tion region that relies heavily on irrigation. We take advantage of several detailed geo-referenced

datasets to summarize annual crop choices from 2007-2014 at the scale of the individual water

right. Using these data, we estimate a fractional multinomial logit (FMNL) model to explain

observed land-share decisions by farmers in a multi-crop system as a function of water rights at-

tributes (e.g., seniority), membership in an irrigation district, and a vector of spatially referenced

control variables including soil characteristics, temperatures, and precipitation.

This study contributes to the economic literature in two primary ways. First, we disentangle

the economic benefits provided by irrigation districts from the effect of water rights seniority. This

bridges a gap in the existing literature, which focuses separately on irrigation district and seniority

effects. The majority of the economic literature in this area examines questions related to prior

appropriation at the scale of the irrigation district (Brent, 2017; Buck et al., 2014; Mukherjee

and Schwabe, 2015). These studies either do not consider seniority (Mukherjee and Schwabe,

2015) or acknowledge the potential to underestimate the seniority effect (Brent, 2017). Cobourn

et al. (2017) focus on estimating the seniority effect at the scale of the individual farmer, while

controlling for membership in an irrigation district. However, their approach does not capture the

interaction of the seniority and irrigation district effects, i.e., the difference in benefits between

irrigation districts with a portfolio of more senior rights and those with a more junior portfolio of

rights, nor does it control for differences in the characteristics of irrigation districts themselves.

Our second contribution to the economic literature is that we use a direct approach to model

farmers’ crop-specific land-allocation decisions, which allows us to describe how farmers adapt

crop production in response to variation in natural and institutional characteristics. Previous

studies examine these differences indirectly through hedonic property markets (e.g., Brent, 2017;

Schlenker et al., 2007) or at an aggregate level (e.g. Deschenes and Greenstone, 2007; Hornbeck
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and Keskin, 2014; Moore and Negri, 1992; Moore et al., 1994). Hedonic studies can retrieve

the value of water through its premium in land rent, but are not able to explain the underlying

mechanism that generates the premium. In contrast, our approach enables us to explore the adap-

tion mechanisms farmers undertake in response to water constraints. Moreover, while aggregate

data on production and water use are often more readily available, aggregation across water rights

obscures variations in the institutional differences in property rights that vary at the scale of the

individual.

Our empirical results demonstrate that farmers in irrigation districts plant land to a more

profitable set of crops than otherwise similar farmers outside of districts. On average, farmers in-

side irrigation districts allocate more land to sugarbeets and potatoes, which are relatively drought-

sensitive, high-value crops. As a result of these differences in planting decisions, members of

irrigation districts earn an average of $16.20 per acre, or 6.0% more per year, than those outside

of irrigation districts. This is comparable to existing estimates in the literature, such as the effect

associated with a change in water deliveries of 0.15 AF/acre in Buck et al. (2014) and the effect of

an increase in seniority of two standard deviations in Brent (2017) and Cobourn et al. (2017). The

estimate found herein exceeds that of access to water districts in Mukherjee and Schwabe (2015).

Our results suggest the potential for substantial efficiency gains associated with access to an irriga-

tion district, which offers a way to mitigate the risk in water availability that arises due to seniority

in an appropriative system.

1 Background on Irrigation Districts

Most irrigation districts were established in the early 1900s to facilitate the construction of water

infrastructure such as pipes and canals, which exhibit high fixed costs and increasing returns to
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scale (Michelsen et al., 1999). Irrigation districts greatly reduce bargaining and transaction costs

between irrigators who share the infrastructure, and they were regarded as an institutional innova-

tion that sped the process of settling and developing the US West (Rosen and Sexton, 1993).

Irrigation districts continue to play an important role in diverting and delivering water in the

US West. Irrigation districts provide water to one-quarter of the irrigated area of the region, though

the reliance is more pronounced in some states, such as California, where districts provide water

to one-half of the irrigated land area (Kenny et al., 2009; Maupin et al., 2014; Smith, 1989). Like

other special districts in the US, irrigation districts are defined by fixed geographical boundaries.

Any farmer who resides within an irrigation district is considered to be a member of the district

and is entitled to own share(s) in the district’s water supply. Irrigation districts collectively hold

prior appropriation water rights that are administered by the state in order to divert water, just as

individual farmers do. Water delivered to the district under its water right(s) is allocated among

district members in proportion to the share(s) owned by each.

When irrigation districts face curtailment of one or more of their water right(s), the reduction

in water availability is spread across irrigators in proportion to their share(s) in the district. As

shown in Burness and Quirk (1979), this proportional allocation results in an efficient allocation

of water when farmers use homogeneous production technologies.2 This system of proportional

allocation smooths the risk of water availability across irrigators within the district. Given that

irrigation districts typically hold numerous and diverse water rights, the probability is small that

an irrigation district will be critically or completely curtailed during a growing season (Cobourn

et al., 2017).

Some irrigation districts also facilitate water transfers between members. These are often
2This result requires the assumption that land exhibits constant return to scale, which is implicit in Burness and

Quirk (1979), as well as in land-allocation models such as Cobourn et al. (2017); Moore and Negri (1992); Moore
et al. (1994).
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accomplished informally with advertisements of potential sales and purchases posted in the district

office. These transfers involve lower transactions costs than transfers outside of irrigation districts

for two primary reasons. The first is that the infrastructure required to move water between farms

is already established. The second is that these transfers are not subject to administrative review

by the state water agency due to the potential for third-party effects (externalities) to arise when

water deliveries are moved from one point in space to another (Gisser, 1983, 2011; Johansson et al.,

2002). Third-party effects are most likely to arise when a transfer alters return flows to a waterway.

This issue is less likely to arise in an irrigation district because existing conveyance infrastructure

ensures that any unconsumed water returns to the same waterway. Outside of irrigation districts,

the presence of water markets is limited in the current political and legal environment (e.g., Bretsen

and Hill 2006; Brewer et al. 2007).

2 Empirical Model

In this study, we are interested in explaining how farmers allocate a fixed land base across multiple

crops as a function of water availability. Specifically, we are interested in whether prior appropri-

ation water rights constrain farmers’ land-allocation decisions and whether access to an irrigation

district may alleviate that constraint and any corresponding inefficiency arising from prior appro-

priation. The economic literature to date has taken two general approaches to examining similar

problems. The first is to develop a theoretical model of multi-output irrigated production that

forms the basis for a structural system of estimable equations explaining crop supply and input

allocation decisions (Moore and Negri, 1992; Fezzi and Bateman, 2011; Lansink and Peerlings,

1996). Though this approach has the advantage of theoretical consistency, it comes at the cost

of empirical flexibility and tractability (Carpentier and Letort, 2014) . A second approach taken

in the literature is a reduced-form empirical modeling approach to explain land allocation (share)
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decisions. Prominent examples in this literature include Wu and Segerson (1995) and Miller and

Plantinga (1999). Although the reduced-form approach is theoretically consistent with a multi-

crop production model only under certain functional form assumptions, it offers the advantage of

empirical tractability (Carpentier and Letort 2014).

