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Rural-Urban Divide in County Level Patent Applications 

 

1. Introduction 

Innovation is central to economic competitiveness. A large body of literature has identified and 

analyzed economic and non-economic factors driving innovation, and variations in innovation-

related outputs across time and regions. Population densities, critical mass of educated 

employees, research and development (R&D) expenditures by universities and private industries, 

innovation and communication infrastructure, and network externalities are all drivers of 

regional innovation (Artz et al., 2016; Guimaraes, 2015; Lee et al., 2010; Adelaja et al., 2009; 

Carlino et al., 2007; Barkley et al., 2006; Andersson et al., 2005; Audretsch & Feldman, 2004; 

Acs et al., 2002; Cooke et al., 2002; Anselin et al., 1997). Most innovation studies focus on big 

cities and metropolitan regions, and their roles in economic growth as they draw on the idea that 

innovation is primarily an urban phenomenon (Florida et al., 2016; Carlino et al., 2007; Acs et 

al., 2002; Feldman and Audretsch, 1999; Glaeser et al., 1992, 1995, 2010). This idea is based on 

the theoretical argument that urban regions are conducive to innovation due to their tendency to 

generate higher network externalities and knowledge spillovers, i.e., the agglomeration effect 

(Carlino et al., 2001, 2007).  Less studied are drivers of innovation in nonmetropolitan and rural 

areas. However, most empirical regional studies comparing rural innovation with that in urban 

areas conclude that that rural America lags in its innovation performance when compared to its 

metropolitan counterpart (Wojan et al., 2015; Zheng and Ejermo, 2015; Orlando and Verba, 

2005; Porter et al., 2004). 

At the same time, rural economies in the US continue to change with mixed results, for example 

from industrialization of agriculture, improved communication infrastructure, suburbanization 

and associated spillovers, immigration, and public policies promoting rural innovation and 
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entrepreneurship (Woods, 2013; Kilkenny, 2010; Barkley et al., 2006; Porter et al., 2004; 

Atkinson, 2004). Increased globalization provides extended market opportunities to all regions, 

whether rural or urban, and reduces rural market constraints arising from low population 

densities (Woods, 2013). However, rural regions face globalization challenges which are 

illustrated by the observation of Munchin et al. (2003, p.3).  

“… for myriad reasons, both economic and demographic in nature, rural areas have been 

seriously challenged by this shift, one that relocates the source of competitive advantage to now 

being primarily a function of knowledge; it is today commonplace to refer to industries 

competing in a knowledge-based economy”. 

Innovation-led competitiveness fuels the economic growth in today’s knowledge-based 

economies and regions emerge as units of innovation organization (Florida et al., 2016). Further, 

innovation is driven by a host of regional characteristics. While urban regions benefit from 

positive information/network externalities due the proximity of like firms and other resources 

(Carlino et al., 2007; Jaffe et al., 1993; Lucas, 1988), negative externalities due to congestion and 

scarcity of land accrue as more people migrate to these areas to exploit the positive externalities 

(Atkinson, 2004 and Porter et al., 2004). On the other hand, rural regions may provide 

opportunities to reduce some of these negative urban externalities by offering large open spaces 

and to reinforce positive externalities, such as rural areas adjacent to urban centers supplying 

labor. Thus, urban and rural regions are inter-dependent sharing positive and negative 

externalities to innovation (Dabson, 2007, 2011).  Several empirical studies conducted at state 

and metropolitan levels suggest that innovation occurs less frequently in rural areas than in urban 

areas (Packalan, 2015; Crescenzi and Rodriguez-Pose, 2013; Carlino et al., 2007; Ohuallachain, 

2005, 1999; Akai and Sakata, 2002; Acs et al., 2002; Anselin et al., 1997; Feldman and florida, 
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1994; Jaffe, 1989).   Barkley et al. (2006) conducted a county level analysis of the nonmetro area 

of the US Midwest and found that innovation occurs more frequently in the counties that are 

proximate to the urban areas.  

In this study, we empirically explore the urban-rural gap in innovative activity and the factors 

creating the gap. We define innovative activity as the utility patent applications per capita at 

county level in the US. We incorporate a wide range of factors affecting regional innovation 

potential, including human capital, R&D capital, industrial specialization, communication 

infrastructure, and other economic and demographic factors. Recognition of the count nature of 

the patents data has been limited to firm and industry level studies in the innovation literature. To 

take this into account at regional level, we use negative binomial regression model. Using a 

panel data on 2,847 US counties between 2009 and 2013, we test the potential gap in rural-urban 

patenting based on a random effects negative-binomial regression model with only the main 

effects of the independent variables. To test the factors that contribute to the gap, we interact the 

independent variables found to affect the county-level patenting with the three-category rural-

urban location indicator.  

Our research builds on the theoretical concept of a “regional knowledge production function” 

developed by Griliches (1990) for the analysis of effects of R&D expenditures on firm-level 

innovation and adapted by Jaffe (1989) for the analysis of the knowledge spillover across 

innovating regions. Econometrically, we analyze patent application counts using the panel 

regression techniques developed by Hausman et al. (1984) and apply the random effects negative 

binomial modeling to the county level of observation, as fixed effects Poisson and negative 

binomial models were not suitable for our sample. Our analysis supports prior studies that found 

urban counties have higher patent frequencies than the rural area, both the metro-adjacent rural 
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counties (non-metro counties adjacent to metro area) and remote rural counties (non-metro 

counties not adjacent to metro area). We find that rural counties patent less frequently than the 

metro counties (remote rural counties 75% less and metro-adjacent counties 84%1 less) but the 

difference in patenting rates between metro-adjacent rural and remote rural counties is not 

statistically significant.  Our other findings show that variables such as university expenditures, 

share of high-tech establishments, high-tech variety, share of information industry employment, 

and ethnic diversity are associated with the increasing patenting gap between the urban and rural 

(both metro-adjacent and remote) counties. However, higher level of high-tech industry 

specialization and share of agricultural employment2 are associated with the reduced gap in 

patenting rates between urban and remote rural counties. These results suggest that policies 

focused on development of the clusters of high-tech industries and promotion of agricultural 

firms and industries to exploit the unutilized business potential in remote rural areas are likely to 

lead to increased innovation activities in these areas and to more equitable regional economic 

growth.  

What follows is a brief review of the literature on innovation and patents as its measure, rural-

urban differences in innovation, and the regional characteristics that affect innovation. We 

develop our conceptual and empirical models, and describe the data and estimation methods in 

section three. In section four, we present and discuss our findings. Section six concludes with our 

discussion of potential policy implications and areas for further study.

                                                 
1 The difference in patenting frequencies between metro-adjacent rural counties and metro counties is statistically 

significant only at 10% level. But the difference between remote rural and metro counties is significant at 5% level. 
2 The role of higher share of agricultural employment in reducing the gap between the urban and remote rural 

counties is statistically significant for the counties where agriculture industry provides less than 16% of the total 

jobs. 



 

 

2. Review of Patenting and Regional Innovation and Related Factors 

Innovation is an undisputed source of economic growth and regional development as new ideas, 

products, and processes drive regional prosperity (Acs et al., 2002; Feldman and Florida, 2005). 

Intellectual debates arise from the conceptual frameworks treating the role of innovation in 

growth. Neoclassical frameworks beginning with Solow’s (1957) work attribute an exogenous 

role to the innovation. However, the endogenous growth framework following Arrow’s (1962) 

work endogenize innovation and explains that growth sustains itself due to the continuous 

pursuits of economic agents, such as firms and industries, to create something new either in the 

form of improvement in existing quality or the development of completely new products, output 

markets, new sources of production, and new methods of production and organization (Cameron, 

1996; Mann and Shideler, 2015). In the empirical literature, researchers have been facing the 

unresolved problem regarding the measurement of innovation (Acs et al., 2002; Cameron, 1996). 

However, patents are the most frequently used measures of innovation because the data are 

readily available and they continue to provide a reliable measure of regional innovation relative 

to other measures (Acs et al., 2002; Griliches, 1990). 

