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Abstract 

Social interaction and peer effects are recognized as a potentially important factor in the 

diffusion of new technologies. Peer effects have policy relevance, as they can expedite 

adoption of socially desirable technologies. In this paper, we investigate the role of peer 

effects in the adoption of groundwater rights for agricultural irrigation in Kansas. Using 

detailed data on groundwater rights and a definition of the peer group as the 13 nearest 

neighbors, we find that an additional groundwater adopter within the peer group increases 

the relative odds of adoption by 9 percent. The effect of peers is found to diminish with 

distance. Our results provide evidence of potentially large gains to policy makers in 

accounting for peer effects and social multipliers when designing resource conservation 

programs.   

 

Introduction 

Adoption of new technologies is often cited as being critical to reducing the use of scarce 

inputs while meeting growing demand for food and resource commodities. Understanding 

the factors that influence these adoption decisions is important for both normative and 

positive objectives. In the positive sense, knowing the determinants of adoption can help in 

predicting adoption patterns (e.g. which firms are likely to adopt first). In the normative 

sense, understanding why some individuals or firms adopt faster than others can help in 

encouraging particular patterns of adoption of socially desirable technologies (e.g. 

vaccinations). Frequently, an individual or firm has incomplete knowledge about a 
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technology prior to adoption. Thus, some investment in learning about the new technology 

is coupled with adoption. If there are multiple adopters facing similar circumstances, then 

the process of technology experimentation and learning may be social. Consequently, 

potential adopters may learn the process of using the new technology or the benefits of using 

the new technology from previous adopters (Foster and Rosenzweig, 1995, Brock and 

Durlauf, 2010, Conley and Udry, 2010, Bollinger and Gillingham, 2012, Oster and Thornton, 

2012, Felthoven, Lee, et al., 2014). Indeed, experimentation at the firm or individual level has 

been shown to generate learning spillovers within peer networks, leading to suboptimal 

rates of adoption (Foster and Rosenzweig, 1995, Oster and Thornton, 2012).  

In this paper, we examine the role of peer effects in the spatial-temporal adoption of 

groundwater rights for agricultural irrigation in Kansas. Irrigation has long been recognized 

as critical to agricultural production in the western United States, where precipitation alone 

is often insufficient to meet evapotranspiration requirements of crops. For instance, average 

annual precipitation in western Kansas ranges from 16 to 22 inches while the seasonal water 

requirement for corn is upwards of 23 inches (Schneekloth and Andales, 2017). Large rates 

of pumping over the last few decades have raised concerns over the sustainability of 

irrigation from groundwater in many important agricultural areas of the US such as the High 

Plains and California’s Central Valley (Scanlon, Faunt, et al., 2012, Steward, Bruss, et al., 

2013). Some portions of the High Plains aquifer are projected to have a useable lifespan of 

fewer than 25 years (Buchanan, Wilson, et al., 2015).  Increased reliance on groundwater for 

water and food security is probable as more frequent and intense climate extremes increase 

variability in precipitation and surface water (Taylor, Scanlon, et al., 2013).   
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Prior to World War II, irrigation from groundwater was largely limited by 

technological constraints associated with lifting and applying water from aquifers. Beginning 

with the post-World War II era, the combined availability of center pivot technologies and 

automobile engines, which could be adapted to power groundwater pumps, reduced the 

costs of pumping and applying large volumes of water. With the enactment of the Kansas 

Water Appropriation Act of 1945 (KWAA), any person seeking a right to use water for 

agricultural production in Kansas must apply for and obtain a permit. The pattern of 

groundwater rights adoption for irrigation over time has followed the well-known S-curve 

of technology diffusion noted by Griliches (1957) (Fig. 1). There has also been a pronounced 

spatial pattern in adoption: newly obtained groundwater irrigation developments have been 

more likely to occur where groundwater irrigation has already been acquired (Fig. 2).  