A common reduced-form approach is to adopt the conditional logit framework (Fiszbein,

2017; McFadden, 1974). This approach assumes that the underlying profit of farmer i growing

crop j on a unit of land can be expressed as a linear function of a vector of explanatory variables

plus a random error term, i.e.,

⇧
j

= X

i

�
j

+ "

ij

(1)

It can be shown that if the random error term "

ij

follows an i.i.d. type-I extreme value distribution,

then the probability that farmer i chooses crop j, ȳ
ij

, has the form:

ȳ

ij

=
exp(X

i

�
j

)
P

J

k=1 exp(Xi

�
k

)
(2)

If we interpret ȳ
ij

instead as the share of crop j in the land allocation (rather than the probability

of choosing alternative j in a traditional conditional logit framework), then equation 2 gives rise to

the fractional multinomial logit (FMNL) model.

In this analysis, we take a reduced-form approach to modeling land shares in a multi-crop

system using the FMNL model. The FMNL model is a multivariate extension to the bivariate frac-

tional logit model proposed by Papke and Wooldridge (1996). Empirically, the FMNL model has

been widely used in agricultural land-allocation modeling (Cobourn et al. 2017; Fiszbein 2017;

Kala et al. 2012). Underlying this model is the assumption that decision makers allocate shares

of a fixed amount of land and water to a set of land-allocation choices. These shares must sum

to one and are bounded by zero and one. There are several empirical advantages associated with
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an FMNL approach. First, if the true data generating mechanism is fractional, then a traditional

linear estimator fails to acknowledge the bounded nature of the data. This may provide inconsis-

tent estimates as well as a poor fit. The linear model is particularly problematic if the dependent

variables takes the boundary values 0 or 1 with non-trivial probability (Mullahy, 2015; Papke and

Wooldridge, 1996). This is problematic when examining land-allocation decisions at the scale of

the individual farm because most farmers choose to produce a subset of a region’s crops, which

implies that zeros are likely to be prevalent in the dataset. The FMNL model accommodates these

probability masses, avoiding the need to either exclude boundary observations or assign an arbi-

trarily small or large value to them. Secondly, the FMNL model captures potential heterogeneity

in partial effects, whereas the partial effects in a linear model are assumed to be homogeneous. In

our application, it is of particular interest to determine whether the effects of access to irrigation

districts are heterogeneous for farmers who are exposed to different levels of risk in water supply

due to water rights ownership.

The dependent variable in our FMNL model is y

ijt

, defined as the share of land allocated

to crop j in growing season t as a proportion of all allocable land owned by farmer i. The share

of land allocated to each crop depends on the farmer’s expected water availability, W
it

, a vector

of site-specific control variables, e.g., soil and climate characteristics, Z
it

, a vector of input and

output prices, P
t

, and unobservables "
ijt

:

y

ijt

= f(W
it

,Z

it

,Pt) + "

ijt

(3)

The water available to farmer i for irrigation, W
it

, depends on the quantity of water acquired under

the farmer’s water rights, W a

it

, precipitation, W p

it

, access to an irrigation district, W ID

i

, and other

factors that affect water availability, e.g., extreme heat, W o

it

. We can rewrite total available water
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as a function of these variables:

W

it

= f(W a

it

,W

p

it

,W

ID

i

,W

o

it

) (4)

The amount of water acquired under prior appropriation water rights, W a

it

, is in turn a function of

three variables: total surface water available for allocation across all farmers, ↵
t

, the seniority of

the farmer’s right(s), µ
i

, and access to a portfolio of water rights, described by the parameter �
i

.

An increase in ↵

t

implies that all irrigators face a lower probability of curtailment. An increase in

µ

i

corresponds to an increase in seniority. More senior rights are less likely to be curtailed than

junior rights, holding constant water availability. A water right portfolio may diversify across the

seniority of surface water rights �s

i

(Cobourn et al., 2017) and/or across sources including access to

both surface and groundwater �g

i

(Mukherjee and Schwabe, 2015). The more diverse the portfolio,

the less likely a farm will be curtailed. Taking into account how appropriative rights depend on

these parameters, we can rewrite equation (4) as:

W

it

= f

⇣
W

a

it

�
↵

t

, µ

i

, �(�s

i

, �

g

i

)
�
,W

p
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,W

ID

i

,W

o

it

⌘
(5)

In Equation 5 we partition a farmer’s water supply into different components. In our empirical

model, the effect of regional water availability, ↵
t

, will be captured by an annual fixed effect. Our

main FMNL model specification is thus given by:

G

�1(y
ijt

) = ⌧

j

+ �

j

W

ID

i

+ �

j

µ

i

+ �1j�
g

i

+ �2j�
s

i

+ ⇣

j

X

it

+ ✓T

t

+ "

ijt

(6)

where G

�1(.) is the inverse of the multinomial logit function defined in equation (2); W ID

i

is a

dummy variable for whether farmer i has access to an irrigation district; µ
i

is the seniority of a

farmer’s water right(s); �g

i

is a dummy variable for whether the farm owns groundwater rights in

addition to surface water rights; �s

i

is a measurement of the diversity in priority dates when a farmer
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owns multiple surface water rights; X is a matrix of control variables, including soil, weather, and

price expectations; ⌧ is the intercept; and " is the idiosyncratic error term. Time dummies T
t

are

added to control for time-related heterogeneity, e.g., unobserved surface water supply effect.3

Papke and Wooldridge (1996) propose a quasi-maximum likelihood (QMLE) estimator for

the FMNL model, along with the correction needed to achieve consistent standard errors follow-

ing Gourieroux et al. (1984a,b). Papke and Wooldridge (2008) extend the univariate fractional

logit model to a panel setting. They follow Chamberlain (1980)’s method by removing individual

heterogeneity by augmenting the regression equation with time averages for each individual. The

resulting model may be estimated using weighted non-linear least squares, QMLE, or a general-

ized estimating equation approach. Mullahy (2015) extend the analyses of Papke and Wooldridge

(1996, 2008) to a multivariate setting and demonstrate that the QMLE remains consistent when

there exist multiple categories for the dependent variable.4 Mullahy (2015) also show that the

Papke and Wooldridge (1996) standard error correction provides consistent standard error esti-

mates for the FMNL model. The model can be consistently estimated with the QMLE proposed

by Papke and Wooldridge (1996) by maximizing the Bernoulli log-likelihood function :

NX

i=1

ln(L
i

) =
NX

i=1

JX

j=1

y

ij

ln(G(X
i

�

j

)) (7)

for which L

i

is the likelihood for observation i, y
ij

is as defined in equation (3), X
i

is the vector of

of explanatory variables for observation i, which includes variables identified in equations (3)-(5),

and �

j

is a vector of coefficients specific to each land-allocation choice.

