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GLOSSARY OF MATHEMATICAL NOTATION UTILIZED IN THIS BULLETIN

q = q(); q is a function of all arguments within the
parentheses (the general function notation)

n
n ; the product of elements i = 1,...n

i=1
Max (or Min); maximize or minimize over the
XXy choice variables X,,..., X
n .
.Zl; the sum of elements i = 1,...,n
1=

2, <; greater (less) than or equal to

Xjcs the value of the variable X conditional upon the
value ¢

A = {X:-}; Ais the set of all X’s defined by the im-
plicit arguments after the colon

€ ; is an element of

U ; union of sets

M ; intersection of sets

>, < ; strictly greater (less) than
C ; is contained in

£; not an element of

dc/dX; ; the partial derivative of ¢ with respect to X
In A ; the natural logarithm of A
Y ; for all

s.t.; subject to

w/1/t; with respect to

—; approaches

#; not equal to

ii



Duality Theory and Applied Production
Economics Research: A Pedagogical Treatise

Douglas L. Young, Ron C. Mittelhammer, Ahmad Rostamizadeh and David W. Holland"

INTRODUCTION

What is Duality?

While “duality” has become perhaps the most fash-
jonable new development in neoclassical microeco-
nomics during the past decade, few textbook writers or
researchers have attempted a concise prose definition of
the term. We offer the following as such a definition:

Duality in neoclassical microeconomics refers
to the existence, under appropriate regular-
ity conditions, of “dual functions” which em-
body the same essential information on
preferences or technology as familiar primal
functions such as production and utility func-
tions. Dual functions describe the results of
optimizing responses to input and output
prices and constraints rather than global
responses to input and output quantities as
in the corresponding primal functions.

To illustrate this definition, consider a familiar pair
of primal and dual functions — the single-product firm
production and cost functions,

0 g = aX, XX
and

(2) Cc = c(rl, rzy---a I'n, q)»

where q represents output, ¢ is total cost, and X;’s and
1;’s are input quantities and input prices, respective-
ly. The production function in (1), referred to as the
“primal”, describes output response globally to all
possible combinations of input quantities. The cost
function in (2), which is a “dual” of the production
function in (1), describes the optimal or minimum cost
of producing any level of output given a set of input
prices and the production technology. An example
from consumer theory would be the indirect utility
function (dual), which shows the maximum value of
utility associated with given commodity prices and level
of money income. The familiar (primal) utility func-
tion, on the other hand, describes the level of utility
associated with all possible combinations of commodi-
ty quantities.

We will see that the dual functions contain infor-
mation about both optimal behavior and the structure
of the underlying technology or preferences, whereas
the primal functions describe only the latter.

Historical Development

The first application of duality appears to have been
made by Hotelling in a 1932 article. However, the first
comprehensive development of duality in production
economics, including the explicit derivation of many
fundamental theories and lemmas, appeared in
Shephard’s path-breaking 1953 book, Cost and Pro-
duction Functions. Shephard’s theoretical contribution
initially received relatively little attention. In the ear-
ly 1970’s, further theoretical work by McFadden,
Diewert, Berndt and Christensen, and Lau, among
others, opened the way for empirical applications.
Some of the earliest empirical applications of dual
functions were in the areas of agricultural production
(Lau and Yotopoulos; Binswanger) and electric power
generation (Christensen and Green; Fuss). Lau and
Yotopoulos employed a firm-level dual profit function
to examine returns to scale, output supply and factor
demand elasticities, and interfirm efficiency com-
parisons for farms in the Indian Punjab. Binswanger
estimated an aggregate dual cost function for the U.
S. agricultural sector to examine the nature of techni-
cal change, factor substitution possibilities and
elasticities of factor demand and output supply.
Following these pioneering applications in the 1970,
the recent “boom” in the use of dual approaches by
agricultural economists did not occur until the early
1980’s. As evidence of this surge of interest, there were
at least six articles in 1982 issues of the American Jour-
nal of Agricultural Economics which used duality
theory (Babin, Willis, and Allen; Chambers; Heien;
Ray; Lopez; and Ball and Chambers). Accompanying
this surge of empirical applications, duality appeared
as part of the standard treatments in most intermediate
and advanced microeconomics textbooks during the
late 1970’s (e.g., Varian; Silberberg).
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Department of Agricultural Economics at Washington State Univer-
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Osterback who valiantly struggled through successive versions of
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Why Study Duality?

Practicing economists trained during earlier eras
may feel an understandable reluctance to learn what
appears to be a redundant new overlay on their
familiar neoclassical theory. This reluctance is often
reinforced by the use of unfamiliar mathematical
language in modern treatments of duality theory.

Dual approaches permit estimating the same infor-
mation of practical value to policy makers and
managers — supply and demand elasticities, returns to
scale coefficients and technical progress parameters,
for example —that applied economists have supplied
by traditional primal approaches for years. Many may
ask why the familiar traditional approaches are not
adequate? For some applications, we maintain they
will be. Indeed, they will be superior to dual ap-
proaches for certain problems. However, data,
econometric, or theoretical considerations will permit
more accurate or less difficult and costly analysis of
many problems with dual approaches. Later in this
bulletin, we discuss in detail some of the advantages —
and limitations—of dual approaches and provide
guidance to readers on how to identify problems where
dual approaches are appropriate.

We also argue that understanding duality reinforces
a general understanding of microeconomic theory.
Certain fundamental relationships such as the slopes
of factor demand and output supply curves, homo-
geneity of demand and supply curves and symmetry of
cross-price effects of demand follow immediately from
dual approaches. Duality also facilitates a complete
systems approach to examining interrelated demand
and supply structures in which all theoretical restric-
tions across equations are enforced (Theil, 1980).

Why the Need for a Pedagogical Treatise?

In spite of the recent surge of duality applications
and a voluminous theoretical literature, many
economists trained in earlier eras probably have an in-
complete understanding of duality theory. Further-
more, we believe the purely theoretical and
mathematical treatments in modern texts leave many
current students unaware of the full potential and
limitations of duality theory in applied research. Most
modern treatments of duality build few bridges bet-
ween dual and familiar primal approaches. Conse-
quently, the full potential of duality as an integrating
influence in a student’s understanding of microeco-
nomic theory is not realized. Consequently, a
pedagogical treatise on duality which assumes a
relatively low level of mathematical sophistication —
and which stresses the relationship of dual to tradi-
tional primal approaches —can serve the needs of both
current students and professionals interested in up-
dating their repertoire of theoretical tools.2

We have attempted to write this bulletin at a level
accessible to the typical first or second year graduate
student who has a working knowledge of differential
calculus and linear algebra and some exposure to
elementary set theory. For the convenience of readers,
a glossary of mathematical notation utilized in the
bulletin follows the Table of Contents.

There are risks associated with every newly
fashionable theoretical development and duality has
not been immune to these. The enthusiasm to rush to
print with the “new tool” has led some researchers to
sacrifice statistical/theoretical rigor or to force inap-
propriate problems to fit the methodology. We hope
this bulletin will help reduce these risks for potential
dualists.

Objectives
The four major objectives for this bulletin are:

1. To review and illustrate in a pedagogically effective
manner fundamental duality relationships in the
neoclassical theory of the firm.

2.To present, as an example, a dual aggregate cost
function analysis of U. S. agricultural sector rela-
tionships with special attention to examining em-
pirical problems of the dual approach.

3.To identify and describe major theoretical and em-
pirical advantages and limitations of dual ap-
proaches to applied production economics research
problems.

4. To offer recommendations to applied researchers on
improved problem identification when considering
dual approaches to production economics research
problems.

NECESSARY VOCABULARY AND CONCEPTS

Terminology and the Nature of Response

The first obstacle encountered by the traditionally
trained economist in considering dual approaches to
familiar problems is the new verbal and mathematical
vocabulary. Those familiar with production, profit
and cost functions depicted in input or output space
must shift gears mentally to conceptualize dual func-
tions in price space. Unfortunately, the same un-
modified term — profit function —is typically used to
describe the familiar primal profit function (a func-
tion of output or input quantities) as is used to describe

2We caution readers that empirical research applications of duali-
ty also require substantial econometric background to select and
use appropriate estimating procedures for alternative functional
forms, to impose and test theoretical restrictions and for testing
substantive hypotheses (see Fuss and McFadden, and Deaton and
Muellbauer). The emphasis in this bulletin will be primarily on theory
rather than econometric procedures. A sound understanding of the
theory is an essential prerequisite to appropriate empirical
applications.



the dual profit function (a function of output and in-
put prices). Less potential for confusion exists with the
term cost function, which is dual to the production
function, because this term applies uniquely to cost
as a function of input prices and of output. However,
those familiar with graphical expositions of total or
average cost in output space may temporarily forget
that the cost functions are functions of input prices
as well. Fortunately, the modifier “indirect” is usual-
ly used in referring to the dual indirect production
function and indirect utility function to distinguish
them from their direct counterparts.

Pope (p. 347) observed that some people will be
“more comfortable with their knowledge of technology
than with economic response” and will prefer primal
functions for this reason. For example, agricultural
production economists are accustomed to “eyeballing”
the estimated parameters of production functions to
ensure that they make sense in terms of the known
realities of the production process. However, estimated
parameters of dual functions must be evaluated by
whether they make sense as rational behavioral
responses to price or constraint changes.

identifying Constraints

Because dual functions often represent constrained
optimizing responses, new students of duality must pay
very close attention to embedded constraints. For ex-
ample, factor demand functions emerging from dual
functions can be either output-constrained, cost-
constrained, or ordinary (unconstrained profit max-
imizing) responses to factor price variations. Of
course, constant-output, constant-cost, or ordinary de-
mand functions can also be obtained by appropriate
constrained or unconstrained optimization of primal
cost, production, or profit functions defined in input
space (Ferguson). The restrictive nature of constant-
output or constant-cost factor demands derived from
familiar primal functions is generally readily apparent
from their self-descriptive names and from the familiar
procedures by which they are derived. In contrast, the
properties of factor demands derived from dual func-
tions are usually less readily apparent. For example,
it may slip by a casual reader that partial differentia-
tion of a dual cost function (which includes output as
an argument) with respect to an input price in accor-
dance with Shephard’s Lemma necessarily yields a
constant-output input demand function. Unfortunate-
ly, while of great importance to practitioners, the
underlying behavioral assumptions and constraints
associated with factor demands, output supplies and
other policy-relevant relationships emerging from dual
approaches receive scanty emphasis in most textbook
treatments of duality.

Three Important Dual Functions in Production
Theory

We will build our overview of dual approaches to
the neoclassical theory of the firm around three fun-
damental dual functions: the profit function, the in-
direct production function and the cost function.

Profit Function
In the simple case of a single-product firm, the dual
profit function can be written as:

(B)  n* = n* Pl

where P and the r;’s denote output price and input
prices respectively. In duality theory notation, asterisks
are typically used to denote that the dependent variable
is the outcome of an optimization process. In (3), n*
is the maximum level of profit associated with the ex-
ogenous competitive prices P, and r,,...,r,. n* can be
derived by maximizing the primal profit function with
respect to choices of input levels, X,...,X,, as in (4):

4 Maxn = Max [P-qX,,...,X,)—Zr;X]]
X/’s

Simultaneous solution of the n first-order conditions
for a maximum from (4) yields the n ordinary factor
demands:?

() X' = XFP,rpeeoTy), i = Loon

Substituting (5) into the right hand side bracketed ex-
pression in (4) yields (3), the dual profit function.
Observe that n* is a function only of prices and that
it shows the maximum profit a rational producer with
the given technology can obtain given the specified
price vector. To distinguish n* from n use of a different
name like “dual maximum profit function” would be
helpful but this practice has not been widely adopted
in the literature.

The primal profit function in (4) is referred to as
the “direct objective function”; whereas, the dual
associated with optimizing (4), n*, is referred to as the
“indirect objective function.”

Assuming the production function in (4) is quasicon-
cave and continuous, we are assured that any n* deriv-
ed from (4) meets the necessary regularity conditions
for a neoclassical profit function. However, duality
would have little empirical appeal if one always need-
ed to first know the associated primal function to ob-
tain a “theoretically valid” dual. The empirical payoff
is in being able to estimate the dual function directly

3We assume, for the most general case, that the production func-
tion is at least quasiconcave, with a region of strict concavity in which
unique profit maximum solutions exist. Henceforth, when quasicon-
cavity is assumed, we also assume the existence of a strictly con-
cave region which will contain the profit-maximizing solutions
associated with n*.



from economic data thus deriving the desired infor-

mation about technology parameters, supply and de-

mand elasticities and other policy-relevant knowledge
directly from the dual function, bypassing the primal
entirely.

