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Abstract 

Non-response is common in surveys used in non-market valuation studies and can bias the 

parameter estimates and mean willingness to pay (WTP) estimates. One approach to correct 

this bias is to reweight the sample so that the distribution of the characteristic variables of the 

sample can match that of the population. We use a machine learning algorism Kernel Mean 

Matching (KMM) to produce resampling weights in a non-parametric manner. We test KMM’s 

performance through Monte Carlo simulations under multiple scenarios and show that KMM 

can effectively correct mean WTP estimates, especially when the sample size is small and 

sampling process depends on covariates. We also confirm KMM’s robustness to skewed bid 

design and model misspecification.  

 

Key Words: contingent valuation, Kernel Mean Matching, non-response, bias correction, 

willingness to pay 
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1. Introduction 

Nonrandom sampling can bias the contingent valuation estimates in two ways. Firstly, when the 

sample selection process depends on the covariate, the WTP estimates are biased due to the 

divergence between the covariate distributions of the sample and the population, even the 

parameter estimates are consistent; this is usually called non-response bias. Secondly, when 

the sample selection process depends on the dependent variable or the individual WTP, the 

parameter estimates become inconsistent, and the WTP estimates are biased and inconsistent 

(Heckman, 1976); this is usually called sample selection bias. 

      The existing literatures indicate sampling selection bias is common and large in non-market 

valuation studies and can be corrected in multiple ways. Edwards et. al. (1987) and Loomis 

(1987) discuss bias caused by nonrandom nonresponses when generalizing the sample WTP 

estimate to the population, and list correction methods like weighted average or weighted 

regressions based on the correlated variable. Bockstael et al. (1990) compare Tobit model, 

Heckman Model and the Cragg Model for correcting sample selection bias in an empirical 

recreation demand study. Dalecki et al. (1993) and Whitehead et al. (1993) find no sample 

selection bias in contingent valuation through phone/mail survey, but do find nonresponse bias 

for aggregate benefit estimates. Eklöf and Karlsson (1999) investigate the properties of tests for 

sample selection bias and the losses made by applying estimators assuming no sample 

selection. Morrison (2000) compares various approaches dealing with aggregation bias of WTP 

estimates in stated preference studies caused by the divergence between sample and 

population characteristics and shows that the method selection can significantly affect the 

precision of the result. Yoo and Yang (2001) detect both sample selection bias and nonresponse 

bias in the double-bounded dichotomous choice contingent valuation survey and use a 

bivariate sample selection model.  

      This paper introduces the sample reweighting process technique kernel mean matching 

(KMM) to the non-market valuation. KMM can reweight the training points in a nonparametric 

way such that the means of the training and testing points in a reproducing kernel Hilbert space 

(RKHS) are close (Huang, 2006). More readily, KMM can match the joint distribution of multiple 
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covariates, while the existing weighted average or weighted regression techniques can only do 

this for a single variable. We use Monte Carlo to simulate different sampling bias 

decomposition scenarios including:   

 Only non-response bias;  

 Only sample selection bias;  

 Sample selection bias + non-response bias;  

 Skewed bid design;  

 Misspecification with/without non-response bias. 

then we test KMM’s bias correction performance under these scenarios. We compare KMM 

parameters and WTP estimation results with the results of the original estimation and of 

substituting the sample mean with the population means. The Monte Carlo results show that  

 KMM can correct non-response bias in WTP estimate when the sample size is small so 

that such bias is prominent. 

 KMM can marginally correct sample selection bias in WTP estimates. 

 KMM can correct non-response bias in WTP when both non-response bias and sample 

selection bias exist. 

 KMM have robust bias correction performance under skewed bid design. 

 KMM can correct the non-response bias in WTP estimates that is magnified under 

misspecification of the model. 

 KMM cannot correct the parameter estimates, unless the data generating process has a 

nonlinear form but a linear approximation model is used for estimation. 