We propose to fit a pooled FMNL model using the QMLE proposed by Papke and Wooldridge

(1996). Although we possess a dataset with a panel structure, we do not control for individual-
3Adding dummy variables for basins poses a challenge for model convergence.
4See, e.g., Sivakumar and Bhat (2002) for the development of the FMNL model in the transportation literature.
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specific heterogeneity using panel data methods for several reasons. First, the econometrics lit-

erature has not yet developed a viable method to estimate the panel FMNL model. Papke and

Wooldridge (2008) propose to estimate panel fractional probit models via the Chamberlain (1980)

method. However, there are two obstacles in applying their method to this study. First, the like-

lihood function for a multimonial probit model can only be meaningfully constructed on binary

variables, not on share variables. This prohibits the extension of the panel fractional probit model

to a multivariate setting. Another complication for Papke and Wooldridge’s estimator is that it

requires augmenting the regression model with time averages, which would eliminate all time-

invariant variables. Because our primary variables of interest, those related to water rights, are

time invariant, running a model like Papke and Wooldridge (2008) is not feasible.

Using a pooled cross-sectional model is sufficient in this analysis to examine the effect of

irrigation institutions on land-allocation decisions. Our purpose is to draw inference mainly from

between rather than within variation in land-allocation decisions. The institutional factors of wa-

ter availability, namely water rights seniority and irrigation district access, are fixed over time but

vary across individuals. As a result, between variation captures systematic differences in land al-

location due to institutional factors, whereas within variation will reflect non-institutional factors

such as crop rotation patterns and expectations for weather conditions. Thus, using land allocation

variations from a cross-sectional or short panel dataset are sufficient to identify the causal impact

from water institutions if we control for other determinants of water availability properly. Further-

more, irrigation institutions are exogenous in the sense that land allocation can affect water rights

or access to an irrigation district due to institutional constraints. Also, we are not worried about

endogeneity emerging from sample selection or spatial sorting, which most hedonic models suffer

from (Klaiber and Smith, 2013). Agricultural land sales in Idaho are usually accompanied by the

sale of the water right(s) associated with that land. Thus, although the ownership of a farm may

change, the associated water right(s) or the claims to irrigation district water likely will not.
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To minimize the impact of omitted variable bias, we control for factors modeled in the

literature, including those that reflect water availability, soil quality, and the weather conditions

that impact agricultural production and yield. There are factors that we are unable to control for

due to data limitations, such as water storage capacity and irrigation technology. However, our

approach incorporates differences in inputs or technology that are related to water availability. In

the long run, those differences likely arise due to the endogenous choices farmers make when

facing different water availability scenarios. For example, farmers inside an irrigation district have

a more secure water supply, and thus less incentive to invest in water-saving irrigation technologies

such as drop nozzles. This may result in systematic differences in irrigation technology between

irrigation districts and individual farmers. However, because the difference is actually caused by

the benefits that irrigation districts brings to their members, it should be included as part of the

irrigation district effect.

The parameter estimates obtained by maximizing equation (7) represent the logit-transformed

odds ratio for each specific choice relative to a baseline choice. The marginal effects for continuous

explanatory variables are given by:

ME

jk

=
@ŷ

j

@x

k

= ŷ

j

(�
jk

� �̄
k

) (8)

where ŷ

j

is an 1*N vector of predicted probabilities for choice j, and �̄ =
P

J

m=1 �mk

y

m

is the

an 1*N vector of probability weighted average of �
k

. The discrete effect for a zero-one dummy

variable is given by:

DE

jk

= Pr(y = j|x
xk=1)� Pr(y = j|x

xk=0) (9)

which is the change in the predicted land share when the dummy variable x

k

increases from zero
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to one. Both the marginal and discrete effects in equations (8) and (9) differ with the levels of the

explanatory variables, and thus between different farmers. In order to obtain marginal or discrete

effects, we aggregate partial effects for different individuals to obtain average partial effects (APE).

There are two ways to obtain APE from the individual heterogeneous partial effects. The partial

effects at the mean approach (PEM) involves calculating partial effects by setting all covariates at

their sample mean, and using the partial effect at that point. The partial effects on average approach

(PEA) involves calculating partial effects for each observation and taking the average. There is no

agreement in the literature as to which method is preferred (Greene, 2008). In this paper we use

the PEM method to calculate APE.

We also calculate the average partial effects on profits (APEP). APEP is analogous to the

concept of the traditional parameter estimates and standard errors in a linear model. We do this by

aggregating crop shares with respect to their profits per acre, as well as their respective variances,

i.e.,

E(APEP

k

) =
JX

j=1

APE

j,k

⇤ profit
j

and

V (APEP

k

) =
JX

j=1

V (APE

j,k

) ⇤ profit2
j

where APEP

k

is the average partial effect on profits for explanatory variable k, and APE

j,k

is

the average partial effect of crop shares for crop j, explanatory variable k. Here we assume that

the standard errors of each crop-specific APE are independent of each other, and thus the variance

of APEP is the sum of the variances of all crop-specific APEs times the square of their respective

profits.
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3 Data

Our empirical analysis focuses on the East Snake River Plain (ESRP) in southeastern Idaho (Fig-

ure 1). The ESRP is a major agricultural production region and water user in the Intermountain

West. Agricultural production in the region relies heavily on irrigation water: 74.7% of farmlands

are irrigated (NASS, 2012), and irrigated agriculture accounts for 85.6% of water withdrawals in

the ESRP (Kenny et al., 2009). The primary crops produced in the region are alfalfa, barley, corn,

potatoes, sugarbeets, and wheat. The main water source for the region is the Snake River and its

tributaries. Surface water flows and groundwater recharge depend highly on winter precipitation

and snowmelt. About 60% of the irrigated croplands are irrigated with surface water. The other

40% are irrigated with groundwater (NASS, 2014).

[Insert Figure 1 here.]

One advantage to focusing on the ESRP as study region is that Idaho maintains a spa-

tially referenced water rights database administered by the Idaho Department of Water Resources

(IDWR).5 From this database, we are able to identify the spatial boundaries of water rights. The

individual water right forms our cross-section in the dataset. The boundaries of water rights are

not the same as the boundaries of the farm. Unfortunately, we do not have data to describe the

latter, but the water right is appropriate as an individual unit of observation because water right

boundaries delineate the land base over which water is a quasi-fixed input to production (Moore

and Negri, 1992). Additionally, we acquire water right titles, source of water, and priority dates as-

sociated with the farm. This allows us to conduct analysis at the individual water rights level. And,

more importantly, knowing the spatial boundaries of the farm entities allows us to match it with

other spatially referenced dataset such as land use, soil and weather. We plan to fit a cross-section
5Available from https://research.idwr.idaho.gov
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FMNL model by pooling over time periods. As explained in the previous section, econometric

challenges prohibit us from adopting panel data methods.