A crucial question is: What properties must a func-
tion of input and output prices possess for it to be in-
terpretable as a theoretically valid dual profit function?
These properties, referred to as “regularity conditions”
in duality theory, are:

A. continuous with respect to input and output prices;

B. linearly homogeneous (homogeneity of degree one)
in input and output prices;

C. nondecreasing in output price and nonincreasing
in input prices (monotonicity in output and input
prices); and

D. convex in input and output prices.

It can be shown by formal “existence proofs” that
any function of output and input prices satisfying these
four properties is a theoretically valid representation
of profit maximizing responses for some well-behaved
neoclassical production technology (McFadden). Well-
behaved implies that a unique maximum to the primal
profit maximization problem exists.

We will not duplicate formal existence proofs here,
but we will attempt to provide readers with an intuitive
appreciation of the reasonableness of certain condi-
tions.

The requirement of linear homogeneity of the pro-
fit function can be easily confirmed by multiplying all
prices in the primal profit function by a constant scale
factor, A>0;

(6) AP'Q(xl ye '9xn) . ﬂrixi = lﬂ',

and recognizing that the first-order conditions
associated with the profit maximization problem im-
ply that the same optimum levels of inputs are used
regardless of the value of A. The latter fact is easily
demonstrated by dividing both sides of all first-order
conditions of (4) by A and recognizing that the solu-
tion values for the X;’s are unchanged.

Examination of the primal profit function also in-
dicates the reasonableness of the proposition that in-
creasing output price, ceteris paribus, cannot decrease
profit. Similarly, increasing input prices, ceferis
paribus, cannot increase profit.

The convexity property of n* is less obvious, but it
can be intuitively motivated as follows. The definition
of convexity is that

(D) AP pensTy) + (DTHPLT 00 T )
>n* (AP, + (1-)Py),(A 1), +
AN, Ay, + (1-Dr)

for 0<A<1. Since n*(+) is linearly homogeneous, and
given the previous explanation of the derivation of
w*(-) via (4), the left-hand side of the above inequali-
ty can be represented as

®) Max  AP,q(Xj--nXp) — ZAr X
X i
XygseeerXnp +(1-DP,G(K 135 -+ X )

— Z(1-NrpX;,

However, the right-hand side of the inequality in (7)
can be found by solving problem (8) subject to the ad-
ditional constraints that X;, = X, for i=1,...,n.
Since the latter maximization problem has additional
constraints compared to the former maximization pro-
blem, its optimized value must be <the optimized value
of the lesser constrained problem. Thus 7*(-) must be
convex.

Applied researchers generally select functional forms
for n* which impose the homogeneity and continuity
requirements. As discussed later, it is possible to test
ex post whether estimated equations meet the convex-
ity and monotonicity requirements, although this is not
always done in practice.

Before leaving the dual profit function, note that
the concept can also be extended to yield the multiple-
product profit function,
) n* = m*(P,,....P,, 1.1y
where the P;’s and r;’s refer to output prices and in-
put prices, respectively. The regularity conditions A-D
above extend directly to (9).

Indirect Production Function
The dual indirect production function, presented in
(10) below, shows the maximum output available from
a given technology, given input prices, and a cost con-
straint, c.

(10) q* = q*(r},...,Iy ©)

The associated direct objective function that is max-
imized with respect to the X/’s to establish the func-
tional relationship between maximum output, input
prices, and cost level is:

(11) Max L = Max g(X,,....X,) + Ac—2rX)
X/’s

Simultaneous solution of the (n +1) first-order con-
ditions from (11) yields the solution value for A and
the n constant-cost input demand functions,



(12) X;Tc = X;'l‘c(r,,...,rn,c), i=1..,n
where X3 refers to the demand for input i condi-
tional on the cost level c. Substituting (12) into
q(X,,...,X,), the traditional production function ex-
pression, yields gq*.

To be interpretable as a theoretically valid represen-
tation of cost-constrained maximization of a
neoclassical production technology, a function of in-
put prices and the cost level must satisfy the follow-
ing regularity conditions:

A. continuous with respect to input prices and cost,

B. homogeneous of degree zero in input prices and
cost,

C. nonincreasing in input prices and nondecreasing
in cost (monotonicity in input prices and cost
level), and

D. quasiconvex in input prices.

Again, one can confirm the reasonableness of the
homogeneity and monotonicity conditions by examin-
ing the direct objective function in (11). Homogenei-
ty of degree zero is a direct implication of the fact that
multiplying c and the r;’s by a factor k>0 does not
change the feasible set of X;’s from which to choose
the maximum output level, and thus the maximum out-
put level itself is left unchanged. Maximum produc-
tion is nondecreasing in cost, since increasing c enlarges
the set of feasible X’s, and is nonincreasing in r;’s,
since increasing r;’s decreases the set of feasible X’s.

Quasiconvexity of g*(-) in input prices is less ob-
vious. By definition, the function q*(-) will be
quasiconvex in input prices if the set A =
{r:q*(r,c)<a} is a convex set for any given c and a,
where r is a vector of input prices (Varian, p. 254).
We will show that convex combinations of any ar-
bitrary points r, and r, ¢ A define points that also
belong to A, and thus A is a convex set.

Let r, and r, ¢ A, and thus q*(r,c)<a and
q*(r,,c)<a. Now define a convex combination of r,
and r, as r* = Ar; + (1-M)r, where A £ (0,1).

Examine the cost-constrained sets of admissible input
combinations at the three input price levels:

(13) 8, = {Xir) X <c}
(14) S, = {Xir,’ X <c}
(15)  S* = {X:r* X <c}.

If X* ¢ S*, then it must be the case that X* ¢
S,US,, for assume the contrary that X* ¢S,US,. Then
X* satisfies r*/X* = Ar/X* + (1-A)r,’X*<c and also
r,’X*>c and r,’X*>c. But these latter two conditions
can be transformed to

(16) Ar /X*>Ac and (1-A)r,/X*>(1-A)c

which when added together, imply
an Ar/X* + (1-0)r,/X*>c + (1-A)

which since A+ (1-A) = 1, and given the definition of
r*, implies

(18) *X*>c,

a contradiction. Thus, if X* ¢ S*, then X* ¢ S,US,,
which implies S*C S,US,.
Finally, since, by definition,
(19) q*(r*,c) = Max q(X) for X € S*
< Max q(X) for X ¢ S,US,

because S*C S,US, implies there are potentially more
X vectors from which to choose in solving the latter
maximization problem, then

(20)  q*(r*,c)<a

because both q*(r,c) and q*(r,,c)<a. Thus 1* € A,
and A is thus demonstrated to be a convex set and
g*(-) is quasiconvex in input prices.

Cost Function
The procedure for deriving a cost function,

@D c* = c* (r),...00p,Q),

from the constrained minimization of total factor cost
subject to an output constraint,

(22) MinL = Min Ir,X; + Mg—q(X,,....X,.)
Xys

is well known. Solving (22) yields the n constant-output
factor demands

23) 8= X3 pe®, i = Loooun

where X3, refers to the demand for input i conditional
on output level q. Substituting (23) into Zr;X; provides
an expression for the minimum level of cost in terms
of input prices and output level, expression (21).

To be interpretable as representing a theoretically
valid output-constrained minimization of cost given
a well-behaved production technology, a function of
input prices and level of output must satisfy the follow-
ing regularity conditions;

A. continuous with respect to input prices,

B. linearly homogeneous in input prices,

C. nondecreasing in input prices (monotonicity in

input prices), and
D. concave in input prices.



The homogeneity and monotonicity requirements
are both intuitively plausible. Linear homogeneity can
be intuitively motivated by recalling the familiar
graphical exposition in input space of the minimum
cost of producing q at the tangency of the isoquant
and an isocost line. If all input prices double, isocost
lines will retain the same slopes. The points of tangency
with isoquants will not change. Consequently, the
minimum cost of producing a given output will also
double because the input quantities utilized remain the
same but the input prices have doubled. Also, one would
not expect the minimum cost of producing a given out-
put to decrease as any input price increased since this
would imply that there existed an input combination that
could have produced q while lowering cost, a contra-
diction of the fact that q was being produced at
minimum cost prior to the input price increase.

The concavity property is less intuitively apparent,
but Varian provides an ingenious graphical explana-
tion which we repeat here:

Suppose we graph cost as a function of the price

of a single input, with all other prices held cons-

tant. If the price of a factor rises, costs will never

go down (property C.), but they will go up at a

decreasing rate (property D.). Why? Because as

this one factor becomes more expensive and other
prices stay the same, the cost-minimizing firm will
shift away from it to use other inputs.
This is made more clear by considering Figure I...
Let x* be a cost-minimizing bundle at prices w*.
Suppose the price of factor | changes from wfto
w,. If we just behave passively and continue to

use x*, our costs will be ¢ = w XF + %Zwi’“x;'f

The minimal cost of production c(w,y)l ;nust be

less than this “passive” cost function; thus, the
c

n

wxf + Z wix?
i=2

N
s o s s S D D e -

Wi
w*,

Figure 1. The Cost Function and the “Passive” Cost

Function

graph of c(w,y) must lie below the graph of the
passive cost function, with both curves coinciding
at w}. It is not hard to see that this implies c(w,y)
is concave with respect to w, (Varian, pp. 29-30).

A Simple Example: Duals for the
Cobb-Douglas Production Technology

In this section we present the dual functions in-
troduced above for the familiar Cobb-Douglas (C-D)
production technology. The example dual functions
for this simple technology will be used to illustrate the
meaning of the regularity conditions in each case.

For simplicity, consider the simple two-input C-D
production function with decreasing returns to scale:

(24) g = AX2 X}

where (A, a, b) >0 and (a + b) <1. This continuous and
strictly concave production function will generate a
unique profit maximum for fixed input and output
prices.

C-D Cost Function
We will begin with the cost function, as it is pro-
bably the most familiar dual function to most readers.
The C-D cost function which emerges from the op-
timization problem described in (22) is:

(25) C=D rzlz/E I-g/E qI/E

where a and b are the C-D production function
elasticities, E = (a+b), and D = E(Aa%b’)VE is a
positive constant. We observe from (25) that the C-D
cost function is “self dual”, that is, it has the same
functional form in prices as the C-D production func-
tion has in inputs.

Recall that regularity conditions require that a func-
tion of input prices and level of output be continuous,
linearly homogeneous, non-decreasing and concave in
input prices if it is to be considered a theoretically valid
dual cost function. First it is obvious from differenti-
ability of C that (25) is continuous in its input price
arguments. Next, we verify linear homogeneity by mul-
tiplying all input prices by A:

(26) C(Ar,,Ar,,q)

D(Ar,)a/E(Arz)b/Eq“E
Aa+ b)/EDrla/Erzb/qu/E

AC(r,1,,9).

Third, we verify that C is nondecreasing in input
prices given the imposed parameter restrictions:

@7  ac/ar,

(a/E) Dr](a/E)‘lrzb/qu/E > 0
and

(28)  8C/3r, = (b/E) Dr¥Er,0/Exigl/E> .



Last, we can show that C is concave in input prices
by confirming that its Hessian matrix, H, is negative
semidefinite. C has the C-D functional form, C =
Zrsrh, where Z, s, and t have been substituted for
Dq'/E, a/E, and b/E, respectively, for notational
simplicity. Note that Z>0 and 0<s<1 and 0<t<1 due
to the parameter restrictions applied to the production
function. For H to be negative semidefinite the first
principal minor, C,,;,, must be less than or equal to
zero and the second, Criry Crar —Cr1ryCryry, must be
greater than or equal to zero. Evaluating the necessary
derivatives yields:

@9  Cuypy = S(-DZr 2, < 0

(30)  Cp,p, = tt-1)Zr 2 < 0

r2r2

B1)  Cup, = Copy = st Z1, 5l >0

firz r2ry

Based on these derivatives, Crir1Crar = Cryr,Cryry 18
greater than zero given the aforementioned parameter
restrictions and we can conclude that H is negative
definite and C is concave in input prices.

For estimated empirical functions, one could
numerically check for concavity by evaluating the
characteristic roots of H at each observation point.
The Hessian will be negative semidefinite and the cost
function concave if and only if all the characteristic
roots are nonpositive.