Patent statistics have been used in the literature to understand their association both with the 

economic growth indicators and different innovation inputs. In one of the earliest empirical 

applications of the patent statistics, Scherer (1965a, 1965b) used a cross section of 448 US 

companies on Fortune’s list during 1955-1959 to explain the profit growth of the firms in terms 

of their inventive output, number of annual patents issued to them, and vice versa. After 

controlling their size, industrial structure, and R&D spending, he found that the firms’ patenting 

increased their profits and vice versa. Up until the 1990s, most studies that used patents were 

focused on firm or industrial level observations (Sincera; 1997, Griliches, 1990; Bound et al., 
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1984, Hall et al., 1984; Hausman et al., 1984; Pakes and Griliches, 1980). However, Florida 

(2016) suggests that regions (and cities) are appropriate units of analysis for studying innovation. 

He points out that firms and industry level analyses may overlook inputs such as knowledge 

spillovers and other potential benefits from agglomeration economies that can only been 

considered at the region level view. 

At the regional level of analysis, most of the studies on innovation are conducted at the state 

level of observation (Ohuallachain, 2005; Akai and Sakata, 2002; Feldman and florida, 1994; 

Jaffe; 1989), metropolitan (Packalan, 2015; Crescenzi and Rodriguez-Pose, 2013; Carlino et al., 

2007; Acs et al., 2002; Ohuallachain, 1999; Anselin et al., 1997; Jaffe, 1989), and labor market 

area (Niebuhr, 2010; Andersson et al., 2005) levels.  Based on the conceptual idea of knowledge 

production function that relates patent output with R&D and human capital as its knowledge 

inputs, these studies also include various other regional factors that enhance the productivity of 

the knowledge inputs through knowledge spillover effects. The common findings of these studies 

suggest that R&D and human capital investments are concentrated in urban areas due to the 

presence of knowledge externalities generated in the presence of denser populations, 

entrepreneurs, and businesses.   

Innovation studies conducted with higher level of regional aggregation such as state and 

metropolitan areas as their units of analysis “inevitably obscure the spatial (innovation) processes 

that occur within a region or across its regional boundaries” (Feldman and Florida, 1994, p. 216). 

Thus, the top performing members of a regional unit potentially dominate the innovation 

performance of other members. In fact, the US counties, whether be metropolitan or 

nonmetropolitan, are heterogeneous in terms of their innovation and related geographical 

characteristics (Castle et al., 2011, 1995; McGranahan et al., 2011; Henderson and Abraham, 
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2004; Porter et al., 2004). County level analyses have been conducted to examine the association 

of patenting (Monchuk and Miranowski, 2010; Adelaja, 2009; Feser and Isserman, 2006) and 

innovative entrepreneurship (Low et al., 2013; McGranahan et al., 2011; Henderson and Weiler, 

2010; Henderson and executive, 2007) with regional economic growth. Findings show positive 

association between the level of innovative activities, measured by patenting and 

entrepreneurship, and county regional growth during two decades after 1990.  Some of these 

studies examining the role of the proximity factor on the county level growth have found that the 

spillover of growth benefits arising from entrepreneurship and innovation are stronger in 

counties that have denser population and are (more) proximate to metro counties than in distant 

counties (Stephens et al., 2013; Henderson and Weiler, 2010; Monchuk and Miranowski, 2010; 

Henderson and Executive, 2007; Feser and Isserman, 2006). However, other analyses at the 

county level found negative (Young et al., 2014) or no significant association between patenting 

and county level growth (Stephens et al., 2013). 

Only a very few other researchers have studied county level patenting activity considering both 

urban and rural patent outputs and various regional characteristics including skilled and educated 

workforce, R&D expenditure, technological infrastructures, entrepreneurial environment, and 

socio-economic environment that that determine the differential outputs. Using Knowledge 

Production Framework (KPF), Zheng and Slaper (2016) estimate that industry and university 

R&D, human capital and venture capital inputs are positively associated with patent outputs 

across US counties between 2009 and 2011. Barkley et al. (2006) summarize patents data to 

illustrate that rural (non-metro) counties in the southern USA witnessed less innovative activities 

than the urban (metro) counties during 1990-1999. They also report that proximity of a non-

metro county to a metro county did not result in significantly increasing patenting. However, 
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after controlling several county and regional characteristics including education and skills of the 

labor force, structure and diversity of local economy, high-tech industry employment, patenting 

in the neighboring counties, and the proportion of large and small firms in corresponding LMA 

of a county, they found significantly positive association of proximity.  

Henderson and Abraham (2004) identified higher population density as the key factor essential 

to supporting knowledge-based activities in rural America. Using the 1990-2000 data on 3053 

US counties, they found that rural counties lagged the urban counties in terms of concentration of 

high knowledge occupations that contributed to a widening of the innovation gap.  Among the 

2,246 rural counties, high knowledge occupations were concentrated more in rural places having 

larger towns or higher population densities. They did not find significant correlation between the 

rural counties’ proximity to the metropolitan area and their concentration of high-knowledge 

occupations, indicating that remoteness is a less formidable challenge in the development of 

knowledge-based rural economies. 

Monchuk (2003) conducted a US county level analysis in the US Midwest and found that the 

sum of a county’s patent applications during the period was positively associated with its average 

percent of population with college graduates, average per capita personal income, and proximity 

to metro regions. While these relationships held for sub-samples with intervals of five-year 

periods, prior period patenting had a positive association with current period patenting. Other 

literature also shows that American counties that are urbanized or proximate to the urban 

counties fare better in terms of benefits from economic growth (Stephens et al., 2013; 

McGranahan et al., 2011; Monchuk and Miranowski, 2010; Higgins et al., 2009; Henderson and 

Executive, 2007; Henderson and Weiler, 2007; Feser and Isserman, 2006; Henderson and 

Abraham, 2004; Monchuk, 2003;).  
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Our research contributes to the literature in fours ways. First, it is a county level analysis in the 

contiguous US, and not isolated to a specific region in the US. Second, it examines the rural-

urban divide in terms of patenting and the regional factors that differentially affect the rural and 

urban patenting. Third, the examination considers recent data, during the period 2009-13, and 

examines if there exists rural-urban divide in patenting by controlling several local regional 

characteristics related to entrepreneurship, innovation, and growth. Fourth, this study applies 

count models used to analyze firm level innovation to the county level of analysis. 

3. Research Design  

The concept of KPF (Knowledge Production Function) that was introduced by Griliches (1979) 

provides useful framework for understanding innovation as the product of various resource 

inputs that are allocated toward generation of economic knowledge. Incumbent firms engage in 

their pursuit of new economic knowledge that is crucial for innovation. R&D expenditures serves 

as one of the key inputs that generates new economic knowledge. Patents serve as the output of 

the knowledge production function and a reasonable proxy for innovation (Griliches, 1990 and 

Czarnitzki et al., 2009). In his pioneering work, Jaffe (1989) applied the KPF to study regional 

innovation and knowledge spillovers by shifting the units of observation from firms to the 

geographic entities. The Griliches-Jaffe KPF has been widely applied in a large number of 

empirical studies on regional innovation and knowledge spillovers and is popular in the regional 

literature as regional knowledge production function, RKPF (see Charlot et al., 2015. Although 

the large body of literature has focused on the role of various R&D capital inputs in regional 

innovation and knowledge spillovers, several studies have extended the RKPF to include the 

region-specific factors such as human capital and socio-economic and demographic factors that 

influence the regional innovative output (Charlot et al., 2015, Bluesa et al., 2010; Ponds et al., 
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2010, and Varga, 2000). The extended model of RKPF that takes into the factors such as human 

capital and several regional conditions that give rise to regional differences in innovation can be 

represented as  

𝐾 = 𝑓(𝑹𝑫𝑲, 𝐻𝐾, 𝒛 )                          (1)     

where new economic knowledge, K, is the product of regional innovation process generated by 

the R&D capital inputs, RDK, and human capital inputs, HK, that are conditioned by several 

region-specific characteristics, z.  

We test the rural-urban differences in innovation under the extended RKPF framework by 

estimating the average number of annual utility patents produced by rural and urban US counties 

after controlling the innovative inputs in (1), county level regional characteristics, and the state 

level fixed effects. To identify the potential factors that explain the regional differences in 

innovation, we interact the independent variables found to affect the county-level patenting with 

the three-category rural-urban regional indicator.  