There are a total of 6429 unique water rights for irrigation within the ESRP. Among those,

1679 farms hold at least one surface water right, and 15 are irrigation districts. Figure 2 shows

the geographical locations of irrigation districts within the ESRP. We exclude those districts who

hold only groundwater titles from the analysis because groundwater users do not usually face

curtailment risks from the appropriation system, which makes their water supply more reliable than

surface water.6 This means that groundwater users are likely to behave systematically different with

respect to land and water allocation than surface water users. Because our goal in this analysis is to

find a valid counterfactual for farms residing inside surface water irrigation districts, groundwater

users are not included in the sample. We also exclude all observations that have fewer than five

pixels in the cropland data layer that are identified as growing the region’s major crops or idled.7

For irrigation districts, we are able to identify the water rights boundaries for each district

based on the IDWR data. These boundaries usually coincide with the administrative boundaries

of the districts. We are not able to distinguish property boundaries for individual farms inside irri-

gation districts. This means that the land-allocation decisions for irrigation districts are observed

in aggregate. This is a limitation of our dataset, and we provide robustness checks to show that

this caveat does not undermine our main result. We assume that farmland inside the boundary of

an irrigation district uses district water unless the parcel has access to other water sources. This

assumption is used in the previous literature when intra-district water delivery data is not available

(Buck et al., 2014; Schlenker et al., 2007).
6Currently, groundwater usage is not systematically monitored or diversion limits enforced in the ESRP. On some

occasions, the water rights of groundwater users may be called by surface water user groups when the two resources
are connected. In these cases, groundwater rights may be curtailed because they are for the most part junior to surface
water rights. However these water calls affect only a small portion of groundwater users.

7Five pixels translates to approximately 1.1 acres of cropland.
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In Equation (6) we set up the main FMNL regression model for our study. Here we explain

in detail how the independent and dependent variables are constructed. The effect of seniority, µ,

is captured using the average of water right quantile, which will be explained below. The effect of

surface water portfolio effect �s is portrayed by the standard deviation of the water right quantile.8

Effect of groundwater sources �

g is captured as a dummy variable of whether a farm holds any

additional groundwater rights. We also include a series of soil characteristics, weather normals of

the past three years, and prices received for all crops. Table 1 provides the description of variables

included in our model, and Table 2 provides the summary statistics for them.

To better capture the marginal effect of seniority (priority date) on water availability, we

perform a standardized rank transformation on water rights priority dates. Specifically, all surface

water rights are ranked by their priority dates from the earliest to the latest, and are standardized

continuously to a zero-one range, and each right is assigned a rank based on the “quantile” of

the right in the hierarchy of rights. Quantile is a continuous variable between 0 and 1 that is

calculated as the rank of the water right divided by the total number of observations. For example,

the first water right (with the earliest priority date) in the system has a quantile value of 0, the

median water right has a quantile value of 0.5, and the last right (with the lastest priority date)

has a quantile value of 1. The rationale for this transformation is that the distribution of priority

dates is not uniform in time. As shown in Figure 3, most surface water rights were filed during

the progressive era (1890-1920); fewer rights were filed after 1930. This means that a one-year

increase in seniority during the progressive era will represent a much larger increase in the rank of

priority than a one-year increase in seniority in the 1950s. If we put priority dates directly into our

empirical model, the marginal effect of a one-year seniority change will be heterogeneous across

time. A rank transformation, in contrast, guarantees that the quantile of each right is uniformly

distributed in the appropriation system and that the marginal effect on a one-percentage quantile
8Specifically, define the standard deviation of a single water right to be zero, which can be viewed as a portfolio

with no diversification at all.
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change becomes more homogeneous.

[Insert Figure 2 here.]

[Insert Figure 3 here.]

We also acknowledge that the quantile rank for each water right is not equivalent to the prob-

ability of curtailment. The link between water rights quantile and the probability of being curtailed

is nonlinear. To capture that nonlinear relationship one needs to know, at a minimum, the distri-

bution of water flows in the river system as well as the amount of water that may be appropriated

under each water right. This information usually requires use of a regional hydrological-statistical

model, which is unavailable to us. The rank transformation serves as a second-best alternative,

and is an improvement over the use of priority dates or date range dummies (Brent, 2017; Cobourn

et al., 2017).

We obtain land-allocation data from National Agricultural Statistics Service (NASS)’s Crop-

land Data Layer (CDL). CDL is a crop-specific land cover dataset for the continental US based on

satellite imagery and calibrated classification algorithms (National Agricultural Statistics Service,

2007-2014). The dataset is available for the ESRP for the year 2005, and from year 2007 to present.

For each water right in our cross section, we use the CDL to identify the percentage of land allo-

cated to the six major crops in the region: alfalfa, barley, corn, potato, sugarbeet and wheat, as well

as land idlement.

We obtain soil data from the SSURGO database, a soil database developed by USDA-NRCS.

The SSURGO dataset contains a crop-specific yield estimate for each soil type, from which we

construct an average irrigated crop yield map for wheat and corn. This allows us to capture the

possibility that a parcel of land is especially suitable for certain crops but not for others, which
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may explain some of the observed crop choices. We also include common soil quality indicators

in our model, such as irrigated and non-irrigated soil capability class, percent clay, percent slope,

and the k-factor 9.

We obtain weather data from the PRISM climate dataset developed by Oregon State Uni-

versity, which provides downscaled, spatial projects of climate variables. We include in the model

three weather variables that are important in determining crop productivity and water availability:

growing degree-days(GDD), extreme weather conditions, and cumulative precipitation over the

course of the growing season.

Growing degree-days is a non-linear transformation of temperature, which assumes that

plant growth is linear only between moderate temperature ranges from 8�Cto 32�C(Ritchie and

NeSmith, 1991). The use of growing degree-days is common in estimating agroeconomic models

(e.g. Schlenker et al., 2007; Deschenes and Greenstone, 2007) and is suggested by the economic

and agronomic literature as a preferred method over the use of average monthly temperatures

(Schlenker et al., 2007). Extreme heat conditions are detrimental to crop growth and significantly

reduce crop yields (Burke and Emerick, 2016).10 Extreme heat conditions contribute to increased

rates of plant evapotransporation, which cause increased water demands for crops. Cumulative

precipitation over the growing season measures the supplemental water supply provided by pre-

cipitation, which offsets the demands for irrigation water.11

[Insert Table 1 here.]

[Insert Table 2 here.]
9The k-factor is a quantitative description of the erodibility of a soil.