C-D Profit Function
Solving the profit maximization problem in (4) for the
C-D technology yields the following dual profit function:

(32) ™ _ AlePl/2(a/r,2/8(b/r,)b/e
_ Vpl/grl-a/grz-b/g —WP '/Erl‘a/SrZ'b/g

where: A, a, and b are C-D production function
parameters as previously defined,
P, r;, and r, are output and input prices,
g=1—-a-b >0,
VvV = a(l-b)/gbb/gAl/g > 0’
W = a¥/spU-aVepl’s >,

Regarding the regularity conditions, first note that
(32) is clearly continuous in r|, r, and P since it is dif-
ferentiable in these arguments. Next we can confirm
that the profit function is linearly homogeneous in out-
put and input prices by multiplying all prices by the
positive value A to obtain;

(33) n*(AP, lrl,lrz) = Al/gpl/gll/g(a/rl)a/g(l/A)a/g
(b/1,)*/8(1/R)b’8
_vpl/gll/grz-b/g

A—b/grl-a/gl-a/g
e WPl/gll/grz-b/gl-b/grl-a/gka/g
— l(l-a-b)/g( AP)VB(a /rl)a/g(b /rz)b/g
. l(l-a-b)/gvpl/grz-b/gr]-a/g
. 1(1-a-b)/gwpl/grz-b/grl-a/g
= An*(P,r,,1,)

To verify the monotonicity requirement, examine
the derivatives of n*. First, the derivative with respect
to output price is given by

(34) 9n*/3dP = (1/g)PU/er[AVe(a/r,)>8(b/r,)b/e
— Vrl-a/grz-b/g s er-a/grz-b/g]

(1/g)P-! n* > 0 for positive n*.

As long as n* is positive, an*/ 9P will be positive.
Consequently n* is nondecreasing with respect to P for
all positive n*.

For the assumed decreasing returns to scale C-D pro-
duction technology, requiring a positive n* is not a
limiting assumption because a positive profit will
always exist given any positive output price. To see
this, note that differentiation of (25) with respect to
q yields the marginal cost (MC) function MC =
(E'Dr,Er,b/E)qU-EVE | 50 that MC emanates from the
origin and is monotonically increasing in output space.
The area under this MC curve until its intersection with
the horizontal output-price line represents total cost
at the optimum output level defined by MC = P. This
area is necessarily less than the corresponding area
under the horizontal output-price line which represents
total revenue; hence, profit is positive.

Next we verify that n* for this C-D technology is
nonincreasing with respect to input prices. The
derivative of n* with respect to r, is;

(35)  an*/ar,

(AP)V8(b/r,)P’ea®/8(-a/g)r (a/e)!
— VPl/grz-b/g(_a/g)rl(-a/g)-I
_ WPl/grz-b/g(_a/g)rl-(a/g)-l
(-a/g)(1/r )n*< 0 for positive n*

One can similarly show dn*/dr,< 0. Thus n* is
monotonically decreasing in input prices for positive
n* and, as described above, the assumption of positive
n* is not restrictive.

Technically, we could verify the convexity in out-
put price and input prices of this C-D profit function
by showing that the principal minors of the 3x3 Hes-
sian matrix of (32) were all greater than or equal to
zero; that is, the Hessian matrix is positive
semidefinite. However, the algebra of this demonstra-
tion becomes very tedious. We appeal instead to the
general proof of the convexity of the profit function
presented earlier. Because the C-D production
technology used in this example is continuous, dif-
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ferentiable, quasiconcave and can generate a unique
profit maximum, its profit function satisfies the re-
quirements of the earlier proof.

With estimated empirical functions, we could
numerically check for convexity by evaluating the
characteristic roots of the Hessian matrix of the pro-
fit function at each observation point. The Hessian is
positive semidefinite and the profit function convex
if and only if all the characteristic roots are non-
negative.

C-D Indirect Production Function
Solving the output maximization problem in (11) for
the C-D technology yields the following indirect pro-
duction function:
36) q* =g ca+br]-ar2-b
where s = A(a/(a+b))? (b/(a+b))P and ¢, a and b,
and r, and r, are cost level, production function
elasticities and input prices, respectively, as before.
As before, differentiability of q* implies continui-
ty in input prices and cost. To show that this C-D in-
direct production function is homogeneous of degree
zero in input prices and cost, multiply input prices and
cost by a positive value A, to obtain

37N q*(Ar;,Ary,A0)

gha+bea+ bl'arl'al'brz'b
A% g*(r;,r,,€)
q*(rprz’c)

Next we confirm that q* is nondecreasing in cost:

(38) dq*/dc = (a+b) s ca+Ir2r,®> 0

We also verify that q* is nonincreasing in input prices:

39) 3q*/dr, = -as +br @0 <0
A similar result holds for dq*/ar,.

To verify the quasiconvexity in input prices of the
C-D indirect production function, we again refer the
reader to the earlier general proof of this condition
which holds for any proper indirect production func-
tion.

INPUT DEMAND AND OUTPUT SUPPLY
ANALYSIS THROUGH DUAL FUNCTIONS

Quantitative estimates of factor demand and out-
put supply functions and their elasticities are among
the most popular forms of economic intelligence ap-
plied production economists offer managers and policy
makers. The capacity to derive complete systems of
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factor demand and output supply relationships from
directly estimated dual functions, with all theoretical
requirements enforced, accounts for a substantial part
of duality’s appeal to many empirical researchers.

Three Fundamental Lemmas

Derivations of input demand and output supply
functions from dual profit, indirect production, and
cost functions are described by the following three fun-
damental lemmas of duality theory:

I. HOTELLING’S LEMMA:

The negative partial derivative of the profit func-
tion with respect to the i’th input price yields the
ordinary demand function for input i;
(40) -9n*/ar, = X¥
The partial derivative of the profit function with
respect to the output price yields the output sup-
ply function;

41) an*/dP = S

II. ROY’S IDENTITY:

The negative ratio of the partial derivative of the
indirect production function with respect to the
i’th input price to the partial derivative of the in-
direct production function with respect to cost
yields the constant-cost demand for input i;

42)  —(3q*/3r)/(2q*/dc) = X,

III. SHEPHARD’S LEMMA:

The partial derivative of the cost function with
respect to the i’th input price yields the constant-
output demand function for input i.

43)  ac*/dr = X,
Technical Development of the Envelope Theorem

Each of these propositions can be derived by apply-
ing a result known as the Envelope Theorem, which
establishes equality between the partial derivatives of
a direct objective function and its associated indirect
objective function. Given its pivotal importance in pro-
ving the above three lemmas, we state and prove this
theorem here. Before stating the theorem, it will be
useful to reexamine the “indirect objective function”
concept to demonstrate how the concept generalizes
beyond the examples of indirect objective functions
presented heretofore.



Definition: Indirect Objective Function
Consider the problem of maximizing or minimizing the
direct objective function
44) Z = f(w,,...,w,; a;,...,a)
in the case of an unconstrained optimization problem;
or the direct objective function
45) L = f(w,...,w,; ag,...,a,)—Ag(W,,...,W;

aj,...,a,)

in the case where Z is being optimized subject to the

constraint

(46) g(wy,...,w,; a;,...,a,) = 0,

where w,,..., w_ are the choice variables and a,,...,a

are the parameters of the problem. The first-order con-

ditions for the optimization problem are given by

47) af(w,,...,w; a,,...,a )/ ow; = 0
fori = 1,...,n

if the optimization problem is unconstrained. On the
other hand, if the optimization is subject to the con-
straint (46) then the first-order conditions from the
Lagrangian form of the maximization problem are (46)
and
(47a)  Af(wy,...,w; a),...,a)/ W, —AAg(Wy,...,W;

ag,...,a,)/ W,

=0fori=1,...,n.

Assuming that the appropriate second-order condi-
tions hold, conditions (47), or (46) and (47a) can be
solved for the optimum levels of the choice variables as

w, = w*a,,...,a ) fori = 1,...,n.

Then the indirect objective function associated with
(44) is given by
(48) Z*= f(w¥(a,,...,ay),...,Wr(a,,...,a);

ay5...8)
= WY(a,,...,ay).

Note that the indirect objective function simply
represents the maximum value of Z for any values of
the parameters (a,,...,a ;) of the optimization prob-
lem. Recalling the previous discussions of the profit
function, indirect production function and cost func-
tion, it is recognized that each of these dual functions
are “indirect objective functions” in the sense of the
above definition. In all three cases, the choice vec-
tor(w,,...,w,) in the definition is the vector of inputs
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(X;s--.,X,) in the development of the three dual func-
tions. Regarding the vector of parameters referred to
in (44), the parameters of the profit function are the
output and input prices (P,ry,...,r;), the parameters
of the indirect production function are the input prices
and cost level (r,...,r,,c), and the parameters of the
cost function are the input prices and output level
(TR o) X

We are now in a position to state and prove the
Envelope Theorem.*

Envelope Theorem and Proof
The partial derivative of an indirect objective func-
tion with respect to a parameter is equal to the partial
derivative of the associated direct objective function
with respect to the same parameter evaluated at the
optimal point (w*,...,w *). Mathematically,

49) av(,,...,a,)/ d a = aZ*(w¥(a,,...,ay),
woWE (a),..,an);
a,,...,am)/aaj

= af(wf,....w}; a;,...,a)
/d a
=09Z/0a

in the case where (44) is optimized without constraint,
and

(50)

9Z*(wiay,...,ay),

waWhay,....ag);

ayyeees8)/ 93,

= af(w},....,wX;
al,...,am)/aaj
—Adg(wf,...,wk;
al,...,am)/aaj

= aL/aaj

ov¥(@,...,a,)/ 93,

in the case where (44) is optimized subject to the con-
straint (46).

Proofs
Unconstrained Case: Differentiating the indirect ob-
jective function (48) with respect to a; yields
n
z (af/awr)awy/da) +
i=1

(51)  9Z*/da; =

(81/2a)).

However, since (wf,...,w¥) represents the optimal
levels of the choice variables, and since at the optimum
the first-order conditions (47) must necessarily hold,
9f/9w¥ = 0 for all i, and thus

4We only deal with the case of one constraint. The definition ex-
tends in an obvious way to the case of multiple constraints. See
Silberberg, p. 171.



(52) 9Y/da; = 9Z*/da; = 3f/da; = 3Z/da;
Constrained Case: Differentiating the indirect ob-
jective function (48) with respect to g, yields (51). At
the optimal levels of the choice variables (wf,...,w}),
the first-order conditions (47a) will necessarily hold,
and also
(53) gwi@,,...,ay),...,w(@,,...,a,)) =0
since the constraint (46) must be satisfied at all op-

timum points. Differentiating (53) with respect to a;
yields

n
Z (0g/awP)(dw}/da) + (3g/0a) =0
i=1

(4

Multiplying (54) by the Lagrangian multiplier , and
then subtracting the result from (51) (which subtracts
zero and thus does not change the value of the expres-
sion) yields

n
3
i=
—M2g/3wp)](aw}/da)
+ (3f/2a) — A(3g/da).

(55) 9Z*/0a; = 1[(af/awi"‘)

Then since the bracketed expression must be zero
because of the first-order conditions (47a), we have
that
(56) Y/da; =3Z*/3a; = (3f/0a)
—A(dg/9a) = oL/ 0a,.

Q.E.D.

Proofs of the Three Fundamental Lemmas
Using the Envelope Theorem, each of the fun-
damental lemmas above can be proved straightfor-
wardly. For the dual profit function, the direct objec-
tive function (Z) is described by (4). Consequently, us-
ing r, in the role of the parameter (a;), letting Z* =
n* and using the Envelope Theorem, we obtain
57) dn*/dr, = AZ/3r; = A[P-q(XF,...,X})
—2r,X¥)/ar,
= —X*

Note that the asterisk is attached to the solution of the
derivative to emphasize that it is the optimum value
of this variable associated with the optimization pro-
blem described by (4). Multiplying through by negative
one yields Hotelling’s Lemma as expressed in (40). We
should emphasize that (57) is valid when evaluated at
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any relevant values of the parameters (P,r|,...,r;) and
at all associated input levels (X},...,X*) maximizing
profit (4). It is therefore legitimate to interpret (57)
as a functional relationship having the parameter
values as arguments of the function. To emphasize this
fact, Hotelling’s Lemma could be written as
(58) —on*(P,ry,...,r))/ar; = XFHP,r),...,1).
To derive result (41) of Hotelling’s Lemma, we dif-
ferentiate the profit function and the direct objective
function with respect to the parameter P, and then
apply the Envelope theorem to obtain
(59) dn*/AP = 9Z/3P = A[P-q(X},....X})
—3rX#/8P = q(X},...,.X}),

and by definition q(Xt,...,X}) = S is quantity sup-
plied at the prices (P,r,,...,r;). Again note that (59)
is valid when evaluated at any relevant values of the
parameters (P,r,,...,r,) resulting in all associated in-
put levels (X¥,...,X}) that maximize profit (4).
Therefore, it is legitimate to interpret (59) as a func-
tional relationship having the parameter values as
arguments, and thus we may write

Il

(60)  Am*(P,r,,...,r.)/ 8P = q(X}(P,Ty,...T,)
oo X3P )

SHP.I Ty,

To derive Roy’s identity, note that the direct objec-
tive function (11) evaluated at the input levels
Xfier-- s Xn0) that maximize production subject to the
cost level ¢ is given by

(61) L = q(X‘l“‘c,...,X;‘;k) —Mc—2r,X*).

