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Comparison of the Performance of Count Data Models under Different Zero-Inflation 

Scenarios Using Simulation Studies 

 

Abstract 

When analyzing consumption behaviors on the individual level, data is often in the 

format of count data. A challenge with this data is that there are many zero observations (zero-

inflated) because there may be many observations recorded as zero-consumption during a given 

period. In this paper, we aim to examine the performance of six count-data models under 

different zero-proportion, and skewness levels using simulation studies. Additionally, we further 

compare the capabilities of these models on predicting zero-observations, and structural zero-

observations, in order to evaluate their capabilities in predicting market structure when applying 

to the food consumption analysis. Based on this study, it is recommended to the researchers to 

consider the hurdle models when there is zero-deflation, and the zero-inflated models when there 

is zero-inflation. If the underlying assumption assumes that there are different types of zero 

observations, it is recommended to use zero-inflated models.  
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Comparison of the Performance of Count Data Models under Different Zero-Inflation 

Scenarios Using Simulation Studies 

 

Introduction 

Agricultural economists have long been interested in modeling consumers’ behaviors, in 

particular consumers’ preferences and purchases. In models analyzing consumption behavior on 

an individual level, data is often in the format of count data. A challenge with this data is that 

there are many zero observations (zero-inflated) because there may be many observations 

recorded as zero-consumption during a given period. 

In statistical modeling, when the dependent variable is count data, the most popular 

regression technique is the Poisson regression model. However, the Poisson model fails to 

provide an adequate fit when there exists the problem of zero-inflation. Thus, the Poisson model 

has been modified to solve this issue. The most popular modification is the Zero-

Inflated/Modified Poisson model and Hurdle Poisson model. Further, there are negative binomial 

variations of these models considering the possible issue of overdispersion.  

The zero-inflated Poisson (ZIP) model was proposed by Lambert in 1995. Following this, 

a number of related models have been proposed, including the Poisson-negative binomial and 

modified Poisson suggested to address inequality of the mean and variance (as equality is 

assumed for the Poisson distribution) (Famoye and Singh, 2006). The zero-inflated count data 

model assumes that the zero observations coming from two distinct sources: “sampling zeros” 

and “structured zeros.” When applied to consumption analysis, zero-consumption could be 

recorded when the consumer is genuine non-participant (structure zero), or when the zero 

consumption is the corner solution of a standard consumer demand problem (sampling zero).  



 

 

Different from the Zero-inflated count data model, the Hurdle models proposed by 

Mullahy (1986) assumes that all the zeros are sampling zeros. When applied to consumption 

analysis, it assumes that individuals need to pass two stages before being observed with a 

positive level of consumption: a participation decision and a consumption decision. Furthermore, 

the hurdle models assume participation dominant. Thus, all the zero observations are assumed 

generated in the first stage (whether to consume), and in the second stage, the consumption 

behavior is truncated at zero. 

Thus, the choice between hurdle models and zero-inflated models is typically based on 

whether the researcher believes that all the zero observations are coming from the structural zero 

group or that at least some of the zeros are sampling random zeros. 

There has been relatively little literature trying to compare and evaluate the performances 

of these count data models, and the results of the studies that do exist do not come to the same 

conclusion. For example, Green (1994) found that the negative binomial model was superior to 

the ZIP model, and the ZIP model was superior to the Poisson model; However Lambert (1992) 

argued that ZIP model had superior fit to Negative Binomial model. Needlon et.al.,(2010) found 

that the ZIP model fits better than the Poisson and Hurdle models, while Welsh et.al.(1996) 

found that the Hurdle and ZIP models to be equal. Based on Miller’s (2007) research, the 

discrepant results of the model comparisons might be because the datasets they employ are quite 

different in the proportion of zeros, with some research using data with 20% zeros, and some 

datasets with as much as 90% zeros.  

In addition to differently structured data with respect to zeros, there is also difference in 

datasets with regards to overdispersion. Few studies have used simulated data to examine one or 

both of these issues. Lambert (1992) proposed the zero-inflated Poisson model and evaluates its 



 

 

performance using simulation studies. Miller (2007) compares the Poisson, hurdle, and zero-

inflated models under varying zero-inflation levels; Desjardins (2013) evaluates the performance 

of zero-inflated negative binomial and negative binomial hurdle models under simulation. 

However, most of these previous studies compare the models mainly focus on its model fits and 

parameter recovery. However, how well the models predict different categories of consumers can 

also be of importance, especially for consumption studies. When choosing between the hurdle 

models which assume no structural zeros, and zero-inflated models, which allow both structural 

and sampling zeros, what are their capabilities of predicting market segmentation is of interest.  

To the best of our knowledge, there has been no simulation studies conducted that 

compare zero-inflated and hurdle models with both Poisson distribution and Negative binomial 

distributions. There are no prior studies investigating how zero proportions and levels of 

overdispersion might affect estimations and model fit in the hurdle models and zero-inflated 

models. Furthermore, special attention can be given to the comparison of model capabilities to 

predict the correct latent classes. In the case of consumption analysis, we will compare the 

models’ capabilities of predicting the market structure and segmentations. Considering the 

assumption that the zero-inflated models have two different types of zeros, yet the hurdle models 

only assume the existence of one type of zero. It would be very important to test whether the 

zero-inflated models would efficiently predict the different types of zeros, especially given the 

different levels of zero portions.  

In this study, we will examine two research questions. First, under different levels of zero 

proportions, and skewness of positive outcomes, how will these count data models (Poisson 

model, Zero-Inflated Poisson model, Hurdle Poisson model, and their negative binomial 

variations) perform in terms of model fit. Secondly, we will pay special attention to the 



 

 

comparison between Zero-Inflated Models and Hurdle models, and evaluate the proportion of 

correctly identified structural zeros for the Zero-Inflated Models, and test the consequences, if 

any, of misspecifying the latent classes for the zeros given different levels of structural zeros.  

 

Literature Review 

 

Count Data and Generalized Linear Model 

 

Count data occurs very frequently in many different fields of research, especially in the 

field of social science. Count data can be used to represent the number of times that an event 

occurs under a certain condition or during a certain time; for example, the number of times that 

consumers purchase a certain good during a certain period would be an event count. As such, the 

response values take the form of discrete non-positive integers. Hence, count data is the 

“realization of a nonnegative integer-valued random variable” (Cameron and Travedi, 1998) 

When analyzing count data, there is an assumption that the number of events is 

independently identically distributed with a discrete probability distribution. The most common 

probability distributions used to describe count data are the Poisson and Negative Binomial 

distributions. The Poisson distribution was derived by Poisson (1837) as a limiting case of the 

binomial distribution, with the characteristics of mean-variance equality. The negative binomial 

distribution was derived by Greenwood and Yule (1920) and was used as an alternative to the 

Poisson distribution when violating the mean-variance equality.  