10For the purposes of this analysis, we define extreme heat as daily maximum temperatures in excess of 35�C.
11Cumulative precipitation over the growing season is calculated between June 1 and September 30.
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4 Results

Our main specification is described in equation 6 . Estimation results are shown in Table 3 and the

average partial effects (APE) are shown in Table 4. Robust standard errors, calculated as in Papke

and Wooldridge (1996), are reported in Table 3 and are used to generate standard errors for the

APEs via Krinsky-Robb simulations.

[Insert Table 3 here.]

[Insert Table 4 here.]

Average partial effects on profits (APEP) are shown in the first column of Table 5. The

average crop-specific profit statistics for APEP is calculated by subtracting the average cost from

the average revenue between 2005 and 2013, which is shown in Figure 4. Revenue for a crop in a

given year is calculated by multiplying the price received with the average yield of that crop in the

state of Idaho, which is provided by USDA-NASS (National Agricultural Statistics Service, 2012).

Crop-specific cost of production statistics are compiled from different sources, including USDA

ERS data and the University of Idaho’s crop costs and returns series (Patterson, 2009, 2013, 2014;

USDA Economic Research Service, 2006-2013).

[Insert Table 5 here.]

[Insert Figure 4 here.]

Our results indicate that irrigation districts allocate a significantly larger share of land to

potatoes, sugarbeets, and wheat and less land to alfalfa and corn, relative to individual farms.

This is consistent with our hypothesis that irrigation districts generally plant more water-intensive

crops and less drought-tolerant crops, with the exception of wheat and corn. A farmer residing
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in an irrigation district has an average edge of $16.20 per acre, or 6.0% in profits, compared to

a similar farmer outside of an irrigation district. Holding additional groundwater rights is also

beneficial. Compared with those farmers who have access to surface water only, farmers who

hold both groundwater and surface water rights on average allocate a larger share of land to corn,

potatoes, sugarbeets, and fallow, and less land to alfalfa and barley. These systematic differences

lead to a $31.23 per acre, or 11.5% profit premium associated with owning groundwater rights.

Both seniority variables in our model, the mean and the dispersion of water rights quantiles,

have insignificant APEs. This result differs from other studies in the region, such as Xu et al.

(2014b) and Cobourn et al. (2017). However, this result is most likely a reflection of the low

statistical power that our model exhibits, and should not be interpreted as a nullification of the

Burness and Quirk (1979) hypothesis. Other factors that have significant impacts on farm profit,

including growing degree-days, precipitation, soil yield capacities for wheat and corn, and the k-

factor. The sign of all of these variables are as expected: farms with warmer weather and more

precipitation, as well as more productive soils tend to choose a more profitable mix of crops.

Heterogeneity in Partial Effects

One of the advantages of using the FMNL model is that it captures the heterogeneity in

partial effects among different observations. As Papke and Wooldridge (2008) point out, the dif-

ference between linear and non-linear models is not important with regard to the estimation of

APEs, but is important in determining whether and to what extent the partial effects differ across

the distribution of the variable of interest. We calculate APEs for the irrigation district dummy

for different quantiles of water rights seniorities. Figure 5 shows the discrete effect of irrigation

districts along the distribution of water rights seniority quantiles, holding all other variables at their

average values. Result shows that the largest benefit of residing in an irrigation district is for the

most junior water right holders, at 17.94$/acre with a standard error of 6.08$/acre, while the lowest
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benefit happens for the most senior water rights holders, at 14.37$/acre with a standard error of

5.95$/acre. This suggests that the benefit of access to an irrigation district is greatest for farmers

with more junior rights than those with relatively secure senior rights.

[Insert Table 5 here.]

The risk-sharing and water transfer benefits provided by irrigation districts suggest that ac-

cess to irrigation districts should be most beneficial for those farms with the least secure (junior)

rights. Owners of senior water right(s) may benefit less from membership in an irrigation district

because their water right(s) are relatively secure enough against supply volatility.

APE in Linear vs. Logit Models

As discussed earlier, a panel FMNL model is not available for the purpose of this study. To

check for whether individual heterogeneities may potentially bias our estimates, we estimate two

linear models, the pooled ordinary least square (OLS) and the panel random effect (RE) models.

In doing so, we assume that all regressors are exogenous from the random unobserved individual

effects as well as the idiosyncratic error term. This assumption cannot be formally tested using

a Hausman-type test against the fixed effect (FE) model since our main variables of interest (the

water rights variables) are time-invariant. However, this assumption can be justified on the basis

that the variables used in our model are exogenously determined. Any cropping choice made by the

farmer will not alter water rights or irrigation district membership, both of which are historically

determined and institutionally constrained.

Columns 2 and 3 of Table 5 present the results from OLS and RE estimation. Although a

Hausman test rejects the hypothesis that OLS and RE are equivalent, the point estimates for the

two models are close, especially for our main variables of interest. Other than QMeanSurf, which
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is statistically insignificant, the difference in point estimates between OLS and RE for water rights

and irrigation district variables are less than 2%. This suggests that inference for our main variables

of interest should not be affected by ignoring individual-specific heterogeneity.

Furthermore, point estimates for the two variables that are significant in the FMNL model,

IrrDist and GrndSurf, are close to that in the two linear models. The effect of access to an irrigation

district is 16.2 $/acre in the FMNL model, 15.62 $/acre in OLS, and 15.68$/acre in RE. The effect

of holding additional groundwater rights is 31.2$/acre in the FMNL model, 34.91 in OLS, and

33.94 in RE. This result is similar to that found by Papke and Wooldridge (2008); in their case,

the fractional probit APEs are close to those estimated in linear models. This gives additional

assurance that our point estimate on the effect of access to an irrigation district is robust against

different functional form specifications.

Aggregation of Irrigation Districts

In our empirical analysis, farms inside an irrigation district are measured at the aggregate

level, whereas farms outside districts are measured at the individual level. This means that the ob-

served land allocation made by irrigation districts is essentially a weighted mean of the individual

farmers residing inside the district. This is acceptable as long as the land allocation with respect to

farm size is homogeneous, i.e.,

E(y|X, A) = E(y|X)

where A is the size of the farm, y is the land-allocation vector, and X includes all explanatory

variables other than farm size. In this case, the expectation of the aggregate land allocation is the

same as if it is the mean of each farm, i.e.,

E

D

(y|X, A

D

) =

P
D

d=1 Ad

E

d
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)
P

D

d=1 Ad
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where D is the aggregate observed land allocation and d 2 [1, D] is the farms that are aggregated

within a district.

We empirically test this area-homogeneity assumption by running an augmented regression

model to see whether the size of the farm influences land allocation. To do so, we use a subsample

that includes only farmers outside of irrigation districts. Using this subsample, we estimate two

FMNL models: one including the size (area) of the farm, the other including the natural log of

farm size.