Next, differentiate the indirect production function
(10) and the direct objective function with respect to
the parameters r; and c, and use the result (50) or (56)
of the Envelope Theorem to obtain

(62)

aq*/ar, = daL/ar; = AX}

ilc

(63) dq*/8c = dL/3dc = —A

hence it is clear that

(64) —(9q*/3r)/(3q*/3c) = X!

ile?

where X3, is the optimal level of input i used in max-
imizing production at input prices r,,...,r, and given
cost level c. Similar to the arguments presented above,
the validity of (64) at all relevant values of the parame-
ters (r,,...,r,,,¢) legitimizes a functional representation

of (64) as



(65) (—aq*(ry,...,r,,c)/ 8r)/(aq*(ry,...,r,,c)/ a¢c)
= Xi’"‘c(r,,...,rn,c)

which defines the constant-cost input demand func-
tion for input i.

Shephard’s Lemma can be derived by first noting
that the direct objective function for the problem of
minimizing cost subject to the output level q, when
evaluated at the optimal input levels (X‘l"lq,...,X;"q), is
given by (recall (22))

(66) L = Zr X, + Mq - aXfig,-- . X5))-

Differentiating the indirect objective function (21), i.e.
the cost function, with respect to the parameter r,,
and using the result (50) or (56) of the Envelope
Theorem obtains

67) 9c*/dr; = 9L/ar, = X§,
where XiTq is the optimal level of input i used in
minimizing the cost of producing the output level q
at input prices (r,,...,r;). The validity of (67) at all
relevant values of the parameters (r,,...,r;,q)
legitimizes a functional representation of (67) as

(68) ac*(ry,...r,,q)/ar; = X;Tq(rl,...,rn,q)

which defines the constant-output input demand func-
tion for input i.

Properties of Input Demand and Output Supply
Functions as Derived from Duality Theory
The regularity conditions on the parent dual func-

tions imply the restrictions on factor demand and out-
put supply functions imposed by neoclassical theory.
Using dual functions to derive a system of factor de-
mand and output supply relationships automatically
enforces these theoretical restrictions via the functional
form of the relationships; however, when supply or
demand functions are estimated as ad hoc separate
single equations, these restrictions sometimes are not
enforced. We will say more about this in the empirical
section to follow.

Table 1 summarizes the properties imposed by
neoclassical theory on output supply and input demand
functions. The nonnegative slope of output supply
with respect to output price and the nonpositive slope
of ordinary input demand functions with respect to
their own prices are a result of the convexity of the
profit function and Hotelling’s Lemma. Hotelling’s
Lemma permits writing the slope of the supply func-
tion as the second derivative of the profit function with
respect to output price. By convexity this second
derivative and the slope must be nonnegative. Similar-
ly, Hotelling’s Lemma implies that the negative of the
second derivative of the profit function with respect
to the j’th input price equals the slope of the j’th or-
dinary input demand. Convexity of the profit func-
tion, implying nonnegativity of the second derivative,
together with the minus sign applied to the second
derivative require this slope to be nonpositive. In case
the profit function is strictly convex, then the slope
of the profit function is positive with respect to out-
put price and the slope of the input demand functions
are negative with respect to their own prices.

Table 1. Properties of Input Demand and Output Supply Functions as Derived from Duality Theory.

Function Slope w/r/t

Own Price’

Homogeneity of Degree....

Symmetry

Qutput Supply Nonnegative

input prices.

Zero in output price and

Derivative of supply function w/r/t i'th input price
equals the negative derivative of i’th ordinary input
demand w/r/t output price

Ordinary Input
Demand

Nonpositive
input prices

Zero in output price and

Derivative of i’th input demand w/r/t j’th input
price equals the derivative of j'th input demand
w/r/t i'th input price

Constant-Cost

Input Demand or zero cost

Positive, negative, Zero in input prices and

Derivative of i'th input demand w/r/t j’th input
price does not necessarily equal the derivative of
j'th input demand w/r/t i’th input price

Constant-Output
Input Demand

Nonpositive

Zero in input prices

Derivative ot i'th input demand w/r/t j’th input
price equals the derivative of j’th input demand
w/r/t i’th input price

'w/r/t is the abbreviation for “with respect to.”



Shephard’s Lemma permits expressing the slope of
the constant-output demand for X; as the second
derivative of the cost function with respect to r;. The
concavity of the cost function ensures that this
derivative, and the slope of the demand function, will
be nonpositive.

To demonstrate that the slope of a constant-cost in-
put demand curve with respect to its own price can take
any sign, first note the following identity
(69) Xjf‘l‘q(rl,...,rn,q) = Xjf'l‘c(rl,...,rn,c*(rl,...,rn,q)),

j = 1,...,n

The expression (69) can actually be interpreted as a
definition of the constant-output input demand func-
tion in terms of the constant-cost input demand func-
tion. To see this, first note that X"‘jllc (TpseenlpC*
(ry,...,I,0)) can be derived from the constrained out-
put maximization problem

(70)  Max q(X,,...,X,) + A (c*(r},...,1,0,) — 26X}
where q_ is a given level of output. The first-order
conditions for (70) are given by

1) 83X X )/ 08X, — Ay =0 Q= 1.

(72)  c*(r),..0Tppqy) — ZrX; = 0.

Now recall that X;‘[q(rl,...,rn,qo) is derivable from the
cost minimization problem (22) with q, replacing q,
i.e. from

(73)  Min IrX; + &a, — a(Xpee X))

which has first-order conditions

(74) 1, — £3q/3X, = 0

5 q, — 9X,....X) = 0.

(Note we use ¢ here to represent the Lagrangian
multiplier.) By comparing (71) and (72) with (74) and
(75), it is clear that Xﬁq(rl,...,rn,qo), j = 1,...,n,
which is the solution to the first order conditions (74)
and (75), also solves the first order conditions (71) and
(72) with ¢ = A! and with the minimum cost of pro-
ducing q, by definition equalling c*(ry,...,r,,d,) =
ZriXi"l‘q(rl,...,rn,qo). The choice of q, is arbitrary, and
thus (69) holds for all values of r|,...,r,q.

Differentiating (69) with respect to r; obtains

6) X}, (ry.r,)/ 81
= axXy()/ar +

(3XH.(-)/ dc*(1)NBc*(+)/ar))

jle
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where we use Jf'l‘c(-) as an abbreviated notation for
the right hand side of (69) and use c*(-) to represent
the cost function c*(r,,...,r,,q).

By Shephard’s Lemma, dc*(-)/dr; = X which
we know by (69) is equal to X;“lc X;“lc
(VRN AL | SYRRRNS ) ) B Rearranging (76) obtains
an axXs.()ar = (aleq(rl,...,rn,q)/3rj).

— (@X} () ac*( DX
j = 1,...,n.

(Note that this is analogous to Slutsky conditions that
are derived in consumer theory.) Now we know from
above that the slope of the constant-output input de-
mand curve with respect to its own price is nonpositive.
However, there is no general restriction on the sign
of the derivative 8Xj"c(-)/8c*(-) appearing in (77).
For this reason, 3xﬁc(')/ ar; has the potential to
assume any sign. (Again note the parallel with con-
sumer theory, where ax;l;(-)/ dc*(-) is the analog to
the “income effect”, and in which case demand curves
are positively sloped only when the commodity in ques-
tion is a Giffen good.)

The homogeneity properties listed in Table 1 are all
attributable to the linear homogeneity (homogeneity
of degree one) of the parent dual functions and the
mathematical result that first derivatives of
homogeneous functions of degree k are homogeneous
functions of degree (k-1).

Homogeneity of degree zero for the ordinary input
demand and output supply functions means that op-
timal input use and output level for a profit maximiz-
ing firm will not be altered if both input and output
prices change by the same proportional amount. This
conclusion is consistent with the familiar proposition
that optimal input use (and the corresponding output
level) depends on the ratio of input and output prices.
Of course, equiproportionate change of both prices
does not alter this ratio. Similar interpretations hold
for the other input demand function types.

The symmetry properties listed in Table 1 for out-

put supply, ordinary input demand and constant-

output input demand result from an assumption that
the parent dual functions possess continuous second
order derivatives. Young’s Theorem from the calculus
specifies that if Z is a function for which continuous
second derivatives exist, then 982Z/9 X0 Xj =
2%Z/ 6X53Xi. The cross-derivatives referred to in the
last column of Table 1 for the output supply, ordinary
input demand and constant-output input demand
reflect the results of Young’s Theorem applied to profit
and cost functions possessing continuous second-order
partial derivatives.

Note that equality of cross-price derivatives does not
imply equality of cross-price elasticities; that is Eij =



(aX}/ arj)(rj/Xi*) will generally not equal Eji =
(0 XJ?"/ ari)(ri/XJf") because the second factor involving
the fraction in each elasticity term will generally not
be equal.

That constant-cost input demand functions do not
possess the symmetry property can be verified by tak-
ing cross-partial derivatives of the set of identities in
(67) to obtain relationships of the form

(78) alec(-)/ar] = (anlq(rl,...,rn,q)/ari)
— X (@Xx.(-)/9c*(+))

and

(79) axilc(.)/ar}. = (aX“q(r,,...,rn,q)/arj)

— X (3X;(-)/8c*()).

Subtracting (79) from (78), and using the fact that
conditional-output input demands do possess the sym-
metry property, obtains
(80) (80X ()/ar)—(3X;(-)/ar)
= X3(0X; (") ac*(*))

— Xi"l‘c(aX”c(~)/8c*(~)).

Since there is no reason that the right hand side of (80)
will always equal zero, the derivatives of the constant-
cost input demand curves will not generally be equal,
and the symmetry property does not obtain. (Again
note the analogy to consumer theory, where cross price
derivatives of consumer demand functions do not ex-
hibit symmetry.)

Further Examples: Selected Factor Demand
Functions for the Cobb-Douglas Technology

To further illustrate the use of the fundamental
duality lemmas, we use them in this section to derive
constant-output and ordinary input demand functions
for the simple two-input Cobb-Douglas (C-D)
technology. We retain the same notation and
parameter restrictions for the C-D production func-
tion as in the earlier examples. We further verify that
the required homogeneity and slope properties apply
for the derived demand functions. The symmetry pro-
perties are a straightforward implication of the con-
tinuity of the second-order partial derivatives of the
parent dual functions so symmetry is not formally
verified here.

Initially, we use Shephard’s Lemma to derive the
constant-output demand for X, from the C-D cost
function defined in (25):

(81)

9 (Drla_fErzbeql_fE)/a r, = Xalt

/ ” lq
(a/E)Dr @B b/EqI/E
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Multiplying r, and r, by A and recalling E = a+b, we
can verify the homogeneity of degree zero in input
prices for X,*:

(82)

X}q(Arp,Ar,,q) = (a/E)DA@E)Ip @/E)1

Ab/Erzb/EqUE
= A(a+b—E)fEx:|k|q(rl’r2’q)
= A9X3,(r),rp,Q)

Differentiating X’l"l_cl with respect to its own price, we
can confirm the nonpositive slope of the C-D constant-
output input demand:

®3)  8X}/or, =
((a/E)—1)(a/E)Dr|@B-2r, b/EqUE <
e W

- +

Next we use Hotelling’s Lemma to derive the or-
dinary demand for X from the C-D profit function
defined in (32):

(84) —an*/ar; = X}t = (a/g)
Al !gpl/gaafgrl-(afg)-l(b/rz)b,—’g
= (a/g) Vpl.fgrl-(aig)-lrz-bfg
— (a/g)wplfgrl-(ax'g)-lrz-b!g

Multiplying P, r, and r, by A and recalling g = 1-a-b

as previously defined, we can confirm that X} is

homogeneous of degree zero in output price and in-

put prices:

(85) XFAP A1 Ary)) = AV/er@/er-be X¥(Pr r,)
= A0 X¥(P,r,,r1,)

Differentiating X} with respect to its own price, we
can verify the nonpositive slope of this C-D ordinary
input demand:

(86)

aX¥/ar, = —((a/g)+1)a/g)r,2n*< 0

S ——
+
for positive n*.