3.1 Data  

This study uses longitudinal data on 2,847 counties located in 48 contiguous states of the USA 

excluding District of Columbia between 2009 and 2013. The data come from secondary sources 

including, United States Patent and Trademark Office (USPTO), Community Business Patterns 

(CBP), American Community Survey (ACS) and Current Population Survey (CPS) under the US 

Census Bureau, US Bureau of Economic Analysis (BEA), Economic Research Service (ERS) 

and Census of Agriculture under the US Department of Agriculture (USDA), Small Business 

Innovation Research (SBIR), and National Science Foundation (NSF).  
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Table 1 provides the definition of the variables and their data sources. The number of the 

domestic utility patent applications at county level for the post-recession period between 2009 

and 2013 serves as the dependent variable and as our measure of the rate of innovation in the US 

counties. We aggregated the patent applications originating from residential zip codes of the 

primary inventors to derive the county level patent applications. The details on the various 

sources of USPTO data, HUD USPS zip-to-county crosswalk and the aggregation process are 

included in appendix A2.  

Table 1: Definition of Variables and Data Source 

Variables Definition a Source Year 

Patent Applications Per 

Capita  

Number of annual utility domestic patent 

applications per 10k population in the US 
USPTO 2009-13  

University R&D University R&D expenditures  NSF 2006-13 

Spatially Lagged 

University R&D 

University R&D expenditures in the 

neighboring counties within 100-mile radius 
  

Business R&D 
State level R&D expenditures by private 

businesses 
NSF 2009-13 

SBIR awards 
Amount of innovation research awards to small 

businesses 
SBIR 2009-13 

Percent Bachelor Plus 

(Human Capital) 

Share of bachelor or higher degree holders in 

total population 25 years and over  

Census 

Bureau (ACS) 
2009-13 

Ethnic Diversity 
Herfindahl-Hirschman Index of racial mix in 

the population 

Census 

Bureau (ACS) 
2009-13 

Personal Income Per 

Capita  
Per capita personal income  BEA 2009-13 

Percent Foreign-born 

Population 

Share of “naturalized US citizens” and “not US 

citizens” in total population 

Census 

Bureau (ACS) 
2009-13 

Percent Agricultural 

Employment 

Share of civilian population 16 years and over 

employed in agriculture, forestry, fishing and 

hunting, and mining industries 

Census 

Bureau (ACS) 
2009-13 

Percent Manufacturing 

Employment 

Share of civilian population 16 years and over 

employed in ‘manufacturing’ industries 

Census 

Bureau (ACS) 
2009-13 

Percent Information 

Employment 

Share of civilian population 16 years and over 

employed in ‘information’ industries 

Census 

Bureau (ACS) 
2009-13 
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Percent Financial 

Employment 

Share of civilian population 16 years and over 

employed in ‘financial’ industries 

Census 

Bureau (ACS) 
2009-13 

Percent Professional 

Employment 

Share of civilian population 16 years and over 

employed in ‘professional’ industries 

Census 

Bureau (ACS) 
2009-13 

Establishment Size 
Average number of employees per business 

establishment 

Census 

Bureau (CBP) 
2009-13 

Industrial 

Specialization 

Herfindahl-Hirschman Index of the mix of 

business establishments by two and three-digit 

NAICS 

Census 

Bureau (CBP) 
2009-13 

Percent High-tech 

Establishments 

Share of high-tech in total business 

establishments 

Census 

Bureau (CBP) 
2009-13 

High-tech Variety 
Number of three-digit NAICs for high-tech 

industry categories 

Census 

Bureau (CBP) 
2009-13 

Percent Net Business 

Formation 

Net change in the number of business 

establishments as percent of previous year 

Census 

Bureau (CBP) 
2009-13 

Percent net Job 

Creation 

Net change in number of jobs as percent of 

previous year 

Census 

Bureau (CBP) 
2009-13 

High-speed internet 

access 

Number of households out of 1,000 households 

having high-speed internet  

Census 

Bureau (CPS) 
2009-13 

County classification  
Metro, metro-adjacent rural, and remote rural 

classification  
USDA (ERS) 2013 

aDetailed discussion about the variables used in the analysis is provided in the empirical model section.  

The university R&D expenditure data from NSF are available at city level. we matched the 

university cities with their associated counties. For example, if either a county does not have any 

city with college or university or the present college(s) or university(ies) do not spend in R&D 

activities, we assume in this study that the county has zero university R&D. To account for the 

fact that expenditure on a university research project is likely to be a continuous process, we 

follow Hausman et al. (1984) and control past annual university R&D expenditures by using 

three-time lags of the variable. For example, the R&D in 2010, 2011, and 2012 correspond to the 

three lags of the observation for 2013 and the R&D in 2006, 2007, and 2008 correspond to the 

lags of the observation for 2009. Additionally, we account the spillover effects of the university 
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R&D from the counties hosting the university/colleges to their neighboring counties by deriving 

a spatially lagged university R&D variable based on a distance decay function within 100 miles 

from the county centroids. More detail on the derivation of the spatial lags is included in the 

appendix (A2). We use the NSF data on the state level R&D expenditures by the private 

businesses because the data are not available at county level.  

The data on the households with high-speed internet access come from Current Population 

Survey of the Census Bureau in five ordinal scales with intervals of 200 for a block of 1,000 

households. For example, a county is assigned with a category 1 if it has less than 200 

households in 1,000 are connected with high-speed internet, 2 if 200 to 400, and so on with 5 if 

more than 800. In our regression analysis, we categorize the counties into two categories – the 

counties with more than 800 out of one thousand households having high-speed internet and the 

remaining counties, where we term the former category as “high internet access”. 

We retrieved the firms-related data including the share and variety of high-tech industries from 

US Census Bureau’s Community Business Patterns (CBP). The number of total business 

establishments were derived by summing it at the three-digit level of industry codes across the 

2012 North American Industry Classification System (NAICS), 2012.  We derived the number of 

high-tech establishments by summing at the six-digit level of industry codes across the 2012 

NAICS codes that constitute high-tech industries, as defined by NSF. The data on the share 

foreign-born population, higher education, and civilian employment in agricultural, 

manufacturing, information, financial and professional service industries3 come from the five-

                                                 
3 ACS surveys 295,000 households randomly each year and no household is repeated in five years and reports the estimates from 

data collected in five years.  

https://www.census.gov/content/dam/Census/programs-surveys/acs/about/ACS_Information_Guide.pdf 
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year estimates for 2013 of American Community Survey (ACS). We combine the population of 

“naturalized US citizen” and “not a US citizen” to derive the foreign-born population variable.  

To derive the industrial specialization, we follow Carlino et al. (2007) and derive the Herfindahl-

Hirschman Index of the mix of business establishments corresponding to two and three-digit 

level NAICS industries using the CBP data as follows:  

𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 𝑆𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑠𝑖𝑛𝑡
2

𝑁𝑖

𝑛=1

 

where  𝑠𝑖𝑛𝑡 is the share of establishments under two and three-digit level NAICS industry n in 

region i in year t. Higher value of the index represents higher ethnic diversity. The higher index 

value represents the presence of more specialized industries and lower value represents more 

diversified industries. 

The ethnic diversity variable was derived as Herfindahl-Hirschman Index following Rupasingha 

et al. (2002) and using ACS population mix data as: 

𝐸𝑡ℎ𝑛𝑖𝑐 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = 1 − ∑ 𝑠𝑖𝑛𝑡
2

𝑁𝑖

𝑛=1

 

where  𝑠𝑖𝑛𝑡 is the share of population with race n in total population of region i in year t; 𝑁𝑖 =

{𝐵𝑙𝑎𝑐𝑘,𝑊ℎ𝑖𝑡𝑒, 𝐴𝑠𝑖𝑎𝑛 𝑎𝑛𝑑 𝑃𝑎𝑐𝑖𝑓𝑖𝑐 𝐼𝑠𝑙𝑎𝑛𝑑𝑒𝑟, 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 𝐼𝑛𝑑𝑖𝑎𝑛, 𝑎𝑛𝑑 𝑜𝑡ℎ𝑒𝑟}. Higher value of 

the index represents higher ethnic diversity. 