As for the regression models, the classic linear regression model is not suitable for count 

data analysis, since the assumption of normality is violated. Thus, generalized linear models, 



 

 

which allow the analysis of data when the assumptions of linearity and normality are no longer 

met, are employed.   

The Generalized Linear Model (GLM) was first described by Nelder and Wedderburn 

(1972) and has been further developed and explained by McCullagh and Nelder (1989). Instead 

of modeling the mean as a linear function of the covariance in the classic linear regression, it 

allows other possibilities. All GLM are specified with three components: a random component 

which specifies the distribution of the output variable; a systematic component which specifies 

the covariants in a linear form and a link function which connects the random component to the 

systematic components. If the distribution of the output variable is normal, then it is the classic 

OLS regression. Besides the normal distribution, other distributions, like binomial distributions, 

Poisson distribution, negative binomial distributions, etc. can be used. 

To be more specific on the three components of the GLM, it is necessary to clarify the 

equations. The systematic component is of the linear form of the covariants as follows: 

η = 𝑥′𝛽 

Where x𝑖 is the vector of covariance for observation i, and 𝛽 is the correponding unknown 

parameters.  

A link function connects the mean value of the output variable Y to the linear predictor η 

through a function g(. ).Thus, the GLM model is expressed as  

g(μ) =  η = 𝑥′𝛽 

   

Poisson Regression Model and Applications  

 



 

 

The Poisson regression model is the most popular method for analyzing count data. It is a 

specific form of the GLM which specifies the output variable Y being followed by a Poisson 

distribution, with the link function g(μ) = log (μ). 

Thus, the probabilities of observing y𝑖 can be written as： 

𝑓(𝑦𝑖, μ𝑖) =
µ𝑖

y𝑖𝑒−µ𝑖

y𝑖!
 y𝑖 = 0,1,2,3 … ..  

Where μ𝑖 is parameter of the Poisson regression, which is also the mean and variance of y𝑖 

for the ith observation. Given the link function and the linear predictor η𝑖 g(μ𝑖) = log(μ𝑖) =

x𝑖′𝛽, thus we have μ𝑖 = exp (x𝑖
′𝛽).  

The Poisson regression has been widely used when analyzing count data. In the field of 

consumption behavior, because the consumption frequency or purchase intensity is often 

described as count data, Poisson regression models have been used to analyze consumers’ 

behavior. For example Morland et al. (2002) used the Poisson regression when analyzing 

consumers’ access to healthy food choices concerning to the distribution of food stores and food 

service places. Binkley (2006) employed the Poisson regression to explore the effect of 

demographic, economics and nutrition factors on the consumption frequency of food away from 

home. Cannuscio et al. (2013) using the Poisson regression to analyze the correlation between 

food environment and residents’ shopping behaviors.  

 

Problems with the Poisson Regression  

 

Although Poisson regression models are popular when analyzing count data, the model 

might not be the best fit due to the characteristic of the Poisson regression of the mean-variance 

equation, which is specified by μ𝑖 = 𝐸(Y𝑖) = 𝑉𝑎𝑟(Y𝑖). The assumption is very restrictive and is 



 

 

easily violated. When the observed variability is greater (or less) than the observed mean, then 

the Poisson distribution would no longer be the true realization of the data, and the data is 

considered to have the issue of overdispersion (underdispersion). Taking the case of 

consumption behavior as an example, for some daily goods like tobacco, there might be many 

people choose to never consume tobacco because they are non-smokers, yet there might be also 

many people choose to consume extremely large units per week (heavy-smokers). In this case, 

the data might not meet the assumption of mean-variance equality, and Poisson model would not 

be appropriate.  

A special case of overdispersion happens when there are excessive zeros in the data. When 

there are abundant zeros, the mean of the data will be closer to resulting in the violation of mean-

variance equality assumption. Thus, ignoring the issue of excessive zeros will cause biased 

parameter estimates and poor model fit. Using tobacco consumption as an example again, 

whenever the question of consumption frequency is asked, there would be many people who 

answer zero, since they are non-smokers. The same thing happens for the consumption of food, 

where consumers might choose not to consume in a given time period, or not to consume for 

reasons such as allergies or personal beliefs. 

   When considering the source of the excessive zeros, some research argues that the zeros 

might arise from different generating processes, which is a result of unexplained population 

heterogeneity (Hu et al.,2011; Rothman 2013). Generally, it was considered that the zeros could 

be differentiated into two types: structural zeros, which are generated from a latent class that zero 

is the only possible value, and sampling zeros, which arise from a latent class where zero 

happens within a random sample of potential count responses. In the case of consumption 

behaviors, in response to the question “How often did you consume seafood last month” there 



 

 

will be individuals who never consume seafood before (structural zeros) and individuals who are 

potential consumers but might not choose to consume in the last month(structural zeros). The 

prior structural zero observations are the consumers who have a non-positive desire (which can 

be categorized as non-participants), and the posterior sampling zero observations are those 

consumers who have positive desire but no positive acquisition in the given period (which can be 

categorized as potential consumers).  

To deal with the issues of overdispersion and excessive zeros, different models have been 

used. Generally, when overdispersion is the only issue, the negative binomial model will be a 

better fit than Poisson regression. If only zero-inflation exists, either the Zero-inflated Poisson 

model or hurdle Poisson model are used. If both exist, then zero-inflated negative binomial and 

hurdle negative binomial models could be used.  

 

Negative Binomial Regression Models and Applications 

When the data has the issue of overdispersion, the negative binomial model is usually 

considered as an alternative to the Poisson regression model, since it provides an extra parameter 

to accommodate the additional variability. The negative binomial distribution (NB) is a gamma 

mixture of the Poisson distribution. In other words, a random non-negative integer is considered 

distributed as the Poisson distribution with a mean of λ, where λ is a random variable with a 

gamma distribution. Thus, the NB works to allow more flexibility in accommodating variability.   

For example, for the gamma distribution with shape parameter γ, and scale parameter 

θ=
𝜌

1−𝜌
, the mass function of the negative binomial distribution given the gamma-Poisson mixture 

is written as:  

f(y, γ, ρ) =  ∫ 𝑓𝑝𝑜𝑖(λ) ∗ 𝑓𝑔𝑎𝑚𝑚𝑎(γ,ρ)(λ)
∞

0

dλ  



 

 

      =  ∫
λ𝑦

𝑦!
𝑒−λ ∗  λ𝑟−1∞

0

𝑒
−λ

𝜌
1−𝜌

(
𝜌

1−𝜌
)

γ
Γ(γ)

dλ    

      =  
Γ(γ+y)

𝑦!Γ(γ)
 𝜌𝑦(1 − 𝜌)γ 

 

The standard formulation for the negative binomial mass function of a variable Y is  given in the 

following form: 

f(y; k, μ) =
Γ(y + k)

Γ(y + 1)Γ(k)
 (

𝑘

𝑘 + μ
)𝑘(1 −

𝑘

𝑘 + μ
)y 

where E(Y)= μ, and Var(Y)= μ +
µ2

𝑘
, and 

1

𝑘
 is defined as the dispersion parameter. k is the gamma 

scale parameter. As k increases to infinity, Var(Y) decreases to u, which is equal to E(Y), and the 

distribution of negative binomial approaches the Poisson distribution.  