 In the context of Kansas groundwater, the presence of peer effects means the returns 

for an individual adopting irrigation changes in response to the adoption decisions of his or 

her peers.  For example, growers likely differed in their knowledge about groundwater 

exploitation and the costs and benefits of groundwater irrigation.  As more knowledgeable 

growers adopted groundwater irrigation, nearby dryland farmers learned about the benefits 

of increased production yields, drought protection, and climate adaptation (Thorfinnson and 

Epp, 1953, Foster and Rosenzweig, 1995). If peer effects do in fact drive adoption of 

groundwater exploitation, then policy makers can potentially steer adoption of water-saving 

irrigation technologies where they are most efficient (Müller and Rode, 2013, Graziano and 

Gillingham, 2015, Rode and Weber, 2016). Moreover, peer effects have important policy 

consequences in a variety of other natural resource contexts, including oil (Lin, 2009), 

forests (Robalino and Pfaff, 2012), and fisheries (Felthoven, et al., 2014, Lynham, 2017).  
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Identification of peer effects in technology adoption is made difficult by the problem 

of correlated unobservables, self-selection of peers, and simultaneity (Manski, 1993, 

Soetevent, 2006). For instance, when two neighbors adopt a new technology, how does the 

econometrician separately identify learning from common environmental influences? 

Likewise, if individuals with similar preferences move to the same geographic areas, then 

common preferences might be mistaken for peer effects. Finally, an individual’s peer group 

affects that individual’s decisions, just as the individual’s decision affects their peer group.  

We exploit spatial and temporal variation in rights to appropriate groundwater for 

irrigation in order to separately identify peer effects from other contextual, self-selection, 

and simultaneity factors in the adoption of irrigation over time. More specifically, we 

estimate how the relative odds of developing groundwater for irrigation changes depending 

on the number of previous irrigation adopters within a grower’s peer network. We define a 

grower’s peer network at two different levels: (i) the nearest 13 neighbors by distance and 

(ii) the nearest 25 neighbors by distance. To control for the possibility of peer self-selection 

and socioeconomic factors, we include a rich set of school district (SD) and groundwater 

management district (GMD) fixed effects. The 13 and 25 nearest neighbor peer group 

definition is consistent with Towe and Lawley (2013) and avoids any potential problems of 

measurement bias against growers on the edge of pre-defined district boundaries 

(Fotheringham and Wong, 1991, Graziano and Gillingham, 2015) and spurious correlations 

caused by differing grower densities across districts (Towe and Lawley, 2013). Statewide 

and groundwater management district-specific time trends are included to control for time-

varying correlated unobservables (e.g. macro-level and localized adoption trends unrelated 

to peer learning). Finally, simultaneity is not a concern because our measure of peer effects 
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is the number of previously adopted water rights (Bollinger and Gillingham, 2012). We also 

test the effects of a rich set of climate, hydrology, and soils data, which are spatially merged 

to irrigation adoption data.  

A unique aspect of our research is rich spatially and temporally varying data on 

irrigation adoption. Importantly, the independent variable of interest, cumulative number of 

peer adopters up to year 𝑡, changes over time and allows us to identify the role of peer effects. 

Location-specific data on the adoption of irrigation over a 72-year period (1943-2015) are 

obtained from the Water Information Management and Analysis System (WIMAS) 

maintained by the Kansas Division of Water Resources. We measure the adoption of 

irrigation as the date the water right was obtained, which corresponds closely with the date 

of initiating irrigation because water right holders lose their right if not put to beneficial use 

within a short period of time.  

Overall, we find strong evidence that peer effects influence the decision to adopt 

rights to groundwater exploitation. At the peer group definition of 25 nearest neighbors, a 

one-unit increase in the stock of adopters in the previous calendar year is conservatively 

estimated to increase the odds of adoption by approximately 5 percent. At the 13 nearest 

neighbor peer group, a one-unit increase in the stock of adopters in the previous year is 

estimated to increase the odds of adoption by 9 percent. These results are statistically 

significant and robust to substantial sensitivity analysis.  Our results suggest resource 

extraction propagates to some extent through social interaction. This finding provides 

evidence of large gains to resource managers in accounting for peer effects and social 

multipliers when designing conservation programs. We find weak evidence of climatic 

trends affecting the odds of groundwater adoption.  
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The remainder of this paper is as follows. Section I provides background on water 

rights in Kansas. Section II provides conceptualization of the challenges and opportunities 

for identifying peer effects. Section III presents the empirical approach. Section IV describes 

the data. Results are presented in Section V. The paper concludes with a discussion of our 

finding and policy implications.    