In our attempt to proxy the entrepreneurship with start-up businesses, we derived the percent 

change in the number of establishments and employments from previous year using CBP data. 

Our measure essentially represents the net change (number of new establishments less number of 
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deaths of existing establishments) because we do not have the data at county level on the 

business death rates. 

We classify counties by combining the codes in Rural-Urban Continuum Codes (RUCC), 2013 

developed by ERS unit of USDA4. Codes 1, 2, and 3 combined form the metropolitan counties, 

4, 6, and 8 the non-metro counties adjacent to metro areas, and 5, 7, and 9 the non-metro 

counties not adjacent to metro areas5. For the analysis in this study, we consider metro counties 

as “urban”, non-metro counties adjacent to metro area(s) as “metro-adjacent rural”, and non-

metro counties not adjacent to metro areas as “remote rural”. 

3.2 Empirical Model and Econometric Estimation 

We denote the number of annual patent grants to a county i in year t by  𝑃𝑖𝑡 . To account for the 

count nature of the patents data, we first start with an assumption that 𝑦𝑖𝑡~𝑃[µ𝑖𝑡 = 𝛼𝑖𝜆𝑖𝑡].  That 

is, patent applications by each county is drawn from a Poisson distribution with parameter µ𝑖𝑡, 

which varies across both counties and years. The probability that 𝑃𝑖𝑡 = 𝑐 is given by 

         𝑓(p; µ) =  Pr(𝑃𝑖𝑡 = 𝑐) =
μ𝑖𝑡 

𝑐 𝑒μ𝑖𝑡

𝑐!
  ;   i =  1 to 2847, t =  2009,… , 2013  

                                                                                         and 𝑐 = 1, 2, 3, …                      (2)  

                                                 
4 We accessed 2013 RUCC from 

https://www.ers.usda.gov/data-products/rural-urban-continuum-codes.aspx 

 
5 Metro areas include all counties containing one or more urbanized areas: high-density urban areas containing 50,000 people or 

more; metro areas also include outlying counties that are economically tied to the central counties, as measured by the share of 

workers commuting on daily basis to the central counties. Non-metro counties are outside the boundaries of metro areas and have 

no cities with 50,000 residents or more 
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We specify our Poisson regression models with multiplicative county specific term 𝛼𝑖  

representing county-level heterogeneity, say, in terms of propensity to patent and exponential 

mean function 𝜆𝑖𝑡 = exp (𝑿′𝑖𝑡𝜷). As a result, our Poisson regression specification becomes 

          log(µ𝑖𝑡) =  𝛼𝑖  + 𝑿′𝑖𝑡𝜷 + 𝑢𝑖𝑡                        (3)            

where Xit  represents the vector of time-varying predictor variables,  𝛼𝑖 represents unobserved 

county-specific effects, and 𝑢𝑖𝑡 is the disturbance term. 

The Poisson log-likelihood are obtained by transforming the probability function (1) “for which 

the parameters are estimated to make the given data most likely” (Hilbe, 2011 p.80) as 

         ℒ(µ; 𝑝) = ∑ ∑ [𝑃𝑖𝑡(𝑿′𝑖𝑡𝜷 + 𝛼𝑖) − exp (𝑿′
𝑖𝑡𝜷 + 𝛼𝑖 − lnΓ(𝑃𝑖𝑡 + 1)Γ(𝑃𝑖𝑡 + 1)]𝑛𝑖

𝑡=1
𝑛
𝑖=1         (4)       

where lnΓ( ) is the log-gamma function.   

There are two different approaches that differ in terms of how they address the individual 

heterogeneity in maximizing the log-likelihood function (3) and estimating the parameters. Fixed 

effects (FE) estimators assume separate county-specific unobserved parameters, 𝛼𝑖’s, for each 

county and these parameters can be correlated with the observed predictor variables Xit. Standard 

(unconditional) fixed effects estimators using the maximum likelihood estimation method are 

likely to be inconsistent in regression models with short panels (Cameron and Trivedi, 1998). A 

very widely used strategy following Hausman et al. (1984) avoids the inconsistency due to the 

correlation by eliminating 𝛼𝑖 from the equation (4) by means of conditioning on the sum of 

patents ∑ 𝑃𝑖𝑡
𝑇
𝑡=1 .  Thus, they are known as conditional FE Poisson estimators. On the other hand, 

random effect (RE) models assume that 𝛼𝑖’s are iid and not correlated with the observed 

predictors. The RE models incorporate 𝛼𝑖’s into the error term and estimate the resulting model   
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         log(µ𝑖𝑡) =  𝑿′𝑖𝑡𝜷 + 𝑣𝑖𝑡                        where   𝑣𝑖𝑡 = (𝛼𝑖 + 𝑢𝑖𝑡)                                 (5) 

Conditional FE Poisson models are estimated by maximizing the conditional log-likelihood 

function in which the individual effects are eliminated (Hausman et al., 1984, Hilbe, 2011)   

       ℒ(𝛽; 𝑃) = ∑ [
𝑙𝑛Γ(∑ 𝑃𝑖𝑡

𝑛𝑖
𝑡=𝑖 + 1) −

∑ 𝑙𝑛Γ(𝑃𝑖𝑡 + 1) + ∑ (𝑃𝑖𝑡 (𝑿
′
𝑖𝑡𝜷) − 𝑙𝑛 ∑ exp(𝑿′

𝑖𝑡𝜷)𝑛𝑖
𝑙 )

𝑛𝑖
𝑡=𝑖

𝑛𝑖
𝑡=𝑖

]𝑛
𝑖=1          (6)  

However, the log-likelihood of the RE model 5 takes a different form based on the assumption 

about the distribution of the individual-specific effects. We assume that 𝛼𝑖’s are drawn from a 

gamma distribution with each county panel independent of the others. The log-likelihood of the 

RE model becomes (see Hausman et al., 1984 and Hilbe, 2011 for derivation)  

       ℒ(𝛽; 𝑃) =  ∑ [
𝑙𝑛Γ(𝜃 + ∑ 𝑃𝑖𝑡

𝑛𝑖
𝑡=𝑖 ) − 𝑙𝑛Γ(𝜃) − 𝑙𝑛Γ(𝑃𝑖𝑡 + 1) + 𝜃 ln(𝑢𝑖) + (∑ 𝑃𝑖𝑡

𝑛𝑖
𝑡=1 )

ln(1 − 𝑢𝑖) − (∑ 𝑃𝑖𝑡
𝑛𝑖
𝑡=𝑖 ) ln(∑ exp(𝑿′

𝑖𝑡𝜷)𝑛𝑖
𝑡=𝑖 ) + ∑ 𝑃𝑖𝑡 (𝑿

′
𝑖𝑡𝜷)𝑛𝑖

𝑡=𝑖

]𝑛
𝑖=1      (7)   

where 𝜃 is the variance of the gamma distribution of 𝛼𝑖 and 𝑢𝑖 = (𝜃
(𝜃 + ∑ (𝑒𝑥𝑝(𝑿′

𝑖𝑡𝜷))
𝑛𝑖

𝑡=𝑖 )⁄ ). 

Poisson RE model 5 is estimated by maximizing the log-likelihood function (7). 

In Poisson models, the conditional mean and variance of each observation of patent count are 

restricted to be equal. That is, (𝑃𝑖𝑡) = 𝑣𝑎𝑟(𝑃𝑖𝑡) = 𝜆𝑖𝑡. When this restriction is violated in the 

counting process, the estimated results do not become useful for making inferences.  In fact, in 

most of the cases count data are over dispersed due to the positive correlation among the 

outcomes of the response variable, the excess variation among the outcomes and the assumptions 

about the data distribution (Hilbe, 2011).  The over dispersion can be addressed by including 

additional term in the Poisson models that allows variance to exceed the mean. This is achieved 
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by using the models based on Negative Binomial (NB) distributional assumption about the data.  

The log-likelihoods (6) and (7) for the negative binomial models include the dispersion 

parameter. Hausman et al. (1984) developed the fixed-effect version of the negative binomial 

model by allowing the dispersion parameter (variance to mean ratio) in the RE Poisson model to 

grow with the mean and by incorporating conditional fixed effects 𝛼𝑖 along with its possible 

correlation with the independent variables Xit .   