 

2. Sampling Bias 

2.1 An Illustrative Example of Sampling Bias 

We illustrate in a data generating process following Heckman (1976, 1979)’s two-step selection 

model how nonrandom nonresponses in contingent valuation studies can cause bias.  
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  𝑦𝑖1 = 𝑿𝒊𝟏𝜷𝟏 + 휀𝑖1 (1a) 

 𝑦𝑖2 = 𝑿𝒊𝟐𝜷𝟐 + 휀𝑖2 (1b) 

 (1a) is the sample selection equation; (1b) is the WTP equation. 𝑦𝑖𝑗is transformed into 

observable binary outcome 𝑌𝑖𝑗 as  

 𝑌𝑖𝑗 = {
1, 𝑦𝑖𝑗 > 0   

0, 𝑦𝑖𝑗 < 0  
𝑓𝑜𝑟 𝑗 = 1,2. (1c) 

When 𝑌𝑖1 = 1, the observation 𝑖 is included in the sample and becomes available for the second 

equation. Given an initial generated population of size 𝑁, 𝑁2 observations are selected into the 

sample. When 𝑌𝑖2 = 1, the respondent 𝑖 would have a “yes” response to certain bid amount 

due to the utility increase after the compensation.  

      In contingent valuation practice, researchers typically estimate (1b) under certain 

distribution assumptions and model specifications. We assume (휀𝑖1, 휀𝑖2) is drawn from a 

standard bivariate normal distribution with Pearson’s correlation parameter 𝜌, so (1b) can be 

estimated using a probit model. Here we use a simple form of (1b) for illustration.  

 𝑦𝑖2 = 𝛼 + 𝛾 ∗ 𝑏𝑖𝑑𝑖 + 𝛿 ∗ 𝑥𝑖 + 휀𝑖2 (2a) 

where 𝑏𝑖𝑑𝑖 is the amount of money individual i is asked to contribute for the welfare change 

caused by the project we want to valuate, 𝑥𝑖  is the quantity of public goods that can be 

consumed by individual i. We denote �̅� as the population mean of 𝑥𝑖. Then mean WTP is  

 E(WTP) = −
𝛼 + 𝛿 ∗ �̅�

𝛾
 (2b)   

2.2 Decomposition of Sampling bias 

2.2.1 Sample Selection Bias 

Under this data generating process biases can be caused in different ways. Firstly, when 𝜌 ≠ 0, 

nonresponses become dependent on individual WTP and can lead to inconsistent parameter 

estimates in (2a) as shown in Heckman (1979)’s two-stage model. This type of bias is commonly 
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called “sample selection bias” in contingent valuation literature (Whitehead et al., 1993; Eklöf 

and Karlsson,1999). 

2.2.2 Non-Response Bias 

If 𝒙𝒊𝟏 and 𝒙𝒊𝟐 have common or correlated characteristic variables, nonresponses can cause 

divergence of distribution of such variables between of the sample and the population. 

Although the parameter estimates in (1b) will not be affected by common/correlated 

repressors, nonresponses can still bias the results when we use the sample means of 

characteristic variables as a substitute of the population means to calculate aggregate WTP 

estimates. This type of bias caused by nonrandom sampling depending on covariates is typically 

called nonresponse bias (Whitehead et al., 1993).   

2.2.3 Bid Design 

Kaninen (1993) suggested that bid design can influence WTP estimation. The more the support 

of the bid deviates from the domain of the population WTP, the greater is the difference 

between the estimated mean WTP and the population mean WTP. This indicates that the 

support of the bid influences the estimated mean WTP.  

      Problematic bid design can also bias in estimation in a similar way as non-responses do. For 

example, if the bid numbers are centered around the upper tail of the true WTP distribution, 

the respondents with low WTP would almost always say “no” to the bid, so barely any 

information will be revealed about the preference the observant at the lower end. It would 

have the equal effect to allocating low WTP observations less weight in the estimation. There is 

extensive literature about “optimal bid design” and bias caused by bad bid design (Cooper and 

Loomis, 1992; Cooper, 1993; Kanninen, 1995; Alberini, 1995).  

2.2.4 Misspecification 

Habb (1999) use four non-response model specifications in a simulation study to show existing 

econometric models designed to account for non-responses are extremely sensitive to 

misspecification bias. If the function form of variables in 𝒙𝒊𝟐 is misspecified, and such variables 
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are included in or correlated with 𝒙𝒊𝟏, the non-responses can further bias the parameter and 

WTP estimates. For example, if marginal utility of x is diminishing as in (2c)   

 𝑦𝑖2 = 𝛼 + 𝛾 ∗ 𝑏𝑖𝑑𝑖 + 𝛿 ∗ 𝑥𝑖
1/2

+ 휀𝑖2 (2c) 

however, we use a linear form of “income” variable as in (2a) for estimation, then samples with 

a different distribution of x can produce different parameter estimates, among which the ones 

with x distributions closest to that of the population would be the best linear approximation. 