As noted for the earlier example, a positive profit
will always exist for this simple decreasing returns to
scale C-D technology. Consequently, XF is negatively
sloped with respect to its own price.

The Multiple-Product Case

Hotelling’s Lemma can be extended directly to the
multiple-product profit function introduced in (6).
Direct estimation of n* = n* (P, ..., P, 1|, ..., T))
and using Hotelling’s Lemma to extract output supp-
ly and input demand functions permits an elegant



approach to analyzing an entire system of output supp-
ly and input demand relationships. As an example of
arecent agricultural application of this methodology,
Weaver simultaneously estimated supply relationships
for three outputs (food grains, feed grains and
livestock) and demand relationships for five inputs
(labor, fertilizer, capital services, materials and
petroleum products) in the U.S. midwestern spring
wheat region. This approach permits calculating all
own- and cross-price elasticities of supply, of demand
and between supply and demand. For example, the im-
pact of an increase in the price of livestock on the de-
mand for fertilizer can be computed as
— 32* /(O P rerritizer) (@ Plivesioc) iN accordance with
Hotelling’s Lemma. Furthermore, all homogeneity,
symmetry and curvature restrictions can be imposed
and (if desired) tested throughout the entire system.

DERIVING PRODUCTION FUNCTIONS
FROM COST FUNCTIONS

One of the most important implications of duality
is that the economically relevant aspects of a produc-
tion technology can be described interchangeably by
either a production function or a cost function. Each
of these functions is simply a different way of express-
ing the same economically relevant information con-
cerning input-output combinations, and it is possible
to derive the production function from the cost func-
tion or vice versa.

Deriving a cost function from a production func-
tion, as described by our discussion of expressions
(21)-(23), is generally well understood and treated in
most microeconomic theory texts (e.g., Ferguson, pp.
163-166). However, deriving a production function
from a cost function is less familiar to many
economists. Shephard’s Lemma, introduced in the
previous section, makes this derivation possible. We
will explain the general procedure for the two-input
case and follow the explanation with an example us-
ing the Cobb-Douglas production technology. The case
of more than two inputs is an extension of the pro-
cedure described here.

We begin by applying Shephard’s Lemma to the cost

function (21) to derive the constant-output input de-
mand functions (23), which are repeated here for con-
venience in the two input case
87) Xitq = Xit(rr2,0) i= 12,
Since we know by our previous discussion of the pro-
perties of these constant-output input demand func-
tions that they are homogeneous of degree zero in in-
put prices, we can write (87) equivalently as
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(88) X;'l‘q = Xi"l‘q(l,r’,q) i=1,2

where 1’ =r1,/r, (i.e. we have divided the input prices
in (87) by r,>0, and then used homogeneity of degree
zero to write (88).

Note that (88) is a set of two equations in the two
unknowns r’ and q. Assuming for the moment that
(88) is solvable for r’ and q in terms of X‘ﬂq and X;Iq
(i.e., assuming that the inverse function system to (88)
exists) we obtain

89  q = £ X} X§o)
and
(90) = fr,(X;"lq, X*2|q).

Note that (89) expresses output as a function of input
levels, and is thus a production function of sorts.
However, the fact that f_(-) has as its arguments the
(optimal) levels of inputs 1 and 2 that minimize the
cost of producing the output level q at prices r; and
r, and not just arbitrary input levels, can in some in-
stances distinguish fq(') from the ordinary production
function q(X,,X;). The difference arises when there
are some (X,,X,) input combinations in the input
space that are not cost-minimizing input combinations
for producing some output level q at some nonnegative
input prices (r;,r,). In this instance, the non-optimal
(X,,X,) points are simply not in the range of the vec-
tor function (88), and so these points are not in the
domain of the inverse function system (89) and (90).
However, note that both fq(-) and q(-) coincide for
all (?(flq, ’z*lq), i..e. fq(X’l"|q,X3‘|q) = q(X‘l"lq,X’z']q), sin.ce
the input combinations that satisfy the cost minimiz-
ing problem (22) necessarily satisfy the production
function constraint. In view of the distinction between
the domains of fq(-) and q(-) indicated above, f(*)
might best be thought of as the production function
for economically relevant input combinations (where
economically irrelevant input combinations are those

.that are not minimum cost combinations for produc-

ing some output level q at some input prices (r,,r,)—
which are irrelevant input combinations to the input-
output decisions of the profit-maximizing firm).
As we alluded in the above discussion, there are in-
stances where the domains of fq(-) and q(-) coincide,
so that a distinction between the two production func-
tions is unnecessary. Such a case is identified when the
constant-output input demand functions derived from
the cost function have a range that is equal to the non-
negative quadrant of two-dimensional Euclidean
space, which is equal to the domain of the production
function q(-). In this case the functions fq(-) and q()



coincide for all (X,,X,) values in the input space, and
in addition, all input combinations are economically
relevant.

When will (88) be solvable for its inverse function
system (89) and (90) so that the production function
fq(-) is recoverable from the cost function
c(ry,...,1,;,@)? It is known by the Inverse Function
Theorem (see Bartle, p. 381) that the two equations
(88) can be solved for 1’ and g in terms of points in
a neighborhood of (Xﬁq,X;'q) if the Jacobian matrix
(the matrix of first-order partial derivatives)

©n [[aX’,“lq(l,r’,q)/ar’] [aX”q(l,r’,q)/aq]:l
[8X3,(1,r,0)/3r]  [3X,,(1,r",0)/2q]

is nonsingular. In general, it can be expected that (91)
will be nonsingular. Suppose that both inputs are nor-
mal factors, so that the second column of (91) con-
tains two positive entries. Note further that

92) X} (r.1,0)/ 81, = (AX$(1,r,0)/3r)
(8r'/3r) <0
93) X} (r.r,@)8/r, = (AXH(1,r,q)/3r)

(8r'/81)) < 0

since the slopes of the conditional factor demand func-
tions with respect to own-input prices are negative.
Then since ar//3dr, = —r,/r}< 0and ar'/adr, = 1/r
> 0, we know that the first column of (91) has a
positive and a negative entry. The sign pattern of the
entries in (91) is thus [* %1, so the determinant of the
matrix is clearly positive implying the matrix is non-
singular. In any case, if inferior factors are admitted,
it would be pure coincidence that the determinant of
(91) was exactly zero, and thus (89) will generaily im-
ply (90) and (91).

We illustrate the procedure described above by the
simple two-input Cobb-Douglas production
technology used in previous examples. Retaining our
previous notation from (25), we can write the Cobb-
Douglas cost function as:

(94) ¢ = Dr¥Er,YEqlE,

Applying Shephard’s Lemma, we obtain the follow-
ing constant-output input demands:

(95)

ac/or = X

I
1

e = @/ED r,@/E)p b/EqI/E

(96) dc/ar, X;Iq (b/E)D r,v/Er,(o/EX1ql/E,

Recalling that E
follows:

a+b, we rewrite (95) and (96) as
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o7  X*

(a/E) D (r,/r)*Eql/E

(98) X¥ = (b/E) D (r,/1,y*E q'/E.

Note here that the range of (97) and (98) is the positive
quadrant of two-dimensional Euclidean space plus the
origin (i.e. at the origin, or for points in the positive
quadrant, there exist nonnegative levels of q, r; and
r, that, when used in (97) and (98), will generate the
coordinates of the point), and the points in the range
define the economically relevant input combinations.
Solving for (r,/r,)*E from (97) and substituting into
(98) yields:

(99) X2 — (b/E) D xl-a/b (a/E)a/b Da/b ql/b
Asterisks have been dropped from the X;’s above to
simplify notation. Now, by substituting E(Aa?b®)-1/E
for D in (99), solving for q, and simplifying, we ob-
tain:
(100) q = AX3¥X}

We could alternatively define the production function
f,() to clarify the domain of economically relevant
input combinations as

(101) q

AX?X‘Z’ for (X,,X,)
(0,0) or both X, > 0 and X,> 0.

For readers interested in a graphical presentation of
duality between production and cost functions, we pro-
vide Appendix A which presents an accessible exposi-
tion of Shephard’s original work. That work illustrated
that a set of isocost curves can be derived from the
associated production function isoquants. Note that
this is a derivation opposite in direction to that
presented above.

AN EMPIRICAL RESEARCH ILLUSTRATION:
AGGREGATE COST FUNCTION ANALYSIS

In this section we present an empirical application
of duality theory involving an investigation by
Rostamizadeh et al. of the production technology of
U.S. agriculture. The application illustrates a number
of facets of econometric research based on duality
theory, including consistency of objectives with the
dual approach, data availability and variable con-
struction, choice of functional form, econometric
estimation procedures and presenting empirical results
together with hypothesis testing of regularity condi-
tions required for the validity of the dual approach.
In particular, the dual cost function approach was used



in an attempt to obtain information on direct and
cross-price elasticities of demand for inputs in U.S.
agriculture,

We forewarn the reader that the illustration is sober-
ing in the sense that despite the attempt to carefully
conceptualize and execute the analysis, the empirical
results do not support the contention that the func-
tion originally postulated represented a theoretically
valid cost function. We present a post-mortem discus-
sion of the empirical difficulties to provide the reader
with a perspective on the types of problems that a
researcher may encounter in empirical applications of
duality theory.

Objectives

The overall objective of this application is to ob-
tain information on the effect that changing factor
prices has on factor employment in U.S. agriculture.
This includes an assessment of own-price effects and
cross- price effects. In addition, we examine chang-
ing factor shares of total output. The factors analyz-
ed included land, labor, capital and fertilizer.

Is the dual function approach appropriate for
meeting objectives of the type indicated above? The
answer is yes. Three types of price effect assessments
can be undertaken using a dual approach. The indirect
production function approach can be used to assess
own-price and cross-price elasticities of demand for
production factors conditional on a given total expen-
diture for the factors. The cost function approach can
be used to obtain information on the demand
elasticities conditional on a given level of agricultural
output. Finally, the profit function approach could be
used to assess the ordinary elasticities of factor de-
mand.

In this application, we examined constant-output
price effects, and thus utilized a dual cost function ap-
proach.

Functional Form of the Cost Function

Finding an algebraic form for a cost or a produc-
tion function which satisfies, or can be made to satisfy,
the assumptions of duality theory and is also consis-
tent with real world behavior is an important and dif-
ficult task. In regard to the task, credit is due to
economists who have introduced functional forms for
the production and cost functions. Functional forms
that have been utilized in past empirical work include
the Cobb-Douglas, the CES, the translog, the
generalized Leontief, the Uzawa and the generalized
linear function.

In this application, we chose the translog cost func-
tion as the functional form to employ in the
econometric analysis. The choice was made for a
number of reasons. First, the translog cost function
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can be viewed as a local, second-order approximation
to an arbitrary cost function. Second, the translog
function can be made to satisfy a subset of the regulari-
ty conditions for the validity of the dual approach by
imposing linear constraints on the parameters of the
function. This facilitates estimation of the parameters
via a restricted least squares technique and allows
statistical tests of regularity conditions by testing linear
restrictions on model parameters. Third, factor share
equations implied by the translog cost function are
linear in the parameters of the model, so that linear
least squares techniques can be used to estimate
parameters.
The translog cost function can be written as

(102) lnC=lnA+lnY+§aiani+

i

(172) 2 2 b In W;In W, + cT

1]
where i,j = 1,...,n; bij = bji Vi # j; Za, = 1, and
i

Zbij = 0fori=1,...,n.
J
The symbol C stands for cost of production, A is
a constant parameter, Y is the level of output, W,
is the price of the i'th factor of production, T is
time and is used as a proxy for neutral
technological progress over time and the a;’s, b;’s
and c are constant parameters of the translog
function.

For the function to be used in the dual ap-
proach, it must satisfy the regularity conditions
presented earlier. First, the function must be con-
tinuous in input prices, and this obviously holds
for the logarithmic transformation of prices as
well as for the product of logarithmic-transformed
prices used in the translog specification. Second,
the linear restrictions placed on the parameters en-
sures that the cost function is linearly
homogeneous in input prices, since if all prices are
multiplied by A > 0, then

(103) In(C) = In A + In Y + Za, In AW,
1

+ (1/2)ZZ b; InAW,) InAW,) + T
i

and thus it is evident that cost has also changed by the
factor A when one recalls the restrictions imposed on
the coefficients of (103).