For the negative binomial regression model, which is also a specific form of GLM, the link 

function is also the log transformation as the Poisson regression model g(μ𝑖) = log(μ𝑖) = x𝑖′𝛽. 

Further more, as mentioned above, the negative binomial distribtuion converges to the poisson 

distribution if k increases to infinity, thus, the Poisson regression model is nested within the 

negative binomial regression model. As a result, the Likelihood Ratio Test or Wald test can be 

used to test whether the dispersion parameter is significant. 

Since negative-binomial regression models are more flexible than Poisson regression 

models accommodating data with more variability, it has also been widely used in the analysis of 

consumption behavior. For example, Lesser et al (2013) employ the negative binomial model to 

test the association between outdoor food advertising and obesity. When analyzing the data, the 

authors reject the Poisson model because of the existence of overdispersion. Han and Powell 



 

 

(2013) also employed the negative binomial model to analyze consumption patterns of sugar-

sweetened beverages in the United States. 

However, although the negative-binomial regression models can accommodate issues of 

data with overdispersion, these models also have some limitations, especially when dealing with 

zero-inflation. Previous research indicates that negative binomial regression models are not a 

good fit for data with zero-inflation (Desjardins, 2012; Hu et al., 2011; Lambert, 1992). 

Additionally, considering the potential different latent classes which generate two types of zeros, 

using the negative binomial models could not capture the different characteristics of the different 

groups.  

In the case of consumption, negative-binomial models would be very restrictive by 

assuming that it is the same set of factors that influence both consumers’ decisions on 

participation and consumption. Furthermore, both Poisson regression models and negative 

binomial regression models assume that the characteristics of consumers and non-consumers 

have no significant difference, thus fail to identify different consumer types. To investigate the 

different types of zeros (and consumers) , a mixture model or a two-part model may improve fit.   

 

Zero-inflated Models  

Zero-inflated models refer to models that define a mixture of two different distributions at 

zero, and are able to accommodate the issue of excessive zeros in count data. Zero-inflated 

models assume that there are different latent classes in the population. Thus, the zero 

observations could be generated through two different sources: “sampling” and “structured” 

zeros. When applying the zero-inflated model to the consumption case, the observed zero 

consumption will be recorded when the consumer is genuine non-participant (structured zero), or 



 

 

when the consumers are potential consumers, and choose zero consumption as the corner 

solution of a standard consumer demand problem (sampling zero). Thus, using the zero-inflated 

models will allow us to predict the existence of three different groups: genuine non-participant, 

potential consumers, and active consumers with positive consumption.    

Zero-inflated models have been developed for different models, including Poisson 

regression models (Lambert, 1998), negative binomial regression models (Ridout, Hinde, and 

Demetrio, 2001), and other models (geometric models (Mullahy, 1986)).  

The zero-inflated Poisson (ZIP) model was proposed by Lambert in 1995. It assumes a 

mixture of two distributions at the point of zero: a Poisson distribution and a binomial 

distribution. According to this assumption, it is assumed that with probability p, the only possible 

observation is 0 (structural zeros), and with probability (1-p), a Poisson random variable is 

observed. The probability mass function of a ZIP model is as follows: 

Pr (Y=y)={
𝑝 + (1 − 𝑝) exp(−λ) 𝐼(𝑦=0)

(1 − 𝑝)
λy𝑒−λ

y!
 𝐼(𝑦>0)

 

Thus, from the above equation, zero observations can be observed from two parts: 

structural point mass component , p, and from the sampling Poisson component, (1 −

𝑝) exp(−λ). In the ZIP model, E(Y)= μ = (1 − 𝑝)λ, and Var(Y)= μ +
𝑝

1−𝑝
μ2.  

The ZIP model is also a special case of GLM, with a logit link function for p, and log link 

function for λ as follows: 

Logit (p)=Log(
𝑝

1−𝑝
)=𝑥′𝛽 

Log(λ) =  z′𝛼 



 

 

Where 𝑥 are the covariates for the first stage, with 𝛽 as the corresponding estimates; z are 

the covariates for the second stage, with 𝛼 as the corresponding estimate. Furthermore, this is no 

requirement that x=z. 

The zero-inflated Poisson model has been widely used when dealing with excessive zeros, 

and there are many examples in the analysis of consumption. For example, Almasi et al. (2016) 

employed the ZIP model to analyze the effects of nutritional habits on dental care among 

schoolchildren. Matheson et al. (2012) explored the influence of gender and neighborhood 

deprivation on alcohol consumption using the ZIP model. 

Additionally, Lambert (1992) also extends the ZIP model to the ZIP(τ) model which 

allows p and λ to be correlated with a shape parameter τ. Huang and Chin (2010) employed the 

ZIP(τ) to model road traffic crashes. Calsy et al. (2009) explored the correlation with 

motivational and skill training and HIV transmitted infection sexual risk using the ZIP(τ).  

Just as that the Poisson regression model was extended to the negative binomial regression 

model, the zero-inflated Poisson regression model can also be extended to the zero-inflated 

negative binomial regression model. Even with zero-inflation, it is also possible that 

overdispersion happens because of the greater variability of the non-zero outcome. In this case, 

instead of the ZIP model, the ZINB model is a better fit for the data.  

Similar to the ZIP distribution, the ZINB distribution assumes that there is a mixture 

distribution at the point of zero: a negative binomial distribution and a binomial distribution. 

Thus, the ZINB can be expressed as follows: 

 Pr (Y=y)={
𝑝 + (1 − 𝑝)(

𝑘

𝑘+µ
)𝑘  𝐼(𝑦=0)

(1 − 𝑝)
Γ(y+k)

Γ(y+1)Γ(k)
 (

𝑘

𝑘+µ
)𝑘(1 −

𝑘

𝑘+µ
)y 𝐼(𝑦>0)

 

 



 

 

  Where u is the mean of the NB distribution, and 
1

𝑘
 is the dispersion parameter. Thus the 

mean and variance of the ZINB distribution is E(Y)= (1 − 𝑝)μ，Var(Y)= (1 − 𝑝) ∗ μ ∗ (1 +
µ

𝑘
+

𝑝μ). Just as the NB distribution converges to the Poisson distribution as k increases to infinity, 

the ZINB distribution also converges to the ZIP distribution as k increases. Examples of the use 

of the ZINB model in consumption include Hendrix and Haggard (2015), who employed the 

ZINB model to analyze global food prices and regime type in the developing world.  