Many researchers study model misspecification in contingent valuation and propose 

nonparametric/semi-nonparametric methods for bias correction (Kriström, 1990; Creel, 1997; 

Habb, 1999; Cooper, 2000; Huang, 2008; Criado and Veronesi, 2013).  

 

3. Kernel Mean Matching 

3.1 Sampling Weight 

Many sampling bias correction techniques used in econometrics and machine learning consist 

of reweighting each observation or its function in the training set to more closely reflect the 

unbiased population distribution. DuMouchel and Duncan (1983) introduced sampling weights 

to least square estimation. Winship and Radbill (1994) noted that when sampling weights are a 

function of independent variables, unweighted OLS estimates are consistent and more efficient 

than Weighted Least Square (WLS); when sampling weights are a function of independent 

variables (and thus of the error term), unweighted OLS estimates become inconsistent, and 

WLS can be preferred. 

      Shimodaira (2000) developed a pseudo-maximum likelihood estimation by weighting the 

observed samples in maximizing the log-likelihood function, and showed that under model 

misspecification (a linear approximation of the polynomial parametric model as illustrated in 

2.1) and covariate shift, the optimal choice of the weight function is asymptotically the ratio of 

the density function of the covariate. Covariate shift assumes that the conditional probability 

distribution of the output variable given the input variable remains fixed in both the training 

and test set, i.e. the shift happens only for the marginal probability distributions of the 
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covariates. To correct sampling bias caused by covariate shift the key is estimating the 

importance weight (density ratio) for the training sample.  

      Let X denote the input space and Y the label set, which may be (Aadland, Caplan, & Phillips, 

2007) in classification or a subset of R in regression estimation problems. Let 𝐷  denote the 

population distribution from which we obtain a sample z = {(𝑥1, 𝑦1), … (𝑥𝑛, 𝑦𝑛)} that follows a 

sample distribution  

𝐷′ . Let s denote the sample selection: when s = 1 the data point is sampled; when s = 0 it is 

not. The probability of drawing z per 𝐷: 𝑃𝑟[𝑧] is related to the probability of drawing z per 

𝐷′: 𝑃𝑟′[𝑧] through optimal sampling weight 𝑤𝑖 .  

 𝑃𝑟[𝑧𝑖] =
𝑃𝑟[𝑧𝑖|𝑠 = 1] 𝑃𝑟[𝑠 = 1]

𝑃𝑟[𝑠 = 1|𝑧𝑖]
=

𝑃𝑟 [𝑠 = 1]

𝑃𝑟 [𝑠 = 1|𝑧𝑖]
𝑃𝑟′[𝑧𝑖] = 𝑤𝑖𝑃𝑟′[𝑧𝑖] (3a) 

 𝑤𝑖 =
𝑃𝑟[𝑧𝑖]

𝑃𝑟′[𝑧𝑖]
 (3b) 

Under covariate shift, the sampling probability is independent of Y, (3a) becomes 

 𝑃𝑟[𝑥𝑖] =
𝑃𝑟 [𝑠 = 1]

𝑃𝑟 [𝑠 = 1|𝑥𝑖]
𝑃𝑟′[𝑧𝑖] = 𝑤𝑖𝑃𝑟′[𝑥𝑖] (3c) 

 𝑤𝑖 =
𝑃𝑟[𝑥𝑖]

𝑃𝑟′[𝑥𝑖]
 (3d) 

 where 𝑤𝑖 is a reweighting factor for the selected sample. We reweight every observation 

(𝑥𝑖 , 𝑦𝑖) such that observations that are under-represented in Pr’ obtain a higher weight, whereas 

over-represented cases are down-weighted. 𝑤𝑖 can be used to correct sampling bias in multiple 

methods such as weighted least squares (DuMouchel and Duncan, 1983), weighted maximum 

likelihood (Shimodaira, 2000), and support vector classification (Huang, 2006).  