The third requirement is that cost be nondecreas-
ing in input prices. Note that

(104) (3C/aW)(W/C) = a; + £b, In W,

J
and by Shephard’s Lemma dC/aW, = X,, so that



(105) M, = X,W/C = a, + Zb;In W,

where M; is the i’th factor share. Since factor shares
must be nonnegative, and since 9C/aW, =
M,(C/W), we have the theoretical restriction that
3aC/dW, 20. However, this derivation indicates that
the required restriction on the translog function
parameters is

(106) M; = a; + JZbij In W;20 Vi,

which cannot be met globally, i.e., for all nonnegative
values of W,..,W, . For example, if any bij;é 0, then
M; can be made negative if b; >0 and W, » 0, or b;
< 0 and Wiroo, Thus, the translog function must be
viewed as a local approximation to a theoretically valid
cost function, and its use constrained to values of
W,,...,W_ for which M;2 0V i.

Finally, we require that the function be concave in
input prices, which in turn requires that the Hessian
matrix of second-order derivatives of C with respect
to input prices be negative semidefinite. The i'th
diagonal entry of the Hessian matrix has the form
C(b; + M{>—M,)/W2, while the (i,j)* off-diagonal en-
try of the matrix takes the form
C(bij+MiMj)/(Win). As in the case of the non-
negativity restriction above, the translog function can-
not meet the concavity restriction globally. It thus must
be viewed as a local approximation to be used for
values of W,,...,W_ for which nonnegativity of the
Hessian matrix is attained.

Regarding elasticities of demand for the various fac-
tors of production, we have that

(107)  E; = (3X/8W)(W,/X) =
(32C/3W;dW)(W,/X) V i,j

by Shephard’s Lemma, and thus the entries of the Hes-
sian matrix described above are relevant here. By
substitution, we have that

(108) E.

u

(by/M) + M;—1
and

(109) E; = (b/M) + M;.

The constant-output factor demand functions to which
the elasticities refer are representable as

(110) X = M(C/W) = (3 + X b, In W)C/W,.

Data Requirements and Econometric Estimation
The approach used to estimate the parameters of the

translog cost function is the estimation of the set of
factor share equations

(111) M, = a, + ]Zbij InW; +¢i=1,..,4

subject to the linear restrictions

1 J
fori=1,...,4.

Since by definition the factor shares must sum to 1,
an additional restriction on the estimation of the
system of factor share equations is

that = M; = 1.
1

Two important questions that must be addressed
before proceeding further with the analysis are: 1. what
data are used in the estimation of the factor share
equations, and 2. what econometric estimation techni-
que should be used to estimate the factor share equa-
tions?

Data Requirements

The data required for estimating the factor share
equations include time series on factor prices and total
expenditure on all factors of production. The time
series used for estimation were annual observations
spanning the years 1960 through 1979. The sources and
construction of the data used to represent prices and
expenditures on land, labor, capital and fertilizer are
briefly described below. A complete listing of the data
can be found in Rostamizadeh.

The annual average wage for hired farm workers
was used as the price of agricultural labor. The wage
data was taken from USDA’s Farm Labor Monthly
Reports. Total labor expenditures were calculated by
multiplying hired labor expenditures by the ratio of
total farm labor to hired farm labor. The hired labor
expenditure used in calculating the total expenditures
was taken from various issues of USDA’s State Farm
Income Statistics.

Fertilizer data were readily accessible. The quanti-
ty and expenditures for commercial fertilizer were
taken from various issues of Agricultural Statistics.
The prices of fertilizer were calculated by dividing fer-
tilizer expenditures by the quantity of fertilizer con-
sumed.

Land value data were taken from various issues of
USDA’s Farm Real Estate Market Developments.
Building values are included in the total land value.
Land expenditures were calculated as 6% of the land
value plus real estate taxes assessed on land (Bin-



swanger, p. 285). The real estate taxes are taken from
various issues of Agricultural Statistics.

A number of problems are associated with compil-
ing capital data. Data for this variable are not direct-
ly available and there is not a unique method of
measuring capital. However, a proxy variable for
capital was proposed by Lianos and by Vathana which
was used in this study as well. Capital expenditures
consist of the following items: feed, livestock, seed,
repairs and operation of capital items, depreciation
and other consumption of farm capital. The time series
data for capital has been taken from various issues of
the State Farm Income Statistics. The Production
Credit Association’s Average Cost of Loans is used as
a proxy for the price of capital (Lianos).

Total expenditure is the sum of expenditures for
capital, land, labor and fertilizer. The factor shares
were obtained by dividing the expenditures of each fac-
tor by the total expenditures and were used as the
dependent variables in estimating share equations.

Econometric Estimation Technique

The econometric problem is one of estimating a
system of four equations that are linear in parameters
and, in addition, have linear restrictions on the
parameters. The problem would be amenable to a
straightforward application of joint restricted
generalized least squares (JRGLS) (Theil, 1971, p.
312-317) were it not for the restriction ZM;=1. The
factor share restriction, together with the other restric-
tions imposed on the parameters of the system, imply
that Ze;=0, and thus the error terms of the system
are linearly dependent. The contemporaneous
covariance matrix of the disturbance terms is then
singular, preventing the calculation of JRGLS
estimates. The problem can be resolved by eliminating
one of the factor share equations from the system. In
this study, the land equation was eliminated, and the
three share equations for labor, capital and fertilizer
were estimated by the JRGLS method. The standard
SAS program was used in calculating the estimates.

Although the land factor share equation was not
estimated directly via JRGLS, estimates of the
parameters of the equation were constructed by using
a subset of the restrictions imposed on the parameters
of the system of factor share equations. In particular,
letting subscript 4 refer to the land equation, we have
that

3
(113) a, = 1—- 2 g
i=1
(114) b, = b, fori=1,2,3

3
(115) b, = —.Zlb“j
J=
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and since all parameter values on the right-hand side
of the equalities are estimated via the JRGLS method,
the parameters in the land factor share equation can
be estimated by forming the indicated linear combina-
tions of the parameter estimates. The variances of the
parameter estimates in the land factor share equation
are calculated using the standard formula for the
variance of a linear combination of random variables.

A final consideration concerns the exogeneity of the
explanatory variables. If the explanatory variables
were considered endogenous, then the JRGLS techni-
que would require the introduction of instrumental
variables for these endogenous variables, effectively
resulting in a three stage least squares estimation pro-
cedure. Following the approach used by Binswanger
and Lopez, it is assumed that the input prices are ex-
ogenous variables. When the capital used in the
agricultural sector is a small portion of the total capital
used in the whole economy, the price of capital will
not be determined endogenously by the agricultural
sector. Fertilizer is very energy intensive and the ex-
ogenous price of energy provides some justification for
considering fertilizer price to be exogenous. The
assumption of exogeneity of the labor price can be
defended in the sense that the wage rate in the
agricultural sector usually follows the same pattern as
the industrial wage rate. Additionally the minimum
wage rate can be looked at as an exogenously (political-
ly) determined base farm wage rate. In regard to land
price, where agriculture is the main user of land, its
price may be endogenous. However, to avoid introduc-
ing additional complexity into the model, the land
price is treated as an exogenous variable. Overall, the
exogeneity assumptions imply that farmers face
horizontal supply curves for inputs.

Empirical Results and Hypothesis Tests
The set of factor share equations were estimated ac-
cording to the method described in the previous sec-
tion, and the results are displayed in Table 2. Only one
of the estimated parameter values was not significant
at the 90% level of confidence. Among other things,
the estimates indicate that the factor shares of labor,
fertilizer and land increase as their respective factor
prices increase, while the capital share decreases with

increases in the price of capital, ceteris paribus.
The parameter estimates were used to predict fac-
tor shares for each of the years 1960 through 1979,
as well as own-price elasticities for the same years. The
results are displayed in Table 3. In particular, the
results indicate that the factor shares of land and
capital increased from 1960 through 1979, the factor
share of labor declined over the same time period and
the factor share of fertilizer fluctuated but settled at
a slightly higher level in the late 1970’s as opposed to



Table 2. JRGLS Estimation of Factor Share Coefficients.

Dependent
Variables Coefficients of Independent Variables

M, InP,, InPg InP, InP_ Intercept

My .07905 .04215 .01855 —.13974 .79858

(3.99)! (6.83) (2.0761) (=9.51) 9.01)

My —.01526 —.02991 .00303 .56856

(—2.17) (—9.04) (.49)2 (18.73)

Mg Symmetric .03483 —.02347 .07618
(6.42) (—3.83) (1.8637)
M .16018 —.44332
(9.28) (—36.43)

| Asymptotic t ratios in parentheses.

2Not significant at 90 percent confidence level.

the early 1960’s. In addition, the demand for each of
the factors is inelastic, with the highest absolute
elasticity attributed to the demand for capital, and the
lowest elasticity alternating over the years between fer-
tilizer and land demand.

To analyze the compatibility of the estimated model
with the regularity conditions required for the validi-
ty of the dual approach, the restrictions placed on the
model due to the regularity conditions were examin-
ed. First, an F-test of the six linear restrictions

4
(116) = b = 0;i=1.2,3

j=1
(117) by = by i<y, G,)) = 1,2,3
was performed using the standard F-statistic having,
in this case, 6 and 45 degrees of freedom in the
numerator and denominator, respectively (Theil, 1971,
p. 312-314). The calculated F-value was 4.11, in-
dicating that the linear restrictions are rejected, even
at the 0.005 level of significance (critical value = 3.7).
Second, the Hessian matrix described earlier is required
to be negative semidefinite, since the cost function is
required to be concave in input prices for duality
theory to apply. The Hessian matrix was constructed
for each of the years 1960-1979, and the characteristic
roots of the matrices were extracted. In all cases, at
least one of the roots was positive, indicating that the
matrices were not negative semidefinite and that cost
was not concave in the input prices. Finally, cost is
required to be nondecreasing in input prices. Since
9C/aW,= M(C/W,), the sign of the derivatives of
cost with respect to input prices was judged by the sign
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of the predicted M, values in Table 3. Since all M;> 0,
i=1,...,4, cost was judged to be nondecreasing in in-
put prices.

An Evaluation of the Empirical Research
lllustration

Overall, regularity conditions for the applicability
of duality theory in our problem could not be met. The
conclusion is that the particular translog function im-
plied by the parameter estimates is not a theoretically
valid cost function, even as an approximation, and
thus applying Shephard’s Lemma in this problem ap-
pears inappropriate. In particular, the theoretical basis
for the interpretation of the estimated quantities
presented in Tables 2 and 3 as representing factor share
equations, predicted factor shares, and elasticities of
factor demand is questionable.

While the above example has illustrated some of the
steps required in an actual empirical analysis based on
duality theory, it is admittedly not very good adver-
tisement for empirical applications of the dual ap-
proach. What should we conclude at this point con-
cerning the use of the dual approach to obtain infor-
mation on elasticities of demand for inputs in U.S.
agriculture? Additional empirical and theoretical ef-
fort is warranted!

Using data that more accurately reflect our input
categories or which are less aggregated could possibly
improve the results. It is also possible that another cost
function specification such as the generalized Leon-
tief model or some other functional form would be
more compatible with the data in the sense of satisfy-
ing regularity conditions. In addition, no account of
nonneutral technological progress has been incor-



Table 3. Predicted Factor Shares and Own Price Elasticities.

F_a_qgo_l_' Share

Own-Price Elasticity

Labor Capital Fertilizer Land Labor Capital Fertilizer Land

Year m, M, M. M, Ey Ex E; E,

1960 .28462 42713 .04449 .24376 —.43764 —.60860 —.17264 —.09908
1961 .27924 .42901 04711 .24464 —.43767 —.60656 —.21356 —.10056
1962 .27013 .43433 .04324 .25230 —.43723 —.60080 —.15126 —.11278
1963 .26491 .43535 .04299 .25675 —.43669 —.59970 —.14682 —.11934
1964 .25961 .43380 .04306 .26353 —.43589 —.60138 —.14807 —.12861
1965 .25522 .43785 .03985 .26708 —.43505 —.59700 —.08612 —.13314
1966 .25713 44144 .04034 .26109 —.43544 —.59313 —.09625 —.12537
1967 25175 .43951 .03853 .27021 —.43425 —.59521 —.05750 —.13695
1968 .24973 44321 103831 .26875 —.43373 —.59122 —.05253 —.13519
1969 .25254 .44900 .03499 .26347 —.43444 —.58499 —.03042 —.12853
1970 .25923 .45053 .03123 .25901 —.43583 —.58334 —.14650 —.12252
1971 .26023 45312 .04707 .23958 —.43600 —.58056 -.21297 —.09179
1972 .25240 .45741 .04645 .24374 —.43411 —.57595 —.20371 —.09904
1973 .24817 .45740 .04227 .25216 —.43330 —.57596 —.13374 —.11257
1974 .24143 .44140 05526 .26191 —.43115 —.59317 —.31445 —.12647
1975 .23374 .44049 .06403 .26174 —.42806 —.59415 —.39201 —.12624
1976 .22139 45182 .05890 .26789 —.42155 —.58195 —.34976 —.13414
1977 .20488 .45760 .05699 .28053 —.40928 —.57575 —.33185 —.14844
1978 .20526 .45533 .05703 .28238 —.40962 —.57818 —.33224 —.15033
1979 .20146 45716 .04925 .29213 —.40615 —.57622 —.24354 —.15952

porated in the cost function specification, and a
respecified translog function might be more compati-
ble with the dual approach.