 

The Hurdle Model 

The hurdle model was first developed by Cragg (1971) as an example of truncated models, 

relaxing the Tobit model by allowing separate stochastic processes for the observed zeros and 

positive outcomes (Yen and Huang, 1996). Different from the zero-inflated models, the hurdle 

models are no longer a mixture of different models, but a two-part model. The first part predicts 

whether the outcome is zero or not, and the second part generates the non-zero counts. Thus, it 

assumes that all the zeros are from the first stage.  

When modeling consumption behavior using the hurdle count data model, there is an 

assumption that individuals need to pass two stages before being observed with a positive level 

of consumption: a participation decision and a consumption decision. In the first stage, the 

consumers make decisions on whether to participate or not. In the second stage, a decision on 

how much/many to purchase was determined. Specifically, the hurdle model assumes that the 

participation stage dominates the consumption stage. Thus, if the consumers choose to 

participate in the first step, it does not allow zero-consumption in the consumption stage.  

In prior research, a hurdle model uses a binomial logistic regression model to indicate 

whether a count is zero or positive (Green, 1994). If a positive outcome is realized, then it a 



 

 

truncated at zero count data model (Poisson/NB) is used for the positive counts. However, the 

first part does not have to be the binomial logistic regression model, “there will likely exist 

numerous plausible specifications of both the binary probability model and the conditional 

distribution of the positives” (Mullahy, 1986). For example, in Mullahy’s research (1986), he 

used the Poisson distribution governing the probability of observing a zero count. Thus, a generic 

hurdle model is as follows: 

Pr (Y=y)={
𝑔1(0) 𝐼(𝑦=0)

(1 − 𝑔1(0)) ∗
𝑔2(𝑦)

1−𝑔2(0)
  𝐼(𝑦=1,2,3….)

 

Where Y is the outcome variable, 𝑔1 is the specification of the binary probability model 

that governs the first hurdle, indicating whether the outcome is zero; 𝑔2 is the specification of the 

trucated-at-zero probability generating the positives.  

There are also some popular specifications for 𝑔1 and 𝑔2, for example Green (1994) 

specified the 𝑔1 as a binomial distribution and 𝑔2 as a truncated-at-zero Poisson distribution, 

which provides the following form: 

Pr (Y=y) = {

𝑝 𝐼(𝑦=0)

(1 − 𝑝) ∗
λy𝑒−λ

(1−𝑒−λ)y!
  𝐼(𝑦=1,2,3….)

 

Where p is the probability of a count being observed as zero, and λ is the parameter for the 

truncated Poisson distribution. To be more specific, the link function for p is logit transformation 

where Logit (p)=Log(
𝑝

1−𝑝
)=𝑥′𝛽, and the link function for λ is log, with Log(λ) =  z′𝛼. 𝑥 are the 

covariates for the first stage, with 𝛽 as the corresponding estimates; z are the covariates for the 

second stage, with 𝛼 as the corresponding estimate. Furthermore, this is no requirement that x=z. 

Mullay (1986) specified both 𝑔1 and 𝑔2 as Poisson distributions which provides the 

following specifications: 



 

 

Pr (Y=y)={
𝑒−λ1  𝐼(𝑦=0)

(1 − 𝑒−λ1) ∗
λ2

y𝑒−λ2

(1−𝑒−λ2)y!
  𝐼(𝑦=1,2,3….)

 

Where λ1 is the parameter for the Poisson distribution governing the first hurdle; λ2 is the 

parameter for the Poisson distribution generating the positives. Both λ1 and λ2 could be 

parameterized with log link function as Log(λ1) = 𝑥′𝛽, and Log(λ2) =  z′𝛼.  

Shonkwiler and Shaw (1996) extended Mullahy’s specification by allowing zero 

observations in both the first and second stage. Thus, in Shonkwiler and Shaw’s model (Double 

hurdle count-data model1), there are two mechanisms generating zero observations: zero 

observations could either happen in the first stage by choosing not consume or in the second 

stage by choosing consume zero frequency. However, the essence of the double hurdle count 

data model is very similar to the ZIP model, but with the first part indicating the structural zeros 

using Poisson distribution specification instead of a binomial. The specification for the double-

hurdle count data model is as follows:  

 

Pr (Y=y)={
𝑒−λ1 + (1 − 𝑒−λ1) ∗ 𝑒−λ2  𝐼(𝑦=0)

(1 − 𝑒−λ1) ∗ (1 − 𝑒−λ2)
λ2

y𝑒−λ2

(1−𝑒−λ2)y!
  𝐼(𝑦=1,2,3….)

 

   = {
𝑒−λ1 + (1 − 𝑒−λ1) ∗ 𝑒−λ2  𝐼(𝑦=0)

(1 − 𝑒−λ1) ∗
λ2

y𝑒−λ2

y!
  𝐼(𝑦=1,2,3….)

 

Where λ1 is the parameter for the Poisson distribution governing the first part, indicating 

whether the zeros are structural zeros or not; λ2 is the parameter for the Poisson distribution for 

the second part. Both λ1 and λ2 could be parameterized with log link function as Log(λ1) = 𝑥′𝛽, 

                                                             
1 The term borrowed from Shonkwiler and Shaw (1996) 
 



 

 

and Log(λ2) =  z′𝛼. If we let p = 𝑒−λ1, then this model specification is the same as the ZIP 

model.  

The Poisson regression model can be extended to NB regression model, and the ZIP model 

can be extended to ZINB model, the hurdle Poisson regression model can be extended to the 

hurdle NB model. Examples of research using hurdle models include Crowley, Eakins and 

Jordan (2012), who employed the double-hurdle model to analyze the lottery participation and 

expenditure; Jaunky and Ramchurn (2014), who analyzed consumer behavior in the scratch card 

market using a double-hurdle model; Jiang and Lisa (2012) used double-hurdle approach to 

model mushroom consumption, and Bezu and Kassie (2014), who used the double hurdle model 

to estimate maize planting decisions.  

 

Comparison of the Models  

In this section, there are 6 count data models listed, including the Poisson, NB, ZIP, ZINB, 

Hurdle Poisson, and Hurdle NB models. When models are nested within one another, a Wald/LR 

test can be used to test the significance of these extra parameters. For example, the Poisson 

regression model is nested within NB, the Poisson Hurdle model, and the NB hurdle models; The 

ZIP is nested within ZINB; the PH is nested within the NBH. Besides these, the other pairs of the 

models are not inherently nested within each other. If models are not nested, they can be 

compared using Vuong’s test, AIC and BIC. 