 The conditional FE and RE negative binomial models differ from the models 3 and 5 by 

including an additional parameter that allows the variance to exceed the mean. Additionally, 

unlike the 𝛼𝑖‘s in RE Poisson model 5 following gamma distribution, 𝛼𝑖’s in RE negative 

binomial models are assumed to follow beta distribution. In both conditional FE and RE negative 

binomial models the dispersion parameter is assumed to be constant within the same county over 

the observation period. Its variation across the counties is assumed to be random across counties 

in the RE negative binomial but it can take any value in FE because it is conditioned out of 

likelihood function as shown in Poisson model. The FE models are estimated using conditional 

likelihood method and the RE models using maximum likelihood method.  Regression analysis 

was performed using Stata. Unlike the conditional FE Poisson regressions, conditional FE 

negative binomial regressions provide the estimates of the effects of observed time-invariant 

predictors. So, these models do not serve as “true fixed-effects” models like Poisson models 

(Allison and Waterman, 2002). They suggest estimating the unconditional (with dummy 

variables for the counties) fixed effects negative binomial models. There doesn’t exist any 

theoretical proof of whether the parameter estimates suffer from incidental parameter bias and 

therefore inconsistency. With the help of simulation of a two-time period for 100 individuals and 
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500 samples, they find little evidence of such problem. However, our attempts to run such a 

regression failed due to computational challenges arising from our large dataset.  

In our empirical analysis, application of the fixed effects negative binomial model would leave 

out 41% of the observations corresponding to the counties with zero patents in every year during 

2009-13. Therefore, we estimate of the following empirical extension of model 5  

  log(Pat𝑖𝑡) =  𝒙′𝑖𝑡𝜷 + 𝒛′𝑖𝑡𝜸 + 𝑣𝑖𝑡      where   𝑣𝑖𝑡 = (𝛼𝑖 + 𝑢𝑖𝑡)       (8) 

where Pat𝑖𝑡 , annual utility patent applications, represents the knowledge output K in regional 

knowledge production model 1; 𝒙𝑖𝑡 represents the vector of innovation inputs – county level 

university R&D expenditures and their spatial and time lags, state level private business R&D, 

and human capital; and 𝒛𝑖 represents the vector of regional characteristics and the interaction of 

some relevant characteristics with regions. We hypothesize that the regional patenting depends 

on the levels of university R&D, business innovation awards, population density, industrial 

diversity (both total businesses and high-tech businesses), and sectoral employments (population 

employed in agriculture and manufacturing). Therefore, we form interactions of these variables 

with the regions. The pool of educated population measures human capital (HK) in this study. 

Following Monchuk (2003), we use the share of population 25 years and over with bachelor’s or 

higher degree in county population as a measure of human skills and innovative capabilities 

Regional Characteristics/Controls: We control the regional characteristics at the county level. 

We follow Monchuk and Miranowski (2010), Barkley et al. (2006), Andersson et al. (2005), 

Rupasingha et al. (2002), and Monchuk (2003) for our choice of variables to measure the 

regional characteristics. The county level controls include firm characteristics, 

entrepreneurial/innovative environment, industrial characteristics, and economic and 



20 

 

demographic characteristics. The average size of the business establishments (total employment 

divided by the total number of establishments) represent the firm characteristics at the county 

level.  The range of the number of households with access to the high-speed internet and the 

share of civilian population 16 years and older employed in information sector represent the 

presence of communication infrastructure for innovation. The percent change in number of 

establishments and employments and the shares of employment in financial and professional 

service industries constitute the entrepreneurship environment.  

The industrial specialization, share of high-tech establishments, varieties of high-tech industries 

at three-digit level of NAICs, share of civilian population16 years and older employed in 

agricultural, forestry, fishing and hunting, and mining industries), and share of civilian 

population16 years and older employed in manufacturing industries constitute the industrial 

characteristics at county level.  Following Carlino et al. (2007), we derived the industrial 

specialization variable by calculating the Herfindahl-Hirschman Index (HHI) as the sum of the 

squares of the industry employment shares in counties, at two and three-digit levels in our study. 

The higher index value represents the presence of more specialized industries and lower value 

represents more diversified industries. The similar derivation of HHI for measuring the 

specialization of high-tech industries would not allow us to distinguish between the counties with 

zero employment and those with a completely specialized industry, as several counties in our 

sample have zero high-tech employment. We created a high-tech variety variable that measures 

the number of three-digit level NAICs high-tech industry categories. Ranging in its value from 1 

to 35, this variable essentially represents the concentration of high-tech industries after 

controlling the share of high-tech industries in total industrial employment and avoiding the 
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zero-employment problem. Per capita personal income reflects the regional economic prosperity. 

Ethnic diversity and share of foreign-born population constitute demographic characteristics.   

4. Empirical Results 

4.1 Summary Statistics 

The definitions of the variables summarized in the table 2 come from table 1. The first group of 

independent variables enter the equations 9 and 10 in their natural logarithmic transformation but 

the second group in their level form. A casual look at the patent applications data would reveal 

that metro (urban) counties dominate the rural counties remarkably both in terms of overall 

period average per capita patent applications (table 1) and annual per capita averages (figure 1) 

the adjacent rural counties have higher average patenting rates than the remote rural counties. 

One common observation among three types of counties is that there exists a large deviation 

from average values of per capita patenting and most of the independent variables within each 

group.  

Table 2: Summary Statistics  

Variables 
Combined Metro Adj. Rural Remote Rural 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Dependent Variable         

Patent Applications per 10k 

Population 
2.23 28.59 5.14 45.63 0.55 5.04 0.23 1.60 

Independent Variables (I)         

University R&D ($1M) 21.75 151.67 53.83 239.90 1.58 15.47 1.64 17.42 

Spatially Lagged University 

R&D ($1M) 
22.97 105.41 48.03 164.39 10.79 27.79 2.97 9.92 

SBIR Awards ($1M) 0.66 5.24 1.65 8.31 0.02 0.16 0.05 0.76 

Establishment Size                11.49 4.21 13.28 4.42 11.03 3.40 9.55 3.78 

Per Capita Personal Income            

($1k) 
35.58 9.40 37.83 9.65 32.73 6.74 35.91 10.80 
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Independent Variables (II)         

Percent Bachelor Plus                              

(pct. points) 
8.48 3.48 9.86 3.69 7.11 2.53 8.21 3.46 

Ethnic Diversity 

(Herfindahl_Hirschman Index) 
0.27 0.18 0.32 0.18 0.25 0.18 0.23 0.17 

Industry Specialization                              

(Herfindahl-Hirschman Index) 
0.12 0.06 0.11 0.04 0.12 0.05 0.12 0.08 

Percent High-tech 

Establishments (pct. points) 
5.27 2.65 6.42 2.87 4.55 2.10 4.55 2.38 

High-tech Variety 14.20 9.56 21.20 10.56 10.94 5.27 8.45 5.17 

Percent Net Business Formation 

(pct. points) 
-0.82 3.50 -0.71 2.50 -1.05 3.71 -0.69 4.33 

Percent Net Job Creation (pct. 

points) 
-0.62 8.13 0.63 5.46 -0.97 7.87 -0.21 10.98 

Percent Foreign-born 

Population (pct. points) 
4.27 5.13 5.92 6.29 3.20 3.64 3.25 4.21 

Percent Agricultural 

Employment (pct. points) 
6.24 6.48 2.76 3.22 6.52 5.31 10.69 8.11 

Percent Manufacturing 

Employment (pct. points) 
12.87 7.03 12.36 5.70 14.88 7.47 11.16 7.57 

Percent Information 

Employment (pct. points) 
1.55 0.85 1.82 0.79 1.33 0.72 1.43 0.95 

Percent Financial Employment 

(pct. points) 
4.83 1.97 5.93 2.19 4.13 1.31 4.15 1.59 

Percent Professional 

Employment (pct. points) 
6.54 3.06 8.56 3.01 5.61 2.48 4.86 2.04 

Number of Observations 14,235 5,490 4,770 3,975 

Note: a The private business R&D expenditures are averaged at state level 

 

Figure 2 shows that the distribution of the patents per capita is highly skewed to the right. 