The point is that we have not rejected the applicability
of duality theory to our problem, but we have rejected
our particular implementation of the approach. In this
respect, the dual approach to econometric modelling
is no different than any other approach. Empirical ap-
plications of the theory necessarily force the research-
er to commit to specific functional forms, estimation
techniques and data types even though the field of can-
didates for these various facets of the analysis can be
large despite the narrowing of the number of possi-
bilities via the implications of the theory. We elaborate
on some of the advantages and limitations of the use
of the dual approach in applied production economics
research in the final section of this report.

ADVANTAGES AND LIMITATIONS OF DUAL
APPROACHES: AN APPRAISALS

Having completed both an overview of duality
theory in production and also a summary of an ag-
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gregate dual cost function application, we will attempt
in this section to identify some general advantages and
limitations of dual approaches to applied production
economics research problems.

Advantages of Dual Approaches

Dual approaches may be attractive to applied resear-
chers for what will be loosely classified as “theoretical”
and “practical statistical” advantages. Among the
former category, four are particularly important:

1. Applying dual functions properly can ensure that
demand, supply and other economic relationships
derived from them are consistent with the restric-
tions imposed by economic theory including slope,
homogeneity and symmetry properties. Statistical
tests of these restrictions also permit checking the
validity of the implementation of the theory for the
problem.

5This section draws extensively from an earlier discussion article
(Young)



2. Dual approaches facilitate analyses of entire systems
of input demand and output supply functions in
which the impacts of all relevant input and output
prices and other exogenous variables are included,
and all theoretical restrictions across equations are
observed.

3. The flexible functional forms typically used for dual
cost or profit functions generally impose fewer
restrictions on the nature of technology than do
popular and mathematically tractable production
function forms like the Cobb-Douglas or CES. The
dual approaches “let the data speak” with regard
to input substitution possibilities, homotheticity,
constancy of input shares and other properties.
Although more flexible production function forms
such as the translog could be used, often they are
avoided because of their algebraic complexity.

4. Dual profit functions facilitate empirical analysis
of multiple-product firms and industries.

Potential computational and statistical advantages
of dual approaches include:

1. Dual approaches promote computational ease in
deriving input demand, output supply and other
economic relationships as compared to deriving
these from primal objective functions. Simplicity
in calculations can reduce the opportunity for
human error. Also, the risk of exacerbating estima-
tion error by rounding error is greater with the more
complex primal derivations. For example, rounding
errors can be significant in inverting large matrices
as is required for computing Allen partial elasticities
of substitution from the production function.

2. Elasticities and other response measures can often
be calculated as simple, frequently linear, functions
of the parameters of dual functions. This facilitates
deriving the statistical distributions of these expres-
sions for purposes of hypothesis testing.

3. Estimating cost or profit functions with price data
as independent variables may permit more precise
econometric estimates of technology parameters in
cases where multicollinearity among factor prices
is less than that among factor quantities.

4. Prices, used as regressors in dual approaches, are
more likely to be truly exogenous than are input
quantities, thereby avoiding correlation of
regressors with the error term. This precludes the
need to use simultaneous equation regression techni-
ques which probably should be used, but rarely are,
to estimate firm or aggregate production functions.

5. A final practical advantage of dual approaches is
that data on factor and output prices, total costs
and annual profits will often be more readily
available, and possibly more accurate, than data on
output and input quantities.
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Some Theoretical Limitations

Dual functions contain information on both the
nature of technology and assumed rational behavioral
response in accordance with specified objective func-
tions and constraints. Consequently, valid results re-
quire identifying correctly both the objective function
and constraints applying to the real world problem to
be analyzed and selecting the appropriate dual ap-
proach. For example, if producers in a particular in-
dustry generally behave as rational profit maximizers
to varying competitive market prices, fitting a dual
profit function to a time series of annual profits, out-
put prices and input prices might be justified.
However, if profit maximizing behavior in the industry
is precluded by the absence of effective markets, the
existence of unknown constraints, or producer irra-
tionality, any supposed estimated maximum profit
function will be meaningless. The weakness of com-
petitive markets and the potential existence of myriad
cultural, subsistence, credit and other constraints in
many developing countries’ agricultural sectors, for ex-
ample, could weaken the applicability of dual models
to these settings.

Even in economies where functioning markets and
rational behavior exists, it is critical to select the dual
function that fits the institutional realities of the pro-
blem. Institutional restrictions imposed by farm pro-
grams or contracting practices could make cost
minimization subject to an output constraint more
realistic than unconstrained profit maximization.

It is also important to match the dual function which
is to be estimated to the researchers’ ultimate objec-
tives. For example, consider the objective of providing
information on the elasticity of demand for labor in
a particular agricultural sector to evaluate the long run
consequences of minimum wage policies or projected
labor union supported wage increases. The customary
dual approach to analyzing such agricultural input de-
mand elasticities has been by estimating an aggregate
dual cost function and applying Shephard’s Lemma
(e.g., Binswanger; Lopez and Tung; Kako; and Ros-
tamizadeh). Although the constant-output nature of
the calculated elasticities is sometimes acknowledged
in developing the theory, there generally has been lit-
tle emphasis in the interpretations/policy implications
of these studies on the distinctly short run nature of
these elasticities. Over the longer run when producers
have time to adjust output level as well as input com-
binations in response to input price changes, elasticities
will often be considerably higher in absolute value. For
example, Hammonds, Yadav and Vathana reported
that several studies of the U.S. hired farm labor market
showed long run labor demand elasticities to be three
or four times higher than the comparable short run
elasticities.



Recently, Chambers computed both constant-cost
and constant-output input demand elasticities from a
cost function by transforming the cost function to the
indirect (cost constrained) production function. For
the U.S. meat products industry, Chambers’ results
showed capital, labor and energy demand elasticities
to be slightly higher, and materials demand elasticity
to be several times higher, for the constant-cost com-
pared to the constant-output input demand. Constant-
cost input demands represent an intermediate length
of run, or adjustment potential, between constant- out-
put and ordinary input demands. Of course, longer
run ordinary demands could be estimated from the
dual profit function by use of Hotelling’s Lemma. The
key is to select the dual function which fits the intended
policy interpretation of the results.

As a final theoretical observation, note that dual ap-
proaches overcome no fundamental objections to
neoclassical economics as a paradigm. For example,
they do not resolve the venerable debate as to whether
production functions (or equivalently cost functions)
are valid constructs for aggregate economic analysis
(Robinson; Harcourt; Pasinetti). This debate revolves
around questions of whether a meaningful measure of
capital distinct from relative prices is possible in the
aggregate, issues of capital switching and reswitching
and the nature of technical progress.

Empirical Problems

Econometric estimation of dual cost, profit, or in-
direct production functions requires reasonably ac-
curate price data that exhibits some dispersion. For
some applications, such data may not be available. For
example, cross-sectional farm survey data from a
single year may show all farms confronting basically
the same vector of input and output prices. Time series
of prices will generally exhibit more dispersion, but
dispersion may still be limited for some industries.

Estimates of elasticities, technical change coeffi-
cients and other measures of policy interest from dual
function parameters will often be very sensitive to data
composition and variable construction procedures. Us-
ing an aggregate cost function, Lopez noted how the
switch from time series to pooled cross-section and
time series data led to a reversal of the conclusion that
non-neutral technical progress had been a significant
factor in Canadian agriculture. The demand elasticities
for land in our cost function analysis reported above
were considerably lower than those obtained by
Binswanger or Lopez. This result may have been par-
tially due to data inadequacies.

Of course, the sensitivity of results to practical data
composition and variable construction problems ap-
plies equally to approaches using primal functions. The
preceding discussion serves only to warn potential

24

dualists that their “ammunition” may critically affect
their success.

Imposing and testing required regularity conditions
on empirically estimated dual functions can also pre-
sent problems for the applied researcher. First, impos-
ing parameter restrictions across equations will, as
noted in the cost function example reported above,
generally require use of jointly restricted generalized
least squares or maximum likelihood estimation pro-
cedures. Some researchers may not have ready access
to software or the expertise needed to use such
procedures.

Secondly, statistical tests of the parameter restric-
tions may reveal that they are not consistent with the
data as was reported in our cost function application
above. Table 4 summarizes, among other information,
the results of tests of certain necessary theoretical
restrictions reported in several recent studies that have
utilized a cost function approach to examine agri-
cultural production. Although necessary symmetry and
homogeneity parameter restrictions were generally im-
posed, the compatibility of these restrictions with the
data were consistently tested statistically only in the
recent work by Lopez and ourselves. Some researchers
have also failed to test the local concavity of the cost
function. This test involves checking whether the Hes-
sian matrix of the cost function is negative semidefinite
at each observation point.

Pope (p. 346) observes that “testing curvature [con-
cavity] conditions is a cumbersome matter and is usual-
ly dispensed with.” Our recent experience confirms that
these tests are tedious, but given that these conditions
are intrinsic to the theory and to the validity of the
results, it is important that they be made.

As noted in Table 4, our experience with the
Rostamizadeh study strongly indicates that concavi-
ty, symmetry, and homogeneity conditions certainly
will not always hold, at least not with the translog
specification applied to recent U.S. agriculture data.
In an attempt to improve the specification, we tried
alternative assumptions regarding technical change,
homotheticity and structural breaks with little success.
Lopez’s success in accepting the concavity, symmetry
and homogeneity tests using the generalized Leontief
function on Canadian data provides encouraging sup-
port for the flexibility of the generalized Leontief
specification.

What is the researcher to conclude if statistical tests
show one or more of the regularity conditions is
violated for his/her application? At face value, this
would seem to imply rejection of the postulates of the
underlying theory. For example, it could mean for a
cost function that the data do not reflect rational cost
minimizing responses to a well-behaved production
technology. However, such conclusions are clouded by
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specification issues. These tests are in fact conditional
upon the particular functional form chosen by the
researcher. For example, one or more regularity con-
ditions might be violated by a translog cost function
but a generalized Leontief cost function fitted to the
_same data could meet all regularity conditions.

SUMMARY RECOMMENDATIONS

Researchers should consider dual techniques when
the real world research problem conforms to the
theoretical requirements of the theory and available
data are adequate. Are the optimization postulates of
the dual function (e.g., profit maximization or cost
minimization) reasonable? Do adequate markets or
other price-setting institutions exist? Is there an
absence of difficult-to-model confounding constraints
which could hinder optimizing behavior by producers?
Is a set of price data with reasonable dispersion
available? If these questions can be answered in the
affirmative, the researcher then should choose careful-
ly the particular dual function which best suits his
research objectives and behavioral/ institutional
realities of the problem. Do cost, indirect production
function, or profit function optimization postulates
best describe behavior of the target group?

Careful attention should also be devoted to selec-
tion of an appropriate functional form. Review of
previous literature can provide guidance on this choice.
Research objectives can also influence this choice. For
example, the estimating equations for a generalized
Leontief cost function technology impose homogeneity
of degree zero on factor demand functions in a man-
ner that precludes statistically testing this property. If
homogeneity tests are an objective of the research,
another functional form should be chosen.

Researchers should choose the best data available
and use logical well-documented variable construction
procedures. Variables included should correspond with
the objectives of the study.

Statistical estimation procedures should incorporate
any necessary theoretical restrictions. As noted earlier,
this will often require using jointly restricted generaliz-
ed least squares to obtain efficient estimates.

Finally, researchers should ensure that the research
resources at their disposal are adequate before using
dual approaches. This includes access to the necessary
econometric software and theoretical-econometric
expertise.