 

Background on water rights in Kansas 

Surface water availability is limited in most of western and central Kansas and 

represented an early obstacle to production agriculture in the state.1 Where surface water 

was lacking, farmers could tap groundwater in limited fashion using windmill-powered 

pumps. However, windmill-powered pumps generally lacked the ability to lift large volumes 

of water and thus were not a viable means of large scale irrigation. Of the 37,000 total acres 

in irrigation in Kansas in 1909, only 5% was irrigated from groundwater. By 1920, the 

proportion of irrigated acres sourced from groundwater increased to nearly 30% (Bureau of 

the Census of Department of Commerce, 1922), an increase largely owing to the advent of 

internal combustion engines.  

In Kansas there has existed reasonably clear water law establishing rights to 

groundwater since becoming a state in 1861. At the time, common law provided the absolute 

ownership doctrine for groundwater, meaning land owners possessed complete ownership 

of the groundwater under the land. Following a 1944 Governor’s Task Force Report 

investigating Kansas’ use of riparian and absolute ownership doctrines, Kansas Legislature 

                                                            
1 An exception is the Arkansas River, which was diverted in the late 19th century to serve 
Gray and Ford counties in southwest Kansas.  
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adopted the Kansas Water Appropriation Act of 1945 (KWAA). Amongst the changes made 

by KWAA was the requirement that any person seeking a right to use water for agricultural 

production had to apply to the Division of Water Resources for a permit.2 Once a permit is 

obtained, the permit holder has a specific window of time to construct a well. If the well is 

constructed within the allowed window of time, the permit holder must “perfect” the 

groundwater appropriation by putting the water to beneficial use. Water rights are limited 

in maximum annual quantities of water, instantaneous diversion rates, and place of use. 

Moreover, water rights can be lost if they are not exercised without valid reason for a specific 

period of successive year (usually four or five) (K.S.A. 82a-718a). 

Groundwater development in Kansas grew quickly subsequent to KWAA, owing to 

the combined availability of automobile engines to power groundwater pumps and center 

pivot technologies to apply large volumes of water (Fig. 1). From 1944 to 1970 the number 

of new rights to appropriate groundwater increased from less than 1,000 to over 11,000. 

Approximately 33,000 rights have been developed since passage of KWAA and the pattern 

has followed the well-known s-curve noted by Griliches (1957) (Fig. 1). There has also been 

a pronounced spatial pattern: newly obtained water rights have been more likely to occur 

where water rights have already been acquired (Fig. 2). In particular, much of the 

groundwater development has taken place in western and southcentral Kansas overlaying 

the Ogallala Aquifer (Fig. 2 and 3).  

Typical annual reported irrigation in Kansas is approximately 3.5 million acre-feet 

applied to 3 million irrigated acres (Lanning-Rush, 2016). These annual withdrawals greatly 

                                                            
2 Rights to groundwater use held under absolute ownership doctrine prior to KWAA were 
recognized as vested rights. 
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exceeds the Ogallala’s rate of recharge in Kansas (0.75 million acre-feet) (Buchanan, et al., 

2015). Consequently, water tables have declined, with declines up to 150 feet in 

southwestern Kansas. Secure water availability is a significant concern for Kansas 

agriculture, a state that consistently ranks in the top 10 nationally in wheat, grain sorghum, 

and grain corn production as well as total acres in cropland (Kansas Department of 

Agriculture, 2015). Recognizing problems of overdraft of the Ogallala Aquifer, the 1972 

Kansas Legislature passed legislation (i.e. the GMD Act) which would later enable 

groundwater management districts to manage aquifer exploitation at local levels. Following 

the GMD Act, five groundwater management districts were established in western and 

central Kansas. Based on recommendations of these management districts, the chief 

engineer of the Division of Water Resources promulgated various regulations designed to 

extend the life of the Ogallala, including regulations on minimum well spacing, requirements 

for metering, prohibitions against water waste, and development of safe yield and depletion 

formulas. 