Roughly two-third of the county-year observations (9,097 observations out of total 14,235 

county-year observations) have zero patent applications and 0.2% of the observations (28 

observations) have more than 100 patents per 10k population.  
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Figure 1: Regional Trend of Patenting Intensity (2009-2013) 

 

 

Figure 2: Frequency Distribution of County-Year Patent Applications per 1k Population 

(2009-13) 
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Table 1 also shows that metro counties have higher average values for university R&D 

expenditure, share of population with college education, amount of SBIR awards, share of high-

tech industries, varieties of high-tech firms, firm size, and foreign-born share of population than 

the rural counties. Summary statistics and graphs suggest that counties are heterogeneous both in 

terms of patenting intensity and innovation inputs within urban and rural regions.  

4.2 Regression Results and Discussion 

Initially, we conducted our empirical analysis on the results from estimation of empirical model 

(8) using both Poisson and negative binomial regressions.  we found significant over-dispersion 

of patents in our sample. This implies that the conditional variance of the patents exceeds its 

conditional mean. A Poisson model data underestimates the standard errors of the coefficient 

estimates in Poisson regressions. It induces more chances of rejection of the null hypotheses 

when, in fact, they are true (Hilbe, 2011). Therefore, negative binomial model is an appropriate 

choice for our analysis. To model the county heterogeneity effects, we ran both the conditional 

fixed and random effect models. The conditional maximum likelihood method for estimation of 

conditional fixed effects negative binomial model that was proposed by Hausman et al. (1984) 

drop 41% of the counties that didn’t patent at all during our study period, that is when  

∑ 𝑃𝑎𝑡𝑖
𝑇
𝑡=1 =0. Fixed-effect models should essentially control the unobserved stable covariates. 

Further, no “true” conditional fixed effect for negative binomial model exists in the literature 

(Allison and Waterman, 2002). Thus, we have chosen random effects negative binomial models 

for our analysis in this study. 
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4.2.1 Urban-Rural Difference in Innovation 

Using the random effect model 8, we first ran the main effects model (no interactions) to 

examine the difference in patenting among urban and two rural county types. The results from 

the model with metro counties as the base category and the rural counties as the comparison 

categories (table 3) suggest that patenting is likely to occur 84% {(𝑒−0.169 − 1) ∗ 100} less 

frequently in metro-adjacent counties and 75% {(𝑒−0.286 − 1) ∗ 100} less frequently in remote 

rural counties than the metro counties (see Hilbe, 2011 and Abramovsky, 2007 for 

interpretation). However, the coefficient for the metro-adjacent category is statistically 

significant only at 10% level. The results of the similar model with metro-adjacent counties as 

the base category and metro and remote rural counties as the comparison categories indicate no 

statistically different patenting activities between the metro-adjacent and remote rural counties. 

These results from the model without interaction effects support the notion in the literature that 

innovation activities take place more in urban areas than the rural. The time lags of the 

University R&D and its spatial lag were tested for their potential effect on county level patenting 

but were dropped as these variables were not statistically significant and contaminated the effects 

of the contemporaneous levels of the variables. Similarly, private business R&D expenditures 

were also not found to be statistically significant and did not add to the model fit based on the 

AIC criterion; therefore, it was dropped from our analysis. 

From the model with only the main effects, we found that university R&D expenditures and its 

spatial lag, human capital (percent population with college or higher degree), average 

establishment size, per capita personal income, ethnic diversity, percent high-tech 

establishments, and high-tech variety, and shares of employment in information and professional 

industries were positively associated with county level patenting while we found that share of  
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employment in agriculture industry had negative association. However, our main interest lies in 

investigating the factors that are associated with the gap in patenting among urban and rural 

counties. So, rather than undertaking extended discussion of these results, we present our results 

from further investigation of a model with interaction effects in the next subsection.  

Table 3: Random Effects Negative Binomial Regression Results with Only Main Effects on 

County Level Innovation 

Dep. Variable: Annual Domestic Utility Patent 

Applications per 10k Population 

Coefficient 

Estimates 
S.E. z P>z 

Independent Variables (I) a     

University R&D 0.017 0.005 3.43 0.001 

Spatially lagged University R&D 0.022 0.010 2.19 0.028 

SBIR Awards 0.004 0.003 1.51 0.130 

Per Capita Personal Income 1.032 0.220 4.68 0.000 

Establishment Size 0.424 0.122 3.48 0.001 

Independent Variables (II) b     

Metro-Adjacent Rural (1=yes; 0=metro) -0.169 0.100 -1.69 0.092 

Remote Rural (1=yes; 0=metro) -0.286 0.124 -2.30 0.021 

Percent Bachelor Plus 0.067 0.012 5.44 0.000 

Ethnic Diversity 0.812 0.330 2.46 0.014 

Percent Foreign-born Population 0.009 0.009 0.97 0.330 

Industrial Specialization 5.686 3.470 1.64 0.101 

Percent High-tech Establishments 0.068 0.014 5.00 0.000 

High-tech Variety 0.038 0.006 6.82 0.000 

Percent Agricultural Employment -0.065 0.010 -6.30 0.000 

Percent Manufacturing Employment 0.006 0.008 0.73 0.464 

Percent Information Employment 0.065 0.032 2.03 0.042 

Percent Financial Employment -0.016 0.017 -0.98 0.328 

Percent Professional Employment 0.076 0.015 5.17 0.000 

High Internet Access (1=yes; 0=no) -0.042 0.027 -1.56 0.118 

Percent Net Business Formation -0.002 0.006 -0.29 0.775 

Percent Net Job Creation 0.001 0.003 0.32 0.752 

Constant -12.499 2.260 -5.53 0.000 

Year Fixed Effects Yes 

State Fixed Effects Yes 

# Observations 14,235 
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4.2.2 Factors Explaining the Urban-Rural Difference in Innovation 

We interacted the urban and rural county category with the variables of our interest based on the 

literature and our results from the main effects model- university R&D, SBIR awards, human 

capital, ethnic diversity, foreign-born population, share of high-tech establishments, high-tech 

industry variety, and shares of employment in agricultural, information, and professional 

industries. We present these results in table 4, which essentially contains the coefficient 

estimates from the negative binomial regression of a single model with all counties in the 

sample. In this model metro counties serve as the base category and metro-adjacent and remote 

rural as the comparison categories. Modeling interaction terms, we are fundamentally 

hypothesizing that the patenting among urban and rural regions depends on the levels of the 

interacting variables. Column 1 of table 4 contains the coefficients estimates representing the 

main effects of the independent variables; column 2 and column 3 consist of the coefficient 

estimates for the terms of interaction of corresponding independent variables with the metro-

adjacent and remote rural county categories respectively.  

Table 4: Random Effects Negative Binomial Regression Results with Interaction Effects on 

County Level Innovation 

Dependent Variable: Annual Domestic Utility 

Patent Applications in the US 

Coefficient Estimates 

Baseline Modela Metro-adj Rural Remote Rural 

Independent Variables (I) b 
   

University R&D 0.015** -0.005 -0.009 

Spatially lagged University R&D 0.022 0.005 -0.005 

SBIR Awards 0.004 
  

Per Capita Personal Income 1.343*** 0.136 -2.071*** 

Establishment Size 0.509*** 0.212 -0.429* 

Independent Variables II c 
   

Percent College or Higher Education 0.069*** -0.034 0.061 
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Ethnic Diversity 1.405*** -1.363*** -1.256** 

Percent Foreign-born Population 0.002   

Industry Concentration 3.571 
  

Percent High-tech Establishments 0.066*** -0.010 -0.039 

High-tech Variety 0.033*** 0.001 0.023 

Percent Agricultural Employment -0.072*** 0.030 0.004 

Percent Manufacturing Employment 0.005   

Percent Information Employment 0.104* -0.032 -0.149* 

Percent Financial Employment -0.017   

Percent Professional Employment 0.069*** 0.015 -0.074 

High Internet Access (1=yes; 0=no) -0.033 
  

Constant -15.659*** 1.696 22.733*** 

Year fixed effects Yes 

State fixed effects Yes 

# Observations 14,235 

aThe Estimates for metro counties as the base category in the model with both main and interaction effects 
bVariables in natural log;     cLevel Variables;       *** p<0.01, ** p<0.05, * p<0.1 

 

The state fixed effects and year fixed effects that we control in our regression are not presented 

in table 4 but reported in Appendix table A1.  The time lags of the university R&D and its spatial 

lag have not been controlled in our analysis due to the similar reasons as in main effects model. 