 

3.2 An Empirical Kernel Meaning Matching Optimization Algorism 

Multiple methods have been proposed to estimate the optimal sampling weight from finite 

samples, including kernel mean matching (KMM) (Huang et al., 2007), logistic regression (Bickel 
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et al., 2009), Kullback-Leibler importance estimation (Sugiyama et al., 2008). We follow an 

empirical KMM proposed by Huang et al. (2007) in the simulation study. Suppose we have two 

samples X = (𝑥1, 𝑥2, … 𝑥𝑚) and X′ = (𝑥1
′ , 𝑥2

′ , … 𝑥𝑛
′ ), drawn i.i.d. from Pr and Pr’ respectively, 

Kernel Mean Matching can optimize the weights w of observations of X to correct the bias 

caused by the discrepancy between Pr and Pr’ in a nonparametric manner. The empirical KMM 

algorism can be summarized as a quadratic problem  

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
𝑤

1

2
𝑤𝑇𝐾𝑤 − 𝜅𝑇𝑤 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤𝑖 ∈ [0, 𝑊] 𝑎𝑛𝑑 |∑ 𝑤𝑖

𝑚

𝑖=1

− 𝑚| ≤ 𝑚𝜖 
 

(4a) 

where 𝐾 = {𝐾𝑖𝑗: = 𝑘(𝑥𝑖, 𝑥𝑗)}, 𝜅 = {𝜅𝑖: =
𝑚

𝑛
∑ 𝑘(𝑥𝑖, 𝑥𝑗

′)𝑛
𝑗=1 }. 𝑘(𝑥𝑖, 𝑥𝑗) is the kernel, which is a 

similarity score function for two values (𝑥𝑖  and 𝑥𝑗) or two vectors. The intuition is that when an 

𝜅𝑖  is large, the corresponding observation in the training sample is more “similar” to the 

population and should be given more weight. The upper bound of weights W determines the 

allowed deviation between 𝑤𝑖𝑃𝑟′ and 𝑃𝑟. 𝜖 = (√𝑛 − 1) √𝑛⁄  determines the convergence 

condition and ensure that 𝑤(𝑥)𝑃𝑟(𝑥)  is close to a probability distribution.  It is obvious that 

we need larger sample size to get reasonable convergence if 𝑃𝑟′ and 𝑃𝑟 are very different.  

      Suppose we have a mapping 𝜑: ℝ𝑝 → ℝ𝑞 that brings a vector in ℝ𝑝 to ℝ𝑞. Then the dot 

product of 𝒙 and 𝒚 in space ℝ𝑞 is 𝜑(𝒙)𝑻𝜑(𝒚). A kernel is a function that corresponds to this dot 

product 𝑘(𝒙, 𝒚) = 𝜑(𝒙)𝑻𝜑(𝒚). Kernel can be used to compute the dot product or any other 

“similarity score” of two vectors in some high dimensional feature space without knowing what 

this space is and what the mapping function 𝜑 is. (4a) is derived from its mapping function form 

as 

 ‖
1

𝑚
∑ 𝑤𝑖𝜑(𝑥𝑖) −

1

𝑛
∑ 𝜑(𝑥𝑖

′)

𝑛

𝑖=1

𝑚

𝑖=1

‖

2

=
1

𝑚2
𝑤𝑇𝐾𝑤 −

2

𝑚2
𝜅𝑇𝑤 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

(4b) 

      In this research, we use Gaussian kernel for the “similarity score”. 

 𝑘(𝑥𝑖, 𝑥𝑗) = 𝑒
−

‖𝑥𝑖−𝑥𝑗‖

2𝜎2  (4c) 
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      The Gaussian kernel represents this similarity as a decaying function of the distance 

between the vectors (i.e. the squared-norm of their distance). That is, if the two vectors are 

close together then, ‖𝑥𝑖 − 𝑥𝑗‖ will be small. Then 𝑘(𝑥𝑖 , 𝑥𝑗) will be larger. Thus, closer vectors 

have a larger Gaussian kernel value than farther vectors. This function is of the form of a bell-

shaped curve. The parameter 𝜎 sets the width of the bell-shaped curve. The larger the value of 

𝜎, the narrower will be the bell.  

 

4. Monte Carlo Simulation: Probit Model 

4.1 Data Generating Process 

The data generating process follows the structure of the illustrative example in 2.1.  