[Insert Table 6 here.]

The APE and APEP on the farm size variables are shown in Table 6. The model that includes

log(Area) shows that an increase in log area is associated with a decrease in the land share allocated

to alfalfa, and an increase in all crops other than barley. When aggregating these land-allocation

changes out, the marginal profit change due to log(Area) is statistically insignificant at the 5%

level. The model with Area depicts a similar picture, with a negative APE on alfalfa, and positive

APE on all crops other than barley and fallow. The marginal profit change is significant at the 5%

level, indicating that controlling for all other factors, an increase of one acre in farm size leads to

an increase in profit of about $0.008 per acre. To put that in perspective, if the estimated effect of

access to an irrigation districts were actually due to differences in size, then the average observed

farm size inside an irrigation district would have to be 2090 acres larger than the average size of an

individual farm. Few farms in our sample, only 3% , are large enough to meet this criteria. If the

distribution of farm sizes is similar inside and outside irrigation districts, then it is highly unlikely

that farm size is the factor driving the estimated premium associated with access to an irrigation

district.

Furthermore, aggregating farms inside irrigation districts results in an over-representation

24



of dryland crops because of the nature of our definition of farms. For individual farmers, we

observe the spatial boundary of the water right(s). It is likely that water rights boundaries are

smaller than actual farm boundaries. Lands that are owned by a farm, but not covered by a water

source, will practice dryland agriculture through all years (private communication with IDWR).

These lands will be excluded from our sample as a result. In contrast, the boundaries of water

rights for irrigation districts coincide with their administrative boundaries. Thus, all lands inside

an irrigation district will be aggregated, including those on which dryland agriculture is practiced.

Thus, the spatial boundaries of irrigation districts will over-represent dryland agriculture, resulting

in an underestimation of the premium associated with access to irrigation districts.

5 Conclusion

The doctrine of prior appropriation doctrine may generate an inefficient allocation of resources by

generating heterogeneous levels of risk for different water users. In this analysis, we find that irri-

gation districts offset any such inefficiency by deviating from the application of prior appropriation

doctrine within the district. We hypothesize that through proportional allocation and internal water

transfers, members of irrigation districts can ensure a more secure water supply despite holding

more junior water rights. This hypothesis is confirmed by our empirical results, which suggest that

irrigation districts are able to plant a more favorable set of crops than farmers outside irrigation

districts. The estimated profit premium for access to an irrigation district is 6% annually.

The profit premium associated with access to an irrigation district is comparable to the ad-

vantage associated with holding senior water rights (Brent, 2017; Cobourn et al., 2017; Xu et al.,

2014a), having more water (Buck et al., 2014), and having access to water portfolios (Mukherjee

and Schwabe, 2015). Our results are similar to the findings of Cobourn et al. (2017) and Mukherjee
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and Schwabe (2015), which suggest that having partial access to irrigation district water provides

economic benefits to farmers. A subtle difference between those studies and ours is that, in both

Cobourn et al. (2017) and Mukherjee and Schwabe (2015), district water is likely to be used as a

supplemental water source, whereas in this analysis we account for the fact that irrigation district

water is the primary water source for members. This is likely the reason why we find a larger

premium for irrigation districts than those studies.

Our results also contribute to the literature estimating the value of prior appropriation water

rights. Previous estimates of the value of water rights have focused on either individual water rights

(Cobourn et al., 2017) or irrigation districts (Brent, 2017; Buck et al., 2014). Our results suggest

that there is a gap between the value of water rights owned by individual farms and water rights

owned by irrigation districts. In states with individual-district hybrid appropriation systems such as

Idaho and Montana, using estimates for individual farms only will overstate the inefficiency arising

from heterogeneity in the risk of water availability. In states dominated by irrigation districts such

as Oregon and California, heterogeneity in the risk of water availability has already been mitigated

by irrigation districts. Applying these results to states dominated by hybrid or individual water

rights will lead to underestimation of the true level of heterogeneity in risk and any associated

inefficiency.
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Figure 1: Map of the Eastern Snake River Plain. The dark(blue) line denotes the main stem of the
Snake River. Darker(purple) areas are lands covered by individual water rights, and lighter(orange)
areas are irrigation district lands. Lower-right panel denotes the relative location of the ESRP (Line
polygon denotes the watershed boundary of ESRP.)
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Figure 2: Irrigation Districts in the East Snake River Plain. Dark(blue) line denotes the main stem
of the Snake River. Captions are the names of the respective irrigation districts.
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Figure 3: Water Rights Distribution Across Time. Left panel shows the appropriation date for
surface water rights. Right panel shows the appropriation date for groundwater rights.
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Figure 4: Average crop profits in Idaho, 2006-2013
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Figure 5: Partial effects of IrrDist at different levels of water rights quantile. The x-axis shows
the distribution of water rights quantile, with 0 being the most senior, and 1 being the most junior
water right. The y-axis shows the monetary value ($/acre) of the discrete effect of residing in an
irrigation district.
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Table 1: Description of Variable Names and Sources

Variable Name Variable Description Unit Source
Area area of individual farms Acres

IDWR

DistArea area of irrigation districts Acres
IrrDist irrigation district dummy
GrndSurf groundwater dummy
QmeanSurf mean of water rights seniority quantile
QsdSurf standard deviation of water rights seniority quantile
corn fraction of corn planted

USDA CDL

wheat fraction of wheat planted
barley fraction of barley planted
alfalfa fraction of alfalfa planted
sugarbeet fraction of sugarbeet planted
potato fraction of potato planted
fallow fraction of land fallowed
exml3 average number of extreme heat days in last 3 years days

PRISMgddl3 average number of growing degree days in last 3 years degree days
precl3 average total summer precipitation in last 3 years mm*100
icclass irrigated soil capacity class

SSURGO

nicclass non-irrigated soil capacity class
slope average slope of land
ydwheat average yield factor for wheat bu/hectare
ydcorn average yield factor for corn bu/hectare
claypc percentage of clay in soil
kfactor soil k-factor
pbarley average normalized price for barley in the last year

USDA NASS
pcorn average normalized price for cornin the last year
pwheat average normalized price for wheat in the last year
psugarbeet average normalized price for sugarbeet in the last year
ppotato average normalized price for potato in the last year
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Table 2: Summary Statistics of Variables. Number of observation N=7792.