Prior research has compared some models, such as the NB and Poisson regression models, 

where research, as mentioned above, showed the NB better handles the problem of 

overdispersion (Atkins and Gallops, 2007; Warton, 2005). According to Warton’s research 



 

 

(2005), they also found that when the overdispersion was not present, Poisson regression models 

performs better than the NB model.  

As for the comparisons between NB and Zero-inflated models, Lambert (1992) compared 

the ZIP model to the Poisson and NB model when the ZIP model was first proposed. The 

conclusion was that the ZIP outperformed the other two models, and NB performs better than 

Poisson model. Green (1994) compared the NB, ZIP, and ZINB models. Based on the Vuong test 

statistics, he found that the ZINB model performs the best, followed by the NB, ZIP and Poisson 

models. A possible reason for this result may be because the ZINB model could accommodate 

two sources of overdispersion, and in the data used in this study, the overdispersion was caused 

mostly by unobserved response heterogeneity. This would lead the NB model to perform better 

than the ZIP model. Desouhant et al. (1998) compare the NB and the ZIP model and found that 

the two models perform roughly similar, and they conclude that researchers need to 

accommodate both overdispersion and zero-inflation in the analysis of count data. Slymen et al. 

(2006) compared the ZIP, ZINB, NB, and Poisson models and found the NB model fit better 

than the Poisson models. However, the ZINB and ZIP models performed nearly same both in 

terms of model fit and parameter estimates, which indicates that the main issue of the data in this 

study was zero-inflation, and the overdispersion is not severe in this case. Wenger and Freeman 

(2008) compared the ZIP, ZINB, NB, Poisson and concluded that the zero-inflated models 

perform better than the non-inflated models; the NB formulation models fit better than other 

models without the NB formulation.  

The comparisons between the Zero-inflated models and the Hurdle models has driven more 

attention, focusing on two main differences between models. At first, the hurdle models assume 

there only exist one type of zero observations, yet the zero-inflated models assume that zero 



 

 

observations are coming from two different sources. Second, zero-inflated models are typically 

used to analyze data with zero-inflation and have a poor fit for data with under-dispersion of zero 

counts, yet the hurdle models have better fit dealing with zero-deflation. Min and Agresti (2005) 

compared the hurdle models, and zero-inflated models, and found the PH model had a better fit 

than the ZIP. Desjardins (2013) compared the ZINB and HNB models using simulations and 

found that the HNB performs better than the ZINB in terms of both model fit and parameter 

recovery.   

 

Gaps and Shortcomings  

Although there is much research comparing models, there has been very few studies 

comparing and evaluating the model performance using simulation studies. Lambert (1992) used 

simulation to compare the ZIP model with the Poisson and NB model the ZIP model was first 

proposed. Miller (2007) compared the performance of the count-data models under different 

levels of zero-proportions and skewness using simulation. This research is very interesting, yet it 

still has several limitations. At first, when comparing the model with NB formulations to those 

without NB formulations, different levels of overdispersion are not accounted for. Next, when 

comparing the models, the author focuses mainly on model fit, without consideration of 

prediction. More recently, Desjardins (2013) compared the ZINB and HNB model under 

simulation allowing different levels of overdispersion, and sample size. However, in this 

research, it is only two models being compared with the pre-assumed portion of zeros.  

Thus, an area that needs further investigation is how the models perform given different 

levels of zero-proportion and overdispersion. From the previous empirical research, we can infer 

that if the effect of overdispersion is much larger than the effect of zero-inflation, the NB model 



 

 

should perform better than the ZIP model. The question remains, how does the effect of zero-

inflation change given different levels of overdispersion? How would  the model performance 

change based on different levels of zero proportion given different levels of dispersion?  

Furthermore, when analyzing consumption behavior, we are extremely interested in 

analyzing different consumer types and exploring the market structure and segmentation. In this 

sense, instead of the model fit, we also care about the capability of prediction for the models.Yet, 

there has been no prior research focusing on prediction capabilities. Especially when comparing 

the Zero-inflated models to the hurdle models, the latter allows two different types of zeros, and 

the former only allows a single type of zero observations. So it would be very interesting to see if 

the zero-inflated model would efficiently predict the correct portion of non-consumers (structural 

zeros), which is the most important utility of the zero-inflated models. With one more step, if we 

allow different levels of structural zeros in the Zero-inflated models, how would the performance 

of the two models change?  

 

Method  

Research Questions 

Based on the literature review, we will examine two research questions in this study. 

First, under different levels of zero proportions, how will these count data models (Poisson 

model, Zero-Inflated Poisson model, Hurdle Poisson model, and their negative binomial 

variations) perform regarding model fit. Secondly, we will pay special attention to the 

comparison between Zero-Inflated Models and Hurdle models, and evaluate the proportion of 

correctly identified structural zeros for the Zero-Inflated Models, and test the consequences, if 

any, of misspecifying the latent classes for the zeros given different levels of structural zeros. 



 

 

To answer the first research question, a simulation study was conducted. We employ a 

Monte Carlo design to sample 1,000 cases based on different levels of zero proportions and 

skewness of non-zero counts. In this study, the zero-proportion and skewness will be varied. For 

each dataset, each model will be analyzed with 2,000 simulations, and then deviance statistics 

and AIC values will be used as the measurement to compare the model fit.  

To answer the second research question, a second simulation study was conducted when 

the true model was known. We will generate datasets from four different distributions:  Zero-

Inflated Poisson distribution (𝜌,  𝜇) (where 𝜌 is the proportion of structural zeros, and 𝜇 is the 

mean of Poisson); Hurdle Poisson (𝜋, γ), Zero-Inflated Negative Binomial distribution ((𝜌,  𝜇,  𝑘) 

where 𝜌 is the proportion of structural zeros, 𝜇 is the mean of Poisson, k is the dispersion rate), 

and Hurdle Negative Binomial distribution (𝜋, γ, k), and fit each datasets with each of the six 

different count-data models to compare their performances under different true model 

specifications. Specifically, we can set the zero/structural zero percentages at different levels, 

and we can also control the different levels of k (over-dispersion), and compare their capabilities 

of capture the zero observations, and structural zero observations.  

 

Monte Carlo Models  

As discussed in the previous section, the generalized linear model was constructed by a 

systematic component, a random component and a link function.The case model for the Poisson 

regression assumes that 𝑦1, 𝑦2…𝑦𝑛 are independently dependent following the distribution:  

𝑌𝑖~Poisson (𝜃𝑖) 

Where the link function is  

log(𝜃𝑖)= 𝛽0+𝛽1 ∗ (𝑥1𝑖)+ 𝛽2 ∗ (𝑥2𝑖) 



 

 

Similarly, the negative binomial formulation of the Poisson model is the same as the 

Poisson regression but with an extra parameter of dispersion. 