  𝑦𝑖1 = 𝑎 + 𝑏 ∗ 𝑥1𝑖 + 휀𝑖1 (5a) 

 𝑦𝑖2 = 1.4136 − 0.008561𝑏𝑖𝑑𝑖 + 0.00372𝑥2𝑖 + 휀𝑖2 (5b) 

 𝑌𝑖𝑗 = {
1, 𝑦𝑖𝑗 > 0   

0, 𝑦𝑖𝑗 < 0  
𝑓𝑜𝑟 𝑗 = 1,2. (5c) 

where (5a) is sample selection equation and equation (5b) is the utility difference equation. We 

assume  (휀𝑖1, 휀𝑖2) is)~𝑁 [[0, 0] [
1 𝜌1

𝜌1 1
]], and (𝑥1𝑖 , 𝑥2𝑖)~𝑁 [[1, 95.78] [

1 𝜌2

𝜌2 119.226
]], the 

true mean of WTP under this specification would be 206.74; due to the variation of 𝑥2 sampling 

the true mean for certain simulation scenarios may be slightly different. 

4.1.1 Sampling Independence. 

We specify different values of a, b, 𝜌1, 𝜌2, and population size N to simulate different sampling 

bias scenarios. 𝜌1 determines the sample selection process depending on 𝑦2, or the sample 

selection bias; when 𝜌 = 0 there is no sample selection bias. 𝜌2and b determines whether 

sampling depends on  𝑥, or the non-response bias; when 𝑏 = 0 or 𝜌2 = 0 there is no non-

response bias. 𝑎 has a “drift” effect on the expected sample selection/response rate. Different 

combination of a, b, 𝜌 indicate different sampling bias decomposition. The population sizes 
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used are 𝑁 = {100, 200, 400, 800} for estimation of (5b). a is arbitrarily assigned to ensure the 

selected sample is neither too small for estimation nor too large to be indifferent with the 

population. 

4.1.2 Bid Design 

In the default setting the variable bid consists of repetitions of sequence {140, 175, 205, 245, 

275}, which follow the “middle only” bid design that used approximately 30th, 40th, 50th, 60th, 

and 70th percentile of the true WTP distribution.  

4.1.3 KMM Parameter Calibration 

When applying KMM, the upper bound 𝑤𝑖 ∈ [0, 𝑊] and the kernel parameter 𝜎 in (4c) need to 

be calibrated to ensure the robustness of the reweight. A rule of thumb is that robust reweight 

should only change the weight slightly so that in each simulation the weight is “overfitting” and 

the results will not be too dispersed. The size of 𝜎 adjusts the trade-off between bias and 

variance of KMM estimators.  

 

4.2 Simulation Results 

Simulation results are obtained and compared under different scenarios. For each scenario, 

1000 data sets are generated for simulation, average and variances of parameter estimates and 

WTP estimates over 1000 simulation results are calculated to measure the accuracy of mean 

estimates. A probit model is used to estimate parameter and WTP for the population 

(“population” rows in the tables) as well as the selected sample. The population estimation 

result works as a baseline reference; for selected sample, two sets of results are obtained and 

compared: one uses KMM (“KMM” rows in the tables), the other does not (“sample” rows in 

the tables). For WTP estimates, in additional to KMM, a bias correction estimate (“sample_s” 

rows in the tables) is obtained using population mean of 𝑥2 to replace the sample mean of 𝑥2. 

This average substitution method is commonly used to correct non-response bias.  

4.2.1 Non-Response Bias 
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The Monte Carlo experiment shows that KMM can effectively increase the accuracy of WTP 

estimates especially when the non-response bias is large as shown in Table 1.2. The parameter 

estimates will be consistent when there is only non-response bias but no sample selection bias. 

KMM does not correct the parameter estimates itself and even increased the bias a little bit.  

However, when the sample size is small, the parameter estimates will be significantly biased; 

when they are used to calculate WTP estimates, the parameter of 𝑥2 need to be multiplied with 

the biased sample mean of 𝑥2, which can magnify the bias to an unacceptable scale as shown in 

Table 1.2. This is the situation when KMM become a powerful tool for bias correction. 

Replacing sample mean of 𝑥2 with population mean has the similar bias correction effect as 

KMM, but is less efficient as shown in Table 1.1, 1.2. 
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TABLE 1.1 Simulation Results for Non-Response Bias1 

(N=100, M=50, a= .1, b=.1, 𝜌1 = 0, 𝜌2 = 10, B=1000, 𝜎 = .01) 

 WTP variance 

population 206.49 337 

sample 204.08 6403 

sample_s 204.86 5672 

KMM 207.40 2868 

 

 beta1 beta2 beta3 v1 v2 v3 

population 1.57 -0.0088 0.0027 1.82 7.92E-06 1.57E-04 

sample 1.70 -0.0093 0.0023 4.24 1.97E-05 3.72E-04 

KMM 1.71 -0.0093 0.0022 4.28 2.00E-05 3.76E-04 

 