Variable Name Mean Median Min Max Std Dev
Area 206.701 94.689 2.340 6530.334 447.33
Dist_Area 37227.763 29642.514 3802.455 98166.152 28673.725
IrrDist 0.015 0 0 1 0.123
GrndSurf 0.103 0 0 1 0.304
QmeanSurf 0.54 0.546 0.001 1 0.28
QsdSurf 0.041 0 0 0.458 0.084
corn 0.144 0 0 1 0.286
wheat 0.119 0.005 0 1 0.232
barley 0.146 0.007 0 1 0.268
alfalfa 0.47 0.429 0 1 0.393
sugarbeet 0.019 0 0 1 0.105
potato 0.053 0 0 1 0.166
fallow 0.048 0 0 1 0.148
exml3 12.031 4.708 0 94.923 16.107
gddl3 1497.274 1482.925 860.119 2004.202 256.3
precl3 52.273 49.368 15.762 148.713 24.314
icclass 3.393 3.109 2 6 0.684
nicclass 5.557 6 3 6 0.938
slope 2.748 2.025 1 15.818 2.155
ydwheat 78.213 80 30 120 21.299
ydcorn 65.862 60 40 149.876 26.994
claypc 12.07 11.667 1.5 42.254 7.509
kfactor 0.271 0.254 0.02 0.57 0.13
pbarley 3.183 3.244 2.548 4.616 0.62
pcorn 3.271 3.469 2.149 4.15 0.616
pwheat 3.923 4.132 3.188 4.728 0.573
psugarbeet 30.306 29.593 20.725 45.118 8.208
ppotato 4.532 4.016 3.557 6.378 0.993
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Table 3: Fractional multinomial logit parameter estimates

Variables barley corn potato sugarbeet wheat fallow
IrrDist 0.0499 -0.107 0.53*** 1.63*** 0.443*** 0.167

(0.0828) (0.0869) (0.0779) (0.128) (0.0591) (0.136)
QmeanSurf -0.099 -0.139 0.00372 0.271 0.143 0.325*

(0.0964) (0.112) (0.146) (0.266) (0.1) (0.154)
QsdSurf 0.341 -0.116 -0.049 -1.41 0.23 0.527

(0.256) (0.362) (0.41) (0.824) (0.264) (0.494)
GrndSurf -0.247*** 0.626*** 0.356** 0.705*** -0.015 0.492***

(0.0733) (0.0854) (0.111) (0.163) (0.0753) (0.115)
pcorn -0.964** 0.769 2.24*** -0.942 -0.148 -6.82***

(0.373) (0.449) (0.542) (0.991) (0.395) (0.784)
pbarley 0.0817 -0.347*** -0.302** -0.213 -0.208*** -0.575***

(0.0661) (0.0719) (0.102) (0.155) (0.0614) (0.108)
pwheat 0.263 -0.113 -0.826* 0.325 0.896** 4.82***

(0.266) (0.297) (0.374) (0.672) (0.279) (0.597)
psugarbeet 0.0863** -0.0204 -0.236*** 0.113 0.00119 0.634***

(0.0326) (0.0392) (0.0471) (0.0859) (0.0342) (0.0685)
ppotato -0.353 0.00678 1.14*** -0.386 -0.205 -3.78***

(0.191) (0.221) (0.268) (0.494) (0.202) (0.43)
exml3 -0.0248*** -0.013*** 0.00759 -0.0544*** -0.00764* 0.00345

(0.00491) (0.00354) (0.0048) (0.00978) (0.00353) (0.0043)
gddl3 -0.00407*** 0.00422*** 0.000943 0.00215* 0.000528 -0.00474***

(0.000308) (0.000446) (0.000534) (0.000961) (0.000315) (0.00053)
precl3 -0.0218*** 0.00259 0.0216*** -0.0211* 0.0159*** -0.0593***

(0.00232) (0.00375) (0.00404) (0.00877) (0.0027) (0.00443)
icclass -0.268*** 0.0305 -0.344*** -0.876*** -0.42*** -0.112

(0.0554) (0.0579) (0.088) (0.222) (0.0644) (0.0695)
nicclass 0.19*** 0.593*** 0.385*** 1.25*** 0.496*** 0.766***

(0.0338) (0.0762) (0.0695) (0.164) (0.0429) (0.0678)
slope 0.0376 0.0371 0.0969** 0.217*** 0.115*** 0.154***

(0.0202) (0.0193) (0.0295) (0.0599) (0.0229) (0.0194)
ydwheat 0.000569 0.0187*** -0.0139*** -0.0121 -0.00646*** -0.0187***

(0.00175) (0.00313) (0.00297) (0.00638) (0.00195) (0.00248)
ydcorn -0.00276 0.00633*** -0.00497 0.00645 -0.00197 -0.0144***

(0.00178) (0.00157) (0.00276) (0.00472) (0.00205) (0.00248)
claypc -0.0452*** -0.0412*** -0.0689*** -0.02 -0.0225*** -0.0457***

(0.00437) (0.0078) (0.00927) (0.0141) (0.00578) (0.00588)
kfactor 3.78*** 2.19*** 5.82*** 5.33*** 3*** 1.22***

(0.219) (0.371) (0.382) (0.651) (0.269) (0.301)
Number of Obs: 7792
Log pseudo-likelihood: -10525.69

a Note: Papke and Wooldridge (1996)’s robust standard error reported in parenthesis. Alfalfa is the
baseline choice and thus omitted. Year dummy and constant are suppressed from the table. A triple
asterisk indicates p < 0.001; a double asterisk indicates p < 0.01; a single asterisk indicates p < 0.05.
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Table 4: Average partial effects of fractional multinomial logit estimates

Variable alfalfa barley corn potato sugarbeet wheat fallow
IrrDist -0.0792*** -0.0126 -0.0161** 0.0233*** 0.0406*** 0.0433*** 0.000669

(0.0149) (0.00962) (0.0058) (0.00379) (0.00164) (0.00692) (0.00532)
GrndSurf -0.0438*** -0.0379*** 0.0483*** 0.0156* 0.01*** -0.0117 0.0193**

(0.0127) (0.0111) (0.00778) (0.00771) (0.00289) (0.0112) (0.00614)
QmeanSurf -0.00672 -0.0146 -0.0107 -0.000413 0.0032 0.0168 0.0124

(0.0169) (0.0143) (0.0104) (0.00961) (0.004) (0.0134) (0.00683)
QsdSurf -0.0382 0.0361 -0.013 -0.0059 -0.0182 0.0208 0.0182

(0.0528) (0.0302) (0.0248) (0.0205) (0.0111) (0.0298) (0.0192)
pcorn 0.147*** -0.0929*** 0.0726*** 0.127*** -0.00842*** 0.0144*** -0.26

(2.64e-09) (1.71e-08) (5.02e-11) (5.68e-13) (7.19e-07) (1.07e-09) (0.486)
pbarley 0.046*** 0.0215*** -0.0188*** -0.0112*** -0.00163*** -0.0162*** -0.0196***

(0.00157) (0.000503) (0.00121) (0.00105) (0.000291) (0.00121) (0.00191)
pwheat -0.167*** -0.00423*** -0.0287*** -0.0568*** 0.000378 0.077*** 0.179