The case model for zero-inflated poission model assumes that 𝑦1, 𝑦2…𝑦𝑛 are 

independently dependent following the distribution:  

𝑌𝑖~ZIP (𝑝𝑖, 𝜃𝑖) 

Where the link function is  

 Logit (𝑝𝑖)=Log(
𝑝𝑖

1−𝑝𝑖
)=𝛼0+𝛼1 ∗ (𝑧1𝑖)+ 𝛼2 ∗ (𝑧2𝑖) 

log(𝜃𝑖)= 𝛽0+𝛽1 ∗ (𝑥1𝑖)+ 𝛽2 ∗ (𝑥2𝑖) 

 

The zero-inflated negative binomial model is similar to the ZIP model, with an extra 

overdispersion parameter as 𝑌𝑖~ZINB (𝑝𝑖, 𝜃𝑖 , 𝑘−1), the link function of ZINB model is the same 

as the ZIP model.  

The last set of models are the Hurdle models. The Hurdle Poisson regression model 

assumes that 𝑦1, 𝑦2…𝑦𝑛 are independently dependent followed the distribution:  

𝑌𝑖~HP (𝜋𝑖 , 𝜃𝑖) 

Where the link function is  

 Logit (𝜋𝑖)=Log(
𝜋𝑖

1−𝜋𝑖
)=𝛼0+𝛼1 ∗ (𝑧1𝑖)+ 𝛼2 ∗ (𝑧2𝑖) 

log(𝜃𝑖)= 𝛽0+𝛽1 ∗ (𝑥1𝑖)+ 𝛽2 ∗ (𝑥2𝑖) 

Similarly, the Hurdle Negative Binomial model has the same link function as the HP 

model, but has one addition parameter for overdispersion.  

 

First Simulation Study – Model Comparison for the six models in terms of model fit 

 



 

 

       The first simulation study was designed to examine the performance of the six count data 

models under different levels of zero-proportion and skewness levels. In this experiment, we 

assume that there are five levels of zero-proportion: 0.1, 0.3, 0.5, 0.7 and 0.9 (i.e. 0.1 = 10% 

zeros in the dataset). As for the skewness, we assume three levels: positive-skewness 

(skewness=1.3), normal (skewness=0), and negative-skewness (skewness=-1.3).  

The sample size is an important concern when analyzing different models. When the sample 

size is too small, results may not be consistent since it is not valid to assume asymptotically 

normal, however, when the sample size is too large, the computation time is significantly 

increased. Thus, in this study, we choose the sample size n=1,000, which was chosen based on 

the prior research.  

The simulation size is also important considering the validation of simulation results. If there 

are too few replications, the results would be not consistent, and as the size of simulation is 

increasing, the consistency of the results would also increase. In this study, we choose the 

simulation size equal to 2,000, similar to Lambert (1992) which has been proven to produce 

asymptotic results. 

Data generating process for the first simulation study is described below. Given different 

levels of zero-proportion, the total number of counts to be sampled was one minus the 

prespecified zero-proportion. For example, if the zero-proportion is 0.5, it means that we need to 

randomly draw 500 count number (from 1,2,3,4,5).  Then, given the three different levels of 

skewness, count number was randomly drawn using the “sample” procedure in R. 

As for the process of analysis, the “glm” procedure in R was used for the Poisson and 

Negative Binomial Regression analysis, and “pscl” library in R (authored by Simon Jackman) 



 

 

was used for the zero-inflated and hurdle models. For each model regressed on each dataset, 

results including log-likelihood, AIC, and coefficient estimates are saved for the further analysis. 

 

Second Simulation Study – Model Comparison between hurdle and zero-inflated models 

The second simulation study was designed to compare zero-inflated models with hurdle 

models given the set of simulation conditions. In particular, in this experiment we will test the 

performance of the the models given different levels of structural zero/zero proportions 

(0.1 ,0.3 ,0.5 ,0.7). 

In this experiment,we will generate datasets from four different distributions: zero-inflated 

poisson distribution, negative binomial distribution, hurdle poisson distribution, and hurdle 

negative binomial distribution.  For each distribution, the zero/structural zero proportion which is 

generated from a binomial process is controlled by different levels of p values, and the count 

process (Poisson/negative binomial) will be set given known coefficients. As for negative-

binomial formulations, we also controlled different levels of overdispersion in order to compare 

the model performances under different situations. Then, for each type of dataset, we run six 

different count data models, and compare model fit, with a focus on their capabilities to capture 

zero and structural zeros. We will also evaluate their capability of coefficient recovery (for the 

counting process), and relative/absolute bias.  

What is more, the previous research indicates that the model fit and their capabilities of 

capturing zero-observations would change given different sample size, thus, in this experiment, 

we also control the sample size at different levels. Based on the previous research, Lambert 

(1992) considered the sample size ranged from 25, 50, and 100, but sigularities and non-

convergence happened in her experiment. Thus, similar to the experiment conducted by 



 

 

Desjardins(2013), in order to avoid these issues, I increased the sample size to 100,200, and 500, 

and will also compare the model performances given different levels of sample size.  

 

Model Evaluation of the Simulation Studies 

In order to assess the performance of the six different models, we will employ various 

measures related to model fit and parameter behaviors. Specifically, for model fit, we will 

employ the AIC statistics, and bias for the E(Y|X) and Pr(y=0), and also the capabilities of 

capture zero /structural zeros. As for the parameter recovery, since we only control the 

parameters for the counting process, we will use both the estimated parameters and their 

confidence interval coverage to evaluate how close of the estimated parameters to the true 

parameters. Since, in the second simulation study, we generate four different distributions, and 

for each distribution, we will run all the six count-data model. Thus, we would give special 

attention to the performances of models as a consequence of using a wrong model given true 

distributions.  

 

Preliminary Results2 

First-Simulation Findings 

First, we focus on the results from the first simulation experiment. When the distribution is 

normal distributed, we could find that as zero-proportion goes up, all of the six models turns to 

perform better. Specifically, when the zero-proportion is only 10%, all the six models turns 

similar AIC statistics, while as zero-proportion increasing, we could observe that the 

performances of modified Poisson regression models get significantly better than Poisson 

                                                             
2 This analysis is still ongoing; the results are preliminary. The full version will update later.  



 

 

models. In particular, when the zero-proportion is as high as 90%, both the Zero-inflated and 

hurdle models return better model fit than NB and Poisson regression.  