TABLE 1.2 Simulation Results for Non-Response Bias 

 (N=200, M=105, a= .1, b=.1, 𝜌1 = 0, 𝜌2 = 10, B=1000, 𝜎 = .01) 

 WTP variance 

population 206.67 134 

sample 241.72 1244579 

sample_s 224.92 354040 

KMM 206.79 2080 

 

 beta1 beta2 beta3 v1 v2 v3 

population 1.46 -0.008731 0.0036 0.8262129 3.78E-06 7.03E-05 

sample 1.48 -0.008861 0.0036 1.725996 8.20E-06 1.44E-04 

KMM 1.48 -0.00888 0.0037 1.7753478 8.60E-06 1.47E-04 

 

                                                           
1 N is the population size, M is the selected sample size, beta1, beta2, beta3 are the average of coefficient 
estimates for constant, bid, and 𝑥2; v1, v2, v3 are the variances of coefficient estimates for constant, bid, and 𝑥2. B 
is upper bound of weight, 𝜎 is the Gaussian kernel standard deviation parameter. 
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TABLE 1.3 Simulation Results for Non-Response Bias  

(N=400, M=224, a= .1, b=.1, 𝜌1 = 0, 𝜌2 = 10, B=1000, 𝜎 = .0005) 

 WTP variance 

population 206.63 51.973 

sample 206.77 114.86 

sample_s 206.47 115.4 

KMM 206.75 114.7 

 

 beta1 beta2 beta3 v1 v2 v3 

population 1.4244 -0.0087 0.0038 0.41 1.92E-06 3.52E-05 

sample 1.4553 -0.0087 0.0035 0.7427 3.53E-06 6.21E-05 

KMM 1.4556 -0.0087 0.0035 0.7392 3.53E-06 6.18E-05 

 

 

TABLE 1.4 Simulation Results for Non-Response Bias  

(N=800, M=446, a= .1, b=.1, 𝜌1 = 0, 𝜌2 = 10, B=1000, 𝜎 = .0001) 

 WTP variance 

population 206.59 29.259 

sample 206.71 53.662 

sample_s 206.37 54.029 

KMM 206.7 53.624 

 

 beta1 beta2 beta3 v1 v2 v3 

population 1.4093 -0.0086 0.0038 0.2089 1.00E-06 1.82E-05 

sample 1.3832 -0.0086 0.0041 0.415 1.88E-06 3.54E-05 

KMM 1.3833 -0.0086 0.0041 0.4149 1.89E-06 3.54E-05 
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4.2.2 Sample Selection Bias 

KMM can lower the variance of WTP when sample size is small, but cannot fix the inconsistency 

problem caused by nonrandom sampling correlated with 𝑦2(or 휀2). Even when the population 

size is as large as 400, the WTP estimates and parameter estimates are still severely biased, no 

matter whether KMM is applied or not. Sample selection bias that is unrelated to covariate shift 

need to be dealt with by other methods like bivariate probit (Eklöf and Karlsson, 1999). When 

N=200 the convergence is already reached so we did not report the results at N=400, N=800. 
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TABLE 2.1 Simulation Results for Sample Selection Bias 

(N=100, M=50, a= .1, b=0, 𝜌1 = .5, 𝜌2 = 10, B=1000, 𝜎 = .01) 

 WTP variance 

population 206.41 353 

sample 260.66 36402 

sample_s 261.10 38597 

KMM 259.70 15536 

 

 beta1 beta2 beta3 v1 v2 v3 

population 1.54 -0.00887 0.0030 1.77 8.09E-06 1.57E-04 

sample 2.22 -0.01018 0.0033 4.26 2.06E-05 3.65E-04 

KMM 2.24 -0.01023 0.0032 4.31 2.12E-05 3.69E-04 

 

 

TABLE 2.2 Simulation Results for Sample Selection Bias 

 (N=200, M=104, a= .1, b=0, 𝜌1 = .5, 𝜌2 = 10, B=1000, 𝜎 = .002) 

 WTP variance 

population 206.40 133 

sample 252.73 580 

sample_s 252.78 584 

KMM 252.57 552 

 

 beta1 beta2 beta3 v1 v2 v3 

population 1.45 -0.00872 0.0037 0.78 3.85E-06 6.97E-05 

sample 1.98 -0.00972 0.0046 1.82 8.51E-06 1.63E-04 

KMM 1.98 -0.00974 0.0046 1.84 8.57E-06 1.64E-04 
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4.2.3 Sample Selection Bias Combined with Non-Response Bias 