In summary, we offer our judgement on types of
problems where dual approaches are likely to be most
and least fruitful. Among the types of problems
agricultural economists typically consider, the follow-
ing may possibly be productively examined by dual
approaches:
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e analysis of aggregate factor demand and substitu-
tion, output supply, technical change, and returns
to scale at regional or national levels for particular
sectors and industries,

e analysis of welfare and allocation impacts of policy
or environmentally-induced price or constraint
changes on typical firms or industries,

e analysis of multiple-product firm and multiple-
product industry responses.

Production analyses where dual approaches are not
relevant or appropriate include: '
e analysis of pure biological or physical response

relationships,

e “quick and dirty” studies where time and research
resources are limited,

e problems with little dispersion in price data across
observations,

e analysis of environmental or non-market goods for
which no price history exists,

e problems in which assumed optimization behavior
is in doubt or unknown constraints confound op-
timization.

For these problems, traditional primal or institutional

approaches will most likely be more fruitful.
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APPENDIX A: SHEPHARD'S GRAPHICAL ILLUSTRATION
OF THE DUALITY BETWEEN PRODUCTION AND COST FUNCTIONS

Shephard (1953) was the first to present a rigorous
graphical demonstration of the duality between pro-
duction and cost functions. His demonstration utiliz-
ed the geometric concept of polarity which may be un-
familiar to many economists. We attempt here to
review the seminal ideas of Shephard, making the ex-
position as accessible as possible. The demonstration
is in two dimensions, but the approach can be extend-
ed to higher dimensions. The point of the demonstra-
tion is that knowledge of the isoquants of a produc-
tion technology imply knowledge of the isocost curves
of a cost function in input price space and vice versa.6

A key concept in Shephard’s graphical approach is
that of the “unit minimum cost” (UMC) function,
which represents the combinations of input prices, 1,
and r,, for which the minimum cost of producing a
given level of output, g, is unity. To clarify what is
meant by the UMC function, first recall that the stan-
dard minimum cost function for the production of out-
put level q can be defined as

(Al) c(@,r,ry) = 1, X} (r,ry,aq) + 6,X3 (1,r,,d)

where X*(r,,r,,q) is the constant-output demand curve
for input i defined by the solution to the problem

(A2) Min r, X, + X, s.t. @ = qX;,Xy),
XX,

q(X,,X,) representing the production function. The
unit minimum cost function is then implicitly defined
by

(A3) c(q,r;,rp) = 1,

for a given q. The equation can be solved for (r,r,)
points that represent prices at which q can be produc-
ed at a minimum cost of 1 unit.

The demonstration of duality between isoquants and
isocosts can be restricted to an analysis between iso-
quants and the UMC function. That minimum cost
curves other than the UMC curve need not be referenc-
ed explicitly in the demonstration of duality can be
motivated as follows. First, recall that minimum cost
functions are homogeneous of degree one in input
prices, assuming continuity and concavity of the pro-
duction function, i.e.

(Ad) c(q,Ar,Ary) = Ac(q,r,rp)

for A> 0. Now instead of defining a UMC function,
implicitly define a minimum cost function represent-
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ing combinations of input prices, r’{ and r’j, for
which the minimum cost of producing output level q
is some arbitrary positive value k, i.e.

(AS5) c(q,r’{,r’’y) = k.

By homogeneity of degree one in input prices, it is then
possible to write

(A6) c(q,r’i/k,r’4/k) = 1 = c(q,r,1,)

where r; = r/{//k and r, = r’t/k are prices on the
UMC curve. Thus, once the points on the UMC curve
for given output level q are known, the points on the
minimum cost for any other cost level k, with output
level q, can be found by scaling as r’{ = kr, and r’}
= kr,. In other words, once you know the UMC
curve, you know all of the minimum cost curves.
In Figure 2, the isoquant implicitly defined by
h(z;,z;) = q and the unit cost function implicitly

Z,

Unit circle
73+ 7%=1
isoquant

q= h(Zl :Zz)

C E Z,

Figure 2. Duality Between the Cost Function and Pro-
duction Function.

6The “isocost curve in input prices space” should not be confused
with the more familiar isocost curve defined by a “capital constraint”
in input quantity space whose tangency with an isoquant identifies
the point of minimum cost production. To clearly distinguish bet-
ween these entirely different concepts, we use the term “budget line”
in this paper to refer to the isocost curve in input space and reserve
the term “isocost curve” for the input-price space concept.



defined by f(4q,z;,z;) = 1 are sketched where the
horizontal and vertical axes are used interchangeably
for the amount of factor inputs X, and X,, and in-
put price levels r, and r, (z, and z, act as dummy
arguments in the production and cost functions). The
units of measurement for (r,,r,,X,,X,) are chosen to
relate to the z, and z, axes in such a way that the
UMC isocost curve lies below the associated isoquant
as well as to allow the unit circle to be drawn as in
Figure 2. In the figure, let line £ be tangent to the iso-
quant at point P and the line OM be at a right angle
to the line ¢ at point M. Let r’{ and r’4 be input prices
such that the price ratio T = r/{/r’4 is equal to the
absolute slope of the line . Then recalling the familiar
graphical cost minimizing condition that the budget
line should be tangent to the isoquant, the equation
for the line £ can be written as
(AT iz, + r'4z, = c(q,r'{,r'y)
where c(r{,r’4,q) defines the minimum cost of pro-
ducing output level q given input prices 1’4 and r/4.
Now note that the line OM intersects the UMC
isocost curve at the point R having coordinates
(r,/,ry") = (kr’{,kr’9) for a fixed constant k. In order
to show this, recall that by the similar triangle theorem
(see geometry review in Appendix B) OE/ME =
r’{/r’4, which is the inverse slope of the line OM. The
equation for the line OM can thus be represented by
z, = (r'4/r'))z,, and it is easy to verify by substitu-
tion that all points (z,,z,) = (kr’{,kr’9) for ke[0,1] are
on this line. Since f(q,r’{,r’'y) is homogeneous of
degree one in prices, there exists a value of k, namely
k = (f(q,r’{,r’'y))~!, such that

(A8)  kc(q,r'i,r'y)

c(q,kr’{,kr’)) =c(q,r,’,1,’)
1,

and thus OM intersects the UMC cost curve at
(r//,ry) = (kr’{,kr’%).
Now define the normalized equation for the line £ as

(A9) r”lxz r/éxz
(D2 +@4P% [P+ (5P
@) _ om
[/ + @421

where the last equality results from the fact ihat the
value of c(q,r’{,r’5)/[(t’4)*+ (1'5)?*]"* measures the
distance between line £ and the origin, the distance
clearly being OM.” Recalling that r{=kr’{ and rj
=kr’}, substitution for (r’{,r’'y) in the last equality
above yields
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(A10) OM = f(q,r|/k,r5/K)/ (kM [(r)?+ )4%)
k'f(q,rf,r5)/(k )2+ ()?1)
(by homogeneity)

1/0R

where the last equality results from the fact that (r{)?
+ (r})? = (OR)? by the Pythogorean theorem since
rj = OC and r,’ = RC form the base and height of
the right triangle OCR, and since f(r,,r,/,q) = 1
because r,’ and r,’ are points on the UMC isocost
curve. Thus OM = 1/0R.

The entire analysis can be repeated choosing a dif-
ferent slope for the line £ tangent to the isoquant,
leading to another point identified on the UMC isocost
curve, and so on. Thus, there is a one-to-one cor-
respondence between points on the isoquant and points
on the UMC isocost curve, and the procedure could
be followed to construct the UMC isocost curve (and
implicitly all minimum cost curves via the linear
homogeneity property discussed earlier) from
knowledge of the isoquant curve.

In terms of polarity, the above results indicate that
the point R with coordinates (r,’,r,’) on the UMC
isocost curve is the pole of the polar line ¢ with respect
to the unit circle (z,2 + z,2 = 1) centered at the origin
(see geometry review in appendix). Since the choice of
the slope of line ¢ was arbitrary, it is clear that the
UMC cost curve defined by f(r,,r,,q) = 1 is the locus
of the poles of all polar lines, such as ¢, tangent to
the isoquant defined by q = h(z,,z,) and defined by
all input-price ratios A = r,/r,. Thus, a dual relation-
ship is demonstrated between isoquants and isocost
curves, and knowledge of isoquants implies knowledge
of isocost.

The entire approach described above can be repeated
interchanging the roles of the isoquant and the UMC
isocost curve to show that the isoquant curve can be
constructed from knowledge of the UMC isocost
curve. In terms of the polarity concept, it can be shown
that the isoquant defined by q = h(X,,X,) is the
locus of the poles of all polar lines tangent to the UMC
curve and defined by all choices of input ratios T =
X,/X,. The isoquant defined by q = h(X,X,) and
the UMC isocost curve defined by f(q,r,,r,) = 1 are
thus polar reciprocal curves, and knowledge of isocost
curves implies knowledge of the production
technology.

7Assuming a linear function such as ax+by = c, the normalized
equation is written as

bx c

(_a2 +_b$“ (a2 +b2)” B (a2 +b2)%:, and the absolute value of the
RHS term measures the distance from the origin to the line (see Stein,
p. 727).

ax +




APPENDIX B: A REVIEW OF SOME CONCEPTS IN GEOMETRY

Similar Triangles Theorem

Let the two triangles AOB and OME (Figure Al)
be similar triangles. Then, OE/ME = OA/OB, and
since the equation for line AB is

P1X1+P2X2=C, implying OB = §Z/P1 and OA =
C/P,, Then,
OE/ME = P,/P,

7

X]

A
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Figure A-1. Similar Triangles
M
P’ (Pole)

A

Polarity

As a definition of the polarity concept, let O(r) be
a circle of radius r and P be any point outside O(r)
(Figure A2). Then P’ is defined to be the inverse of
P and vice versa. The line MN is called the polar of
P for circle O(r). If we draw a line perpendicular to
OP'P at the point P, this line (a) is called the polar
of P/ and P’ is the pole of the polar (a).

Based on the polarity concept the polarity theorem
will be stated and proved. However, before proving
the polarity theorem, two other relevant theorems
from geometry, the Pythagorean Theorem and the
Chord-Secant Theorem will be stated for use in the
proof of the polarity theorem.

Pythagorean Theorem

In any triangle where one of the three angles is 90
degrees, the sum of the squared lengths of the two legs
is equal to the hypotenuse squared, and conversely if
the sum of the squared lengths of the two legs is equal
to the hypotenuse squared then the triangle is a right
triangle. This theorem can be illustrated by referring
to Figure A3. In this figure, AB is the hypotenuse, CA
and CB are the two legs. This theorem says that
(AB)? = (AC)? + (CB)? (for proof see Kay, 1969, p.
173).

90°

Figure A-3.Right Triangle

(a) (Polar)

Figure A-2.Polarity
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Chord-Secant Theorem

The Chord-Secant Theorem applies to a circle of
radius r and a point, such as P, outside the circle
(Figure A4). If a line goes through the point P and
intersects the circle at two points A and B, then in
magnitude and in sign PA - PB = (PO)? —r? (for
proof see Kay, 1969, pp. 231-232).

Also, if PT is tangent to the circle in Figure A4, then
(PT)? + r2 = (PO)? and the triangle PTO is a right
triangle. Proof: Follows from Chord-Secant theorem
upon recognizing that PA - PB = PT.

—

A

90°
Figure A-4. Chord Secant ~ T

Polarity Theorem

A line PDO (Figure AS) intersecting a circle having
a radius of one and going through the center of the
circle, point 0, has distance from point D to the center
of the circle equal to 1/0P.

Proof: In Figure A3, D is the pole of the line (a) and

r (radius of the circle) is one. OTP is a right angle,
because PT is tangent to the circle and OT is a radius
of a circle which is drawn from 0 (center) to the point
of tangency (see Chord-Secant Theorem and its cor-
ollary).

Now by the Pythagorean theorem, we know that

(OP)2 = (OT)* + (TP)?
and
(OD)2 = (OT)? — (TD)?,

so that (OP)2-(OD)? = (OT)* + (TP)XOT)?
— (TD)(OT)? + (TP)?
= (OT)*+(TP)X(OT)?
— (TD)XOP)>.

Noting that the area of triangle OTP can be written

equivalently as either OT-TP/2 or TD-OP/2, we have

that (OT)%(TP)2 = (TD)%(OP)?, in which case

substitution for (TD)%(OP)? above results in
(OP)?-(OD)* = (OT)*

or

OP-OD = (OT)%.

Since OT = 1 because the radius of the circle is 1, we
finally have that OD = 1/0P.

(@)

Figure A-5. Pole and polar with the circle having radius one.
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