Furthermore, if we focus on the comparison between zero-inflated and hurdle models, we 

could see that in this case, Hurdle-Poisson model performs better than zero-inflated Poisson 

model when the zero-proportion is small. Thus we could see that hurdle model could handle the 

situation of “zero-deflation,” while zero-inflated models could not. Another finding is that we 

find the negative binomial formulations have larger AIC statistics compared to the Poisson 

formulation, the reason might because that the negative binomial formulations have one extra 

parameter(size) than poison formulations, which works as the penalty causing the AIC statistics 

get larger .  

 

Table: Mean AIC comparing six models with normally distributed datasets 

Zero-

Proportion 

Poisson NB ZIP ZINB HP HNB 

       
10% 3585.21 3587.22 3570.34 3572.34 3570.29 3572.29 

25% 3808.69 3793.78 3561.03 3563.03 3561.02 3563.02 

50% 3754.84 3364.35 3011.97 3013.97 3011.96 3013.96 

75% 2914.66 2169.25 1942.16 1944.16 1942.17 1944.17 

90% 1717.94 1090.41 982.60 984.60 982.60 984.60 

 

 

When the distribution is positively distributed, results are similar as before. We could find 

that as zero-proportion goes up, all of the six models turns to perform better. Specifically, when 



 

 

the zero-proportion is only 10%, all the six models turns similar AIC, while as zero-proportion 

increasing, we could observe that the performance of modified poisson regression models are 

significantly better than Poisson models. In particular, when the zero-proportion is as high as 

90%, both the Zero-inflated and hurdle models return better model fit than NB and Poisson 

regression.  

Hurdle -models again handled the zero-deflation situations better than zero-inflated models, 

and when the zero-proportion gets larger, the performances of zero-inflated models get better. 

Although the data is positively skewed, we still did not find the advantages of using negative-

binomial formulations.  

Table: Mean AIC comparing six models with positive distributed datasets 

Zero-

Proportion 

Poisson NB ZIP ZINB HP HNB 

       

10% 3586.17 3588.18 3571.48 3573.43 3571.43 3573.48 

25% 3808.62 3794.55 3559.49 3561.49 3559.48 3561.49 

50% 3752.35 3362.43 3012.17 3014.17 3012.17 3014.17 

75% 2918.74 2170.57 1942.39 1944.39 1942.39 1944.39 

90% 1717.05 1081.12 982.65 984.65 982.66 984.66 

 

When the data is negatively skewed, we could see that when the zero observations are 

inflated in the datasets, Poisson regression model is the worst fit, and zero-inflated or hurdle 

models are much better than it. In this case we found that the zero-inflated poisson regression 

model returns the best model fit in all of the five situations of zero-proportion, one reson might 

because the data is left skewed, causing the mean value moving to the left (pulled to the zero).  



 

 

 

 

 

Table: Mean AIC copmaring six models with positive distributed datasets 

Zero-

Proportion 

Poisson NB ZIP ZINB HP HNB 

10% 3588.28 3590.29 3573.02 3575.02 3573.08 3575.08 

25% 3811.68 3796.49 3562.86 3564.86 3562.86 3564.86 

50% 3760.90 3366.55 3015.23 3017.24 3015.24 3017.24 

75% 2921.83 2171.69 1942.89 1944.89 1942.89 1944.89 

90% 1714.56 1080.78 982.27 984.27 982.28 984.28 

 

I also pulled out the mean AIC statistics for six models at the three different levels of 

skewness. Overall, in the following five tables, we could observe that the zero-inflated and 

hurdle models handled the skewness better than Poisson and Negative Binomial regression, and 

what’s more, we also found that Poisson regression performs the worst in each of the situation. 

Besides, we also found that the larger the zero-inflation rate, the larger difference was captured 

the negative binomial regression and Poisson regression. When the zero proportion is only 10%, 

we could not observe significant differences among the six different models.  

What is more,  when we observe more in detail on the hurdle models, and zero-inflated 

models, we could see that at 10% and 25% level zero observations, the Hurdle model handled 

better when the datasets are normal/positively distributed, however, when the data is negatively 



 

 

skewed, zero-inflated model turns better model fit. While as the zero-proportion getting bigger, 

we found that zero-inflated models’ performances on the normal/positive distributed datasets 

also gets better.  

 

Table: Mean AIC comparing six models with 10% zero proportion 

Skewness Poisson NB ZIP ZINB HP HNB 

       

normal 3585.21 3587.22 3570.34 3572.34 3570.29 3572.29 

positive 3586.17 3588.18 3571.43 3573.43 3571.43 3573.48 

negative 3588.28 3590.29 3573.02 3575.02 3573.08 3575.08 

 

 

Table: Mean AIC comparing six models with 25% zero proportion 

Skewness Poisson NB ZIP ZINB HP HNB 

       
normal 3808.69 3793.78 3561.03 3563.03 3561.02 3563.02 

positive 3808.62 3794.55 3559.49 3561.49 3559.48 3561.49 

negative 3811.68 3796.49 3562.86 3564.86 3562.86 3564.86 

 

Table: Mean AIC copmaring six models with 50% zero proportion 



 

 

Skewness Poisson NB ZIP ZINB HP HNB 

       
normal 3754.84 3364.35 3011.97 3013.97 3011.96 3013.96 

positive 3752.35 3362.43 3012.17 3014.17 3012.17 3014.17 

negative 3760.90 3366.55 3015.23 3017.24 3015.24 3017.24 

 

 

Table: Mean AIC comparing six models with 75% zero proportion 

 

Skewness Poisson NB ZIP ZINB HP HNB 

       
normal 2914.66 2169.25 1942.16 1944.16 1942.17 1944.17 

positive 2918.74 2170.57 1942.39 1944.39 1942.39 1944.39 

negative 2921.83 2171.69 1942.89 1944.89 1942.89 1944.89 

 

Table: Mean AIC comparing six models with 90% zero proportion 

 

Skewness Poisson NB ZIP ZINB HP HNB 

       
normal 1717.94 1090.41 982.60 984.60 982.60 984.60 

positive 1717.05 1081.12 982.65 984.65 982.66 984.66 

negative 1714.56 1080.78 982.27 984.27 982.28 984.28 

 

Thus, from this experiment, we could find that when the data exist the problem of zero-

deflation, hurdle models will provide better model fit than zero-inflated models, yet, as zero-



 

 

proportion gets larger, the model fit of zero-inflated models get better. Another finding is that as 

zero-proportion gets larger, the advantages of using modified Poisson regression also gets more 

and more significant, thus whenever we encounter the issue of zero-inflation, we need to 

consider using the modified the Poisson models. What is more, in this experiment, we did not 

find significant advantages of using the negative binomial formulations; one reason might 

because the simulated data that I designed does not exist a very series issue of over-dispersion on 

the positive counts. The absolute over-dispersion level for skewed datasets is only 1.3, which 

might not large enough to illicit the advantages of using the negative binomial formulations.  