The results are similar with 4.2.1 when there is only Non-response bias except that there is a 

shift of sample selection bias. KMM can only improve the accuracy of WTP estimate, but not 

the parameter estimates. 
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TABLE 3.1 Simulation Results for Sample Selection Bias and Non-Response Bias 

(N=100, M=50, a= .1, b=.1, 𝜌1 = .5, 𝜌2 = 10, B=1000, 𝜎 = .01) 

 WTP variance 

population 206.41 353 

sample 272.22 370100 

sample_s 273.53 408774 

KMM 243.66 267737 

 

 beta1 beta2 beta3 v1 v2 v3 

population 1.54 -0.00887 0.0030073 1.767876 8.09E-06 1.57E-04 

sample 2.57 -0.01022 -0.000295 4.255567 2.08E-05 3.52E-04 

KMM 2.59 -0.01027 -0.000418 4.344559 2.13E-05 3.60E-04 

 
 

TABLE 3.2 Simulation Results for Sample Selection Bias and Non-Response Bias 

(N=200, M=105, a= .1, b=.1, 𝜌1 = .5, 𝜌2 = 10, B=1000, 𝜎 = .001) 

 WTP variance 

population 206.40 133 

sample 252.67 574 

sample_s 252.61 580 

KMM 252.58 561 

 

 beta1 beta2 beta3 v1 v2 v3 

population 1.45 -0.00872 0.0037045 0.776177 3.85E-06 6.97E-05 

sample 2.29 -0.00975 0.0013827 1.778746 8.81E-06 1.55E-04 

KMM 2.29 -0.00976 0.0013677 1.784776 8.82E-06 1.55E-04 
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4.2.4 Skewed Bid Design 

KMM can correct the bias caused by skewed bid design, even the variable on which KMM is 

used is not correlated with the bid variable, which is utterly randomly assigned in contingent 

valuation. 

      In the simulations, a repetition of bid vector {140, 205} is used which fail to cover the upper 

half of the WTP distribution.  We test with random sampling (b = 0, 𝜌1 = 0) for sample sizes 

{100, 200, 400} and non-response bias (b = .01, 𝜌1 = 0) for sample size 200. For small samples, 

even the population estimates have high tendency to be biased (the true mean is 

approximately 206); and the selected sample estimates can be severely biased as shown in 

Table 4.2. For these cases KMM perform very well in bias correction. Table 4.3 verifies KMM’s 

robustness to variation of bid design.  
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TABLE 4.1 Simulation Results for Skewed Bid Design 

(N=100, M=48, a= .1, b=0, 𝜌1 = 0, 𝜌2 = 10, B=1000, 𝜎 = .001) 

 WTP variance 

population 220.66 33486 

sample 181.90 3868003 

sample_s 182.01 3926720 

KMM 196.33 2023790 

 

 beta1 beta2 beta3 v1 v2 v3 

population 1.54 -0.009039 0.0033 1.9653 1.66E-05 1.57E-04 

sample 1.54 -0.009198 0.0038 4.3529 3.62E-05 3.50E-04 

KMM 1.54 -0.009203 0.0038 4.3604 3.63E-05 3.51E-04 

 

 

TABLE 4.2 Simulation Results for Skewed Bid Design 

(N=200, M=104, a= .1, b=0, 𝜌1 = 0, 𝜌2 = 10, B=1000, 𝜎 = .001) 

 WTP variance 

population 230.18 339953 

sample 4088.65 14892005300 

sample_s 4113.38 15084564020 

KMM 217.56 12519 

 

 beta1 beta2 beta3 v1 v2 v3 

population 1.485 -0.008863 0.003592 0.9816 8.66E-06 7.56E-05 

sample 1.494 -0.008973 0.003714 1.9229 1.54E-05 1.50E-04 

KMM 1.497 -0.008986 0.003717 1.9305 1.55E-05 1.51E-04 
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TABLE 4.3 Simulation Results for Skewed Bid Design 

(N=200, M=104, a= .1, b=.1, 𝜌1 = 0, 𝜌2 = 10, B=1000, 𝜎 = .001) 