 

The coefficient estimates in table 4 corresponding to the variables in logarithmic form can be 

interpreted as the elasticities because we have the log-link function in our count model. The other 

coefficients are interpreted as the change in the log of the odds ratio of the patents that is 

associated with the log of the odds ratios of the corresponding variables (see Hilbe, 2011). 

Alternatively, following Abramovsky (2007), these coefficients can be converted to incident rate 

ratios (IRR) and interpreted as percent change. However, the interpretation of the coefficient 
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estimates for the interacting variables is less straightforward. Even with a linear model (OLS 

estimation), the results for the interacting variables cannot be directly interpreted as slopes like in 

usual models with only main effects because the fundamental hypothesis behind interaction is 

that the slope of one variable depends on the value (s) of the variable(s) it interacts with. In the 

non-linear model like Poisson or negative binomial, the reported estimation results for the 

interaction terms (both the coefficients and standard errors) from the available estimation 

methods do not represent the actual interaction effects and their statistical significance (see Ai & 

Norton, 2003; Hilbe, 2011). Alternatively, it is not unlikely that the actual interaction effects 

have different sign and statistical significance than as reported in table 4. We derive the actual 

interaction effects and standard errors and p-values following Hilbe (2011, p. 520-29) and using 

representative range of values of the interacting variables within our sample. In this way, we get 

different interaction effects (both magnitudes and significance) for different levels of the 

interacting variables. For, example by interacting university R&D variables with metro-adjacent 

rural and remote rural county categories we are hypothesizing that the regional patenting 

intensity depends on the level of the university R&D variable. Thus, we get different gaps 

between the patenting rates of urban (metro county as the base category) and the rural counties. 

Instead of reporting all these calculated interaction effects, we present them with the help of 

graphs. 

We analyze the results in table 4 by calculating the marginal effects of the interacting variables, 

at their representative values in our sample, in rural and urban areas and graphing the difference 

in the marginal effects between the urban (base category) and the rural areas. We got these 

results by using Stata’s margins and marginsplot commands.  
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University R&D: Figure 3 shows the difference in the marginal effects of university R&D 

expenditures and its spatial lag (university expenditures in counties neighboring within 100-mile 

radius) between urban (metro as comparison category) and the two types of rural counties. It 

shows that the rural-urban difference in patenting intensity increases with the increasing levels of 

the variables.  For example, one percent increase in university R&D expenditures is associated 

with a range of 1.5-2.3% less increase in the patent applications per 10k population in the remote 

rural areas than in the urban areas. Similar interpretation follows for the spatially lagged 

university R&D variable and the comparison between the urban and the metro-adjacent rural 

areas. The difference in the marginal effects between urban and remote rural areas are 

statistically significant in the entire range of the values of the variables while the difference 

between the urban and metro-adjacent rural regions is significant only at the lower range of the 

values. As this result shows that university R&D expenditure is likely to yield to higher patenting 

activities in urban areas than in rural areas, the university decisions to locate in urban areas is 

likely to widen the rural-urban gap rate of innovation. Alternatively, as the university R&D is 

associated with positive patenting intensity in the main effect model, the gap is likely to reduce 

due to larger presence of universities in rural areas. 

Our similar analysis of the results of the regression model with metro-adjacent rural counties as 

the base category show that there is not statistically significant differential marginal effect of 

university R&D and its spatial between metro-adjacent rural and remote rural regions.  
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Figure 3: Difference in Marginal Effects of University R&D on Rural-Urban Innovation 

 

 

Figure 4: Difference in Marginal Effects of Human Capital on Rural-Urban Innovation 
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Human Capital: It appears from figure 4 that the difference in marginal effect of the stock of 

human capital between metro counties and the metro-adjacent rural counties continuously 

increases with the higher share of highly educated population but the difference between the 

urban and remote rural counties increases until the upper range of values of the variable and 

decreases at the upper range values. The differences between the urban and metro-adjacent rural 

counties are statistically significant at the middle and upper range of values while the differences 

between the urban and remote rural counties are statistically significant at the range of values at 

the first half. In summary, within the range of values that are associated with the statistical 

significance, the increased share of human capital is likely to be more effective in generating 

patenting activities in urban areas. Thus, concentration of population with higher education in 

urban areas will potential widen the rural-urban innovation gap.  

 

Figure 5: Difference in Marginal Effects of Ethnic Diversity on Rural-Urban Innovation 
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Figure 6: Difference in Marginal Effects of PCPI on Rural-Urban Innovation 
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variable but the difference between urban and metro-adjacent rural regions is significant only at 
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statistically significant only at within a small range (10.25-10.75) but the results for the 

difference between the urban and remote rural counties are significant at the values higher than 

10.50. Thus, increase in income inequality between urban and remote rural regions is likely to 

further widen the innovation gap between these regions.  

High-tech Establishments: Figure 7 shows that the rural-urban patenting gap increases with the 

incremental share of high-tech establishments and diversity of high-tech industries. According to 

our reasoning in section 3 that the variety of high-tech industries after controlling the share of 

high-tech establishments the total number of establishments represents the diversity of high-tech 

industries, we focus on the results for the high-tech variety.  The differences in marginal effects 

of the high-tech variety between rural (both types) and urban counties are statistically significant 

at the almost the entire range of values for the variable. This result imply that the diversity of 

high-tech industries is likely to produce higher marginal effects on patenting in urban areas than 

in rural regions. Alternatively, it suggests that specialization of high-tech industries is likely to 

reduce the rural-urban innovation gap. 

Agriculture Industry: We do not find the statistically differential marginal effects of 

agricultural employment between urban and metro-adjacent rural counties (Figure 8). However, 

our finding on the difference between the urban and remote rural counties is significant at lower 

range of values (below 15%).  The reducing difference in the marginal effects between the urban 

and remote rural counties suggests that the latter regions, where agriculture contributes to smaller 

share of total employment, are likely to reduce their innovation gap with the former regions if 

there exist unutilized business opportunities in agriculture industry.  
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Figure 7: Difference in Marginal Effects of High-tech Establishment Share and the 

Diversity of High-tech Industries on Rural-Urban Innovation 

 

 

Figure 8:  Difference in Marginal Effects of Agricultural Employment Share on Rural-

Urban Innovation 
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Figure 9: Difference in Marginal Effects of Information and Professional Industry 

Employment Shares on Rural-Urban Innovation  
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contiguous states excluding District of Columbia were measured by patenting intensity (utility 

patent applications per 10,000 population).  

We use the concept of regional knowledge production function, that is based on the seminal 

works by Griliches (1979) and Jaffe (1989). Using this concept, the innovation inputs such as 

university R&D expenditures, SBIR innovation awards, and human capital measure and several 

county characteristics were regressed on the patenting intensity. The conditional fixed effects 

Poisson and negative binomial regression techniques developed by Hausman et al. (1984) we 

applied for our econometric analysis. we found that the patents data were over-dispersed. So, the 

Poisson regression analysis was not appropriate. Conditional fixed effects regression of the 

negative binomial model was also not appropriate as we would lose 41% of the data and the 

resulting analysis also would not entirely control the unobserved county level propensity to 

patent arising from stable county characteristics. Therefore, our analysis is based on the random 

effects negative binomial regression with an assumption that the propensity to patent among 

counties follows gamma distribution. 