 

Second-Simulation Findings 

Model Fit  

When the sample size is only 100, it is very interesting that, at different levels of zero-

proportion, it is the zero-inflated negative binomial regression model that has best 

loglikelood(while the true distribution is zero-inflated Poision).However, since zero-inflated 

negative binomial regression has one extra parameter (over-dispersion parameter) than the zero-

inflated model, thus as for the AIC statistics, the zero-inflated Poisson model still has best fit.(I 

have not finished the simulation studies yet, thus, the aic statistics table does not provide at this 

time). 

Another finding from this table is that as the zero-proportion gets larger, the model fit for the 

zero-inflated and hurdle models get better, yet the model fit of Poisson and negative binomial 

regression get worse, which again support the results from the first experiment that the Poisson 

/NB models could not handle the zero-inflation issues well.  

 



 

 

Table  Mean LL for n=100, true model is ZIP  

P 

(structrual  

zero) 

Poisson NB HP ZIP HNB ZINB 

       
0.1 -536.34 -303.48 -203.10 -200.20 -203.07 -200.16 

0.3 -1334.85 -709.57 -183.59 -180.34 -183.56 -180.32 

0.5 -1433.84 -695.06 -145.28 -142.46 -146.65 -143.25 

0.7 -1426.81 -734.20 -88.24 -87.00 -88.20 -88.02 

 

When the sample size gets larger to 200, we could see that the zero-inflated poisson model 

has the best model fit, and the larger the proportion of structural zeros, the more significant 

advantage of the ZIP model.  

 

Table  Mean LL for n=200, true model is ZIP  

P 

(structual 

zero) 

Poisson NB HP ZIP HNB ZINB 

0.1 -1504.77 -559.53 -409.79 -403.27 -409.69 -403.18 

0.3 -3153.26 -1481.55 -368.96 -361.90 -368.94 -361.91 

0.5 -3894.77 -1980.98 -293.99 -288.52 -293.94 -289.38 

0.7 -3457.47 -1975.96 -197.68 -194.24 -198.95 -195.92 

 



 

 

The table for n=500 provides the similar results as before, and the advantages of using ZIP 

model become more significant than the case when n=200. It indicates that as n tures larger, the 

sampling distribution would get more and more closer to the true distribution.  

 

Table  Mean LL for n=500, true model is ZIP  

P 

(structual 

zero) 

Poisson NB HP ZIP HNB ZINB 

       
0.1 -3628.75 -1274.05 -1029.27 -1014.81 -1029.21 -1014.90 

0.3 -8577.54 -2493.00 -924.24 -905.83 -924.20 -905.88 

0.5 -10710.22 -4700.52 -754.73 -740.23 -754.68 -740.24 

0.7 -10117.27 -5327.49 -509.25 -502.05 -509.17 -503.50 

 

Abilities of Capturing Zero Observation 

Another feature that we care about is the ability of predicting the zero observations, and 

structural zero observations (which aims to the zero-inflated models).  

In the following tables, the observed zero in each datasets, together with the predicted zero 

observations and structural zero observations from different models are displayed for different 

levels of proportions of structural zero observations.  

In the first table (n=100), when p=0.1, we could see that the observed zero observations has 

mean equals to 36, for the six models, we could see that both the zero-inflated and hurdle models 

has captured the zero observations very well. Here, the hurdle models have predicted the zero 

observations exactly equals to the observed zero, which is a result of the models’ attributes, but 



 

 

we could see that the zero-inflated models also has done a good job in capturing zero 

observations. At the same time, we could see that neither Poisson regression nor negative 

binomial captured enough zero observations. 

Besides, we need to further focuse on the prediction of the structural zeros. Since the zero-

inflated models allows the zero coming from two separate processes, thus it allows us to 

differientiate the different zeros. Given n=100, the expected structural zero was about 100*p. 

When p=0.1/0.3/0.5/0.7, the expected structural zero is 10/30/50/70, and we could see that ZIP 

and ZINB provides the same results. When p is small, they over-estimate the stuctural zeros, and 

when p is large, they under-estimate the structural zeros.  

 

Table:  Predicted zero observations for n=100, true model is ZIP  

P 

(structual 

zero) 

Obs Poisson NB HP ZIP 

ZIP(structur

al zero) 

HNB ZINB 

ZINB(struct

ural zero) 

10% 34 27 30 34 34 12 34 34 12 

30% 48 28 37 48 48 30 48 48 30 

50% 62 34 46 62 63 49 62 62 48 

70% 78 37 54 78 78 70 78 78 68 

 

When n=200, the expected structural zero would be 20/60/100/140 for each level of p, and we could 

see that this time, ZIP and ZINB model has captured bot the zero observations and  structural zero 

observations very well.  

 

Table:  Predicted zero observations for n=200, true model is ZIP  



 

 

P 

(structual 

zero) 

Obs Poisson NB HP ZIP 

ZIP(structur

al zero) 

HNB ZINB 

ZINB(struct

ural zero) 

10% 68 54 61 68 68 22 68 68 22 

30% 96 57 75 96 96 59 96 96 59 

50% 125 63 89 125 125 99 125 125 99 

70% 156 76 103 156 155 139 156 155 135 

 

When n =500, the expected structural zero would be 50/150/250/350 for each level of p. This time, 

we found that the ZIP has better capability in predicting the structural zeros compared with the ZINB 

model, the reason behind this is that as n goes larger, the data gets closer to the true distribution. Again, 

both the zero-inflated and hurdle models have done a good job in predicting zero observations.  

Table:  Predicted zero observations for n=500, true model is ZIP  

P 

(structual 

zero) 

Obs Poisson NB HP ZIP 

ZIP(structur

al zero) 

HNB ZINB 

ZINB(struct

ural zero) 

10% 166 136 153 166 166 50 166 166 50 

30% 242 155 210 242 242 151 242 242 151 

50% 314 167 238 314 314 248 314 314 248 

70% 388 193 259 388 388 350 388 388 346 

 

Thus from this experiment, we could find that the zero-inflated models have very strong capabilities 

to predict both zero observations, and structural zero observations. Because of the model attribute, the 

hurdle models could always estimated the zero observations exactly match the observed zero 

observations, yet it assumes only one type of zero. Thus, if the research has some underlying assumptions 



 

 

offf different types of zero observations, it is the zero-inflated models that would be considered when 

choosing models.  Besides, we found that both poisson regression and negative binomial regression 

models have failed to capture the abundant zero observations, and the more the zero, the less the model 

fit. Thus, in the real research, whenever we faced the zero-inflation problem, we should always turn to the 

modified poisson regressions.  
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