(2.12e-08) (9.64e-07) (6.51e-07) (1.36e-07) (0.000875) (1.51e-05) (0.447)
psugarbeet -0.014*** 0.00813*** -0.00318*** -0.0132*** 0.00109 -0.003*** 0.0242

(2.08e-09) (5.05e-07) (5.6e-08) (2.73e-10) (0.000742) (3.75e-08) (0.0567)
ppotato 0.0957*** -0.0242*** 0.0124*** 0.0666*** -0.00268*** -0.00469*** -0.143

(1.29e-07) (1.31e-07) (1.69e-08) (1.09e-10) (2.9e-07) (6.84e-08) (0.233)
exml3 0.00302*** -0.00257*** -0.000544 0.000655** -0.000605* -0.000296 0.000348

(0.000566) (0.000744) (0.000297) (0.000244) (0.000262) (0.000473) (0.000181)
gddl3 0.000161*** -0.000499*** 0.000318*** 6.23e-05*** 3e-05*** 0.000104*** -0.000177

(1.39e-06) (8.98e-05) (3.11e-10) (4.35e-08) (5.26e-09) (1.09e-07) (0.000115)
precl3 0.00123*** -0.00259*** 0.000336*** 0.00121*** -0.000233*** 0.00231*** -0.00226***

(0.000153) (9.61e-05) (2.18e-05) (6.07e-06) (2.97e-05) (1.42e-05) (0.000313)
icclass 0.0678*** -0.0195* 0.0106*** -0.0114 -0.00933 -0.0384** 3e-04

(0.0097) (0.00887) (0.00277) (0.00908) (0.0334) (0.0126) (0.00311)
nicclass -0.111*** -0.00073 0.028 0.00958 0.013*** 0.0385* 0.0226*

(0.000215) (0.00453) (0.0327) (0.03) (0.00149) (0.0167) (0.0115)
slope -0.0204*** 0.000209 7.84e-05 0.00309 0.00224** 0.0101** 0.00468***

(0.00273) (0.00353) (0.00208) (0.00214) (0.000857) (0.00344) (0.000974)
ydwheat 0.000583*** 0.000211*** 0.00139*** -0.000652*** -0.000137*** -0.000696*** -0.000701***

(8.38e-05) (1.52e-05) (3.25e-06) (3.27e-05) (1.92e-05) (2.84e-05) (2.93e-05)
ydcorn 0.000518** -0.000244*** 0.000511*** -0.000206*** 9.09e-05*** -0.000135*** -0.000536***

(0.000191) (2.69e-05) (6.19e-06) (1.75e-05) (5.54e-06) (2.93e-05) (2.08e-05)
claypc 0.00981*** -0.00367*** -0.00169*** -0.00262*** -3.36e-05 -0.000671 -0.00113***

(0.000936) (0.000352) (0.000343) (0.000387) (9.32e-05) (0.000376) (0.00015)
kfactor -0.82*** 0.307*** 0.0524** 0.222*** 0.0479*** 0.199*** -0.00883

(0.0521) (0.0148) (0.0192) (0.00583) (0.0027) (0.0209) (0.0112)

a Note: Robust standard error reported in parenthesis, calculated via the Krinsky-Robb method. Discrete
effects are reported for binary variables IrrDist and GrndSurf. Marginal effects are reported for all other
variables. Year dummies and constant are suppressed from reporting. A triple asterisk indicates p < 0.001;
a double asterisk indicates p < 0.01; a single asterisk indicates p < 0.05.
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Table 5: Model estimates of average partial effect on profits ($/acre)

Models
(1) (2) (3)

Variables FMNL OLS RE
IrrDist 16.2(5.98)** 15.62***(4.373) 15.68*(9.082)

GrndSurf 31.2(8.06)*** 34.91***(5.439) 33.94***(10.47)
QmeanSurf -5.8(10.4) -2.095(6.373) -5.492(10.52)

QsdSurf -29.2(25.5) -47.15***(17.43) -48.79(30.76)
pcorn 157(0.000444)*** 81.46***(12.09) 80.87***(10.13)

pbarley -8.07(1.12)*** -5.971*(3.147) -5.466*(2.805)
pwheat -92.1(0.786)*** -67.59***(9.737) -71.13***(8.184)

psugarbeet -13.5(0.52)*** -6.719***(1.270) -6.278***(1.050)
ppotato 73.6(0.000349)*** 42.44***(8.114) 44.13***(6.625)

exml3 0.278(0.34) 0.167(0.216) 0.629**(0.261)
gddl3 0.266(0.00666)*** 0.235***(0.0207) 0.159***(0.0292)
precl3 1.2(0.0459)*** 0.922***(0.148) 0.251*(0.151)
icclass 4.78(23) 7.819**(3.337) 8.935(5.943)

nicclass 6.92(28.9) -3.344(2.245) -1.401(3.727)
slope -0.646(2.18) -0.796(1.233) -0.890(1.989)

ydwheat 0.394(0.0344)*** 0.787***(0.136) 0.920***(0.220)
ydcorn 0.327(0.05)*** 0.630***(0.114) 0.415**(0.162)
claypc -0.641(0.421) -1.345***(0.332) -1.766***(0.536)
kfactor 46.1(18.3)* 76.25***(18.23) 84.61***(28.60)

a Note: Column 1 shows the average partial effect on profits derived from the frac-
tional multinomial logit (FML) model. Column 2 and 3 show linear estimates of
farm profits using pooled ordinary least square (OLS) and panel random effect (RE)
models. Robust standard errors reported in parenthesis. A triple asterisk indicates p
< 0.001; a double asterisk indicates p < 0.01; a single asterisk indicates p < 0.05.
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Table 6: Fractional multinomial logit model estimates on farm area vari-
ables

(1) (2)
APE: Crop Type(%) logArea Area

alfalfa -0.0522(0.00267)*** -8.1e-05(9.91e-06)***
barley 0.00162(0.00526) 6.74e-06(5.02e-06)

corn 0.0137(0.00254)*** 1.73e-05(2.53e-06)***
potato 0.00909(0.00232)*** 1.58e-05(1.36e-06)***

sugarbeet 0.00266(0.000881)** 5.04e-06(5.95e-07)***
wheat 0.0192(0.00419)*** 3.93e-05(3.45e-06)***
fallow 0.00601(0.00229)** -3.14e-06(2.78e-06)

APEP: profit ($/acre)
profit 4.604(2.464) 0.00772(0.00315)*

a Note: Model (1) includes the natural log of farm area (in acres) as an explana-
tory variable, and model (2) includes the level of farm area. All other control vari-
ables except the irrigation district dummy are included. Robust standard errors
reported in parenthesis. A triple asterisk indicates p < 0.001; a double asterisk
indicates p < 0.01; a single asterisk indicates p < 0.05.
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