Our findings from the random effects negative binomial model with only the main effect terms 

show that there exists difference in patenting intensity between rural and urban counties (metro-

adjacent rural counties patent 84% less frequently, at 10% significance level, and remote rural 

counties 75% less frequently, at 5% significance level, than the metro counties).  We find the 

patenting intensity in average US county to be positively associated with university R&D, human 

capital, ethnic diversity, per capita personal income, average establishment size, diversity of 

high-tech industries, and shares of employments in information and professional industries but 

negatively associated with the share of employments in agricultural industries.  
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From the results of random effects negative binomial regression with interaction of the county 

level variables, which were associated with patenting intensity in the main effects model, with 

county categories, we analyzed the variables that are associated with the gap in innovation 

between urban and rural counties. We found that university R&D, human capital, ethnic 

diversity, per capita personal income, shares of employments in information and professional 

industries are more effective in generating patenting activities in urban areas than the rural 

(especially remote rural) areas. However, our findings of positive association of these variables 

with patenting intensity in an average county in the main effects model suggest that the rural-

urban gap is subject to depend on the policy focus. A policy that intends to reduce the rural-

urban innovation gap, hence the inequality in rural-urban economic growth, should consider 

directing resources to strengthen these variables in rural areas despite their larger effectiveness 

on urban innovation activities.   We also find that incremental specialization of high-tech 

industries and share of agricultural employment (in remote rural counties with unutilized 

competitive advantage in agricultural industry) reduce the rural-urban innovation gap 

This study has limitations that come inherently from the nature of the available secondary data.  

We dropped the counties that had missing values for some key variables such as per capita 

personal income; almost a half of the counties in Virginia.  The missing values occur due to the 

failure in reporting by some counties.  If the non-reporting is systemically related to the rural 

areas, then our sample might be misrepresenting the population of rural counties.  We also do not 

have available at the county level the data on the R&D expenditures by firms and the more 

appropriate measure of entrepreneurship such as number of business start-ups, which the 

innovation literature finds to have significant role in innovation. Our data for the net formation of 
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new business establishments and creation of new jobs does not account for the death rates of the 

businesses.  

 

 

 



 

 

Appendix 

A1: Aggregation of the Patents Data at County Level 

The United States Patents and Trademark Office (USPTO)6 provides separate reports on the 

publicly available patent applications and the correspondence address(s) of the inventor(s). These 

addresses do not provide the county of the inventors’ residence but the zip codes. Some patent 

applications might not be publicly available due to such reasons as arising from the requests by 

the inventors for not disclosing their claimed invention until they are provided patent protection 

(for detail see Graham et al., 2015). we matched the patent application numbers until 2015 from 

the application data with those in the correspondence address data to derive the aggregate patent 

applications originating at zip code level. Aggregation of zip code level patents to county level 

was not obvious as some zip codes are associated with more than one county. we used zip-to-

county crosswalk data from the HUD USPS7 for matching zip codes to county(ies) published for 

the second quarter of 2011, a middle point of our study period. The crosswalk data contain 29, 

854 zip codes uniquely associated with their counties. Remaining 9,242 zip codes have one-to-

many associations with counties, ranging up to one-to-six.  

The USPTO provides the county level information on the patents for the granted patents from 

2000 to 20138. we matched the application numbers of the granted patents with the application 

number of the patent applications available at the zip code level and identified unique 

relationship with counties for additional 4,268 zip codes. Matching the patent award numbers 

from the combined application and correspondence data at zip code level with those from 

                                                 
6 https://www.uspto.gov/learning-and-resources/electronic-data-products/patent-examination-research-dataset-

public-pair 
7 https://www.huduser.gov/portal/datasets/usps_crosswalk.html 
8 https://bulkdata.uspto.gov/data2/patent/ptmtdvd/ 
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granted patents data at county level, we identified 116 additional unique zip-to-county 

relationships. Next, we assigned 520 zips that had one or less patent applications during 2009-13 

randomly to one of the counties of their multiple association. Finally, we had 4,338 counties out 

of total 39,906 zip codes (roughly 11%) with multiple county associations.  

we applied two strategies to derive our patents data – (we) dropping the 11% of the zip codes and 

using only those remaining with unique associations and (ii) distributing the number of patent 

applications originating from these counties equally to the multiple counties of their association. 

The first strategy would miss 19,502 utility patent applications (roughly 4.5% of the total utility 

patent applications in all the years during 2009-13). we applied the data sets obtained from both 

the strategies on our regression analysis. we did not find any change in the signs of the 

coefficients using the two datasets but in the statistical significance in some instances and a very 

little change in magnitudes of a few coefficients. Following USPTO practice of our strategy9 (ii), 

we decided to use it for matching the zip-codes to counties and subsequently aggregating the zip-

code level patenting to county level. 

A2: Derivation of the Spatial Lags of the University R&D Expenditure 

Let URD denote the current year university R&D in the US counties in 2009. Then our spatially 

lagged university R&D variable can be expressed as WURD, where W is the n×n spatial weight 

matrix and URD is the n×1 column vector. With ‘n’ as the total number of counties in our 

sample, 

                                                 
9 https://www.uspto.gov/web/offices/ac/ido/oeip/taf/data/county.pdf 
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W=  

[
 
 
 
 

0 𝑤1,2 𝑤1,3

𝑤2,1 0 𝑤2,3

𝑤3,1 𝑤3,2 0

… 𝑤1,𝑛

… 𝑤2,𝑛

… 𝑤3,𝑛

⋮ ⋮ ⋮
𝑤𝑛,1 𝑤𝑛,2 𝑤𝑛,3

⋱ ⋮
… 0 ]

 
 
 
 

 and URD = 

(

 
 

𝑈𝑅𝐷1

𝑈𝑅𝐷2

𝑈𝑅𝐷3

⋮
𝑈𝑅𝐷𝑛)

 
 

   

The resulting n×1 vector of spatially lagged university R&D variable can be expressed as  

WURD = 

(

  
 

∑ 𝑤1,𝑗𝑈𝑅𝐷𝑗
𝑛
𝑗=1

∑ 𝑤2,𝑗𝑈𝑅𝐷𝑗
𝑛
𝑗=1

∑ 𝑤3,𝑗𝑈𝑅𝐷𝑗
𝑛
𝑗=1

⋮
∑ 𝑤𝑛,𝑗𝑈𝑅𝐷𝑗

𝑛
𝑗=1 )

  
 

 

whose jth element represents the weighted average of the university R&D expenditures in the 

neighboring counties of county j. The weights were assigned based on the spatial weight matrix 

that we calculated by using the distance decay concept and limiting the university R&D 

spillovers from one county to another county to a geographical distance of one hundred miles 

(d=100 miles). Specifically,  

𝑤𝑖,𝑗 = {

𝑑𝑖,𝑗
−𝛿

∑ 𝑑𝑖,𝑗
−𝛿𝑛

𝑗=1

, 𝑑𝑖,𝑗 < 𝑑 𝑚𝑖𝑙𝑒𝑠 ,   𝑖 ≠ 𝑗  𝛿 > 0

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1 𝑡𝑜 𝑛            

we use a power function of distance decay with the parameter 𝛿 = 4  to generate a spatial weight 

matrix and derive the spatially lagged university R&D expenditure variables.  

Table A1: Random Effects Negative Binomial Regression Results with Interaction Effects 

for County Level Innovation (Table 4 Continued…..) 

Dep. Variable: Annual Domestic Patent 

Applications Per 10k Population 

Coefficient Estimates 

Baseline 

Metro-adjacent 

Rural Remote Rural 

Time Dummiesd    

t10 0.012   
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t11 -0.019   

t12 -0.049   

t13 -0.046   

State Dummiese    

AL -1.608***   

AR -1.394***   

AZ -0.059   

CO -0.167   

CT -0.165   

DE -0.202   

FL -0.488   

GA -1.052***   

IA -0.735**   

ID -0.353   

IL -0.621**   

IN 0.486   

KS -0.224   

KY -0.996***   

LA -1.516***   

MA -0.515   

MD -1.011**   

ME 0.272   

MI 0.168   

MN -0.466   

MO -0.858***   

MS -2.102***   

MT -0.140   

NC -0.496   

ND -0.451   

NE -1.609***   

NH 0.627   

NJ -0.621   

NM -1.253***   

NV 0.779   

NY 0.249   

OH -0.334   

OK -0.681*   

OR 0.044   

PA -0.641*   

RI -0.962   

SC -1.026***   
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SD -0.987**   

TN -0.818**   

TX -0.773***   

UT 0.882**   

VA -0.231   

VT -0.984*   

WA 0.268   

WI -0.254   

WV -0.258   

WY 0.090   
dBase year is 2009; eBase state is California (CA); *** p<0.01; ** p<0.05, * p<0.1 

Note: The 2nd and 3rd columns are blank because state and time dummies don’t interact with county categories  

 

 