 

Identifying Peer Effects 

The key issue identified by the existing literature on peer effects is that the clustering of 

outcomes at a spatial or group level can stem from two different types of effects (Manski, 

1993, Cohen-Cole and Fletcher, 2008). The first type of effects are exogenous or contextual 

effects. These are influences or characteristics that, by virtue of being commonly shared by 

individuals within some defined group, generate similar or correlated behavior. Examples in 

the context of our problem include similar soil characteristics, hydrology characteristics, and 

climate. The second type of effects are endogenous effects. These encompass interactions in 
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which the behavior of an individual is causally impacted by the behavior of other individuals 

within his group. The channel through which that individual’s behavior is impacted may be 

informational or real. A farmer in southwestern Kansas, for example, may observe or learn 

of the success of a neighbor that irrigated (i.e. well production and lithology) and 

subsequently decide to acquire a water right. In this paper, we are concerned with 

endogenous effects, or what have so far been referred to as peer effects.3 

Several challenges arise in disentangling endogenous peer effects from contextual 

effects. One issue is the so-called “reflection problem” (Manski, 1993), which refers to the 

situation in which, within a given time frame, the decision of an individual impacts the 

decision of his group and vice versa. In our context, this problem is of little significance as 

the influence of an individual’s decision to acquire a water right is likely to only be felt 

through a lag. As such, we follow the recent literature and assume that an agent’s adoption 

decision may depend on the “installed base” of adoption decisions within his group. The 

installed base is simply the cumulative number of adoptions up to the previous time period 

(Bollinger and Gillingham, 2012).   

Perhaps the most significant hurdle to identifying peer effects is to sufficiently control 

for the various contextual factors. While we include a relatively large set of covariates that 

plausibly impact the return to irrigation, there likely remain other unobserved factors that 

lead to a spatial clustering of adoption decisions. Thus, we also include fixed effects, trends, 

and GMD-specific common correlated effects (Pesaran, 2006). The latter are particularly 

                                                            
3 The main reason it is important to identify whether an observed correlation is due to 
contextual or endogenous effects lies in their predictive differences. Consider, for example, 
if the spatial clustering of water rights were only due to contextual interactions. Then the 
impact of a regional-specific policy or weather shock would be confined to that region; 
there would be no spillover effects in the absence of an endogenous component. 
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important as Figure 3 demonstrates significant clustering at the GMD level. By including 

common correlated effects at this level we are able to capture non-linear GMD-specific 

fluctuations in adoption patterns.  

Finally, there is also the challenge of how to define a peer group. In spatial contexts, 

one approach is to use an already defined boundary such as a county or school district. 

However, this type of definition tends to overstate an individual’s group size and suffers from 

measurement error (individuals near the boundaries are not assigned as neighbors when 

they should be) (Graziano and Gillingham, 2015). Following Towe and Lawley (2013), we 

consider two different peer group definitions: (i) the 13 nearest neighbors and (ii) the 25 

nearest neighbors.4 This type of definition does not suffer from the boundary problem and 

by using two different group sizes, we are able test for whether the impact of one’s peers 

dissipates with distance.  

 

Empirical Model 

We model the decision to acquire a groundwater right in a binary discrete choice 

framework.5 In particular, in each year, a decision-maker (potential adopter) chooses 

whether or not to obtain a groundwater right on the basis of profit maximization. The profit 

associated with a groundwater right for individual i  in year t  is written as 

                                                            
4 Nonetheless, we do estimate adoption models in which an individual’s group is defined as 
their school district or as those individuals within a 1.0 and 1.5 km radius. Results based on 
these definitions are provided in the Appendix.  
5 We alternatively considered a duration type approach. In this case, the dependent variable 
consists of the length of time it takes an individual to acquire a water right. We opted not to 
use a duration approach, as simulations suggested that these types of models regularly reject 
the presence of peer effects when they are present. This appears to result from the fact that, 
within a peer group, the installed base and the time until adoption must always covary in a 
positive direction.  
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 is the installed base, itx  is a vector of observable covariates, it  is a vector of 

fixed effects and location-specific time trends, and it  is an IID type I extreme value residual.   

Following standard convention, the profit associated with not acquiring a groundwater right 

is normalized to zero, and thus adoption occurs when 0it  . Let itd  denote an indicator 

variable that takes a value of