 WTP variance 

population 230.18 339953 

sample 189.20 259443 

sample_s 188.52 269422 

KMM 207.86 71310 

 

 beta1 beta2 beta3 v1 v2 v3 

population 1.485 -0.008863 0.003592 0.9816 8.66E-06 7.56E-05 

sample 1.505 -0.008943 0.003539 1.8979 1.54E-05 1.47E-04 

KMM 1.506 -0.008939 0.003528 1.9318 1.57E-05 1.49E-04 

 

TABLE 4.4 Simulation Results for Skewed Bid Design 

(N=400, M=222, a= .1, b=0, 𝜌1 = 0, 𝜌2 = 10, B=1000, 𝜎 = .0001) 

 WTP variance 

population 208.82 175 

sample 210.16 755 

sample_s 210.16 755 

KMM 210.00 728 

 

 beta1 beta2 beta3 v1 v2 v3 

population 1.42 -0.00867 0.0039 0.4653 4.13E-06 3.73E-05 

sample 1.45 -0.00884 0.0038 0.8456 7.71E-06 6.91E-05 

KMM 1.45 -0.00885 0.0038 0.8447 7.70E-06 6.92E-05 
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4.2.5 Misspecification 

To simulate misspecifications, we use  

 𝑦𝑖2 = 1.4136 − 0.008561𝑏𝑖𝑑𝑖 + 0.00372√𝑥2𝑖 + 휀𝑖2 (6) 

To generate the data, and use the linear form (5b) for estimation. The goal is to identify the 

best fit linear approximation model. The true WTP mean would be 169.5 per equation (6). Bid 

vector is adjusted to {70, 110, 140, 175, 205} to eliminate the effect of skewed bid design. 

      Two sets of simulation results are obtained: one with non-response bias, the other without. 

By comparing WTP estimates in Table 5.1 and Table 5.2, we see that non-response bias can be 

magnified severely when misspecification is present. More specifically, the bias of beta3 

parameter estimate increases significantly when there are non-responses correlated with 𝑥2 . 

KMM does not correct beta3 estimate, but it can correct WTP estimate, especially when non-

response bias is also present. 
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TABLE 5.1 Simulation Results with Misspecification 

(N=200, M=105, a= .1, b=.1, 𝜌1 = 0, 𝜌2 = 10, B=1000, 𝜎 = .005) 

 WTP variance 

population 170.77 192 

sample 173.94 4138 

sample_s 173.88 4029 

KMM 172.39 597 

 

 beta1 beta2 beta3 v1 v2 v3 

population 1.48 -0.008770 1.01E-05 0.7985 4.14E-06 7.53E-05 

sample 1.50 -0.008947 8.99E-05 1.6071 8.69E-06 1.49E-04 

KMM 1.50 -0.008959 9.53E-05 1.6447 8.98E-06 1.51E-04 

 

 

TABLE 5.2 Simulation Results with Misspecification 

(N=200, M=104, a= .1, b=0, 𝜌1 = 0, 𝜌2 = 10, B=1000, 𝜎 = .005) 

 WTP variance 

population 170.77 192 

sample 172.52 527 

sample_s 172.57 541 

KMM 172.39 515 

 

 beta1 beta2 beta3 v1 v2 v3 

population 1.48 -0.008770 1.01E-05 0.7985 4.14E-06 7.53E-05 

sample 1.48 -0.008909 2.84E-04 1.6398 8.50E-06 1.56E-04 

KMM 1.48 -0.008926 3.07E-04 1.6718 8.78E-06 1.58E-04 
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5. Discussion 

Nonrandom sampling can bias parameter estimates as well as WTP estimates. The Monte Carlo 

study shows that KMM can correct non-response bias in WTP estimates. However, KMM is less 

effective to correct sample selection bias and cannot correct bias in parameter estimates. KMM 

will perform the best when sampling bias is prominent. There are several sampling bias tests 

that can be applied before deciding whether bias correction is needed (Vella, 1992). 

     In real world applications, variations from bid design, model misspecification, and data 

instability can magnify or counteract the sampling bias. What we simulate in skewed bid design 

and misspecification are two simplified cases for such variations. One risk associated with such 

variations is to neglect a more important bias source. As in 4.2.4, the sampling bias become 

trivial compared with the bias caused by skewed bid design. Another risk is the complication of 

interactions between different bias sources. As in 4.2.5, the covariate shift has a multiplier 

effect on the bias of linear approximation. The use of bias correction techniques need to be 

cautiously validated and benchmarking methods should be applied for affirmation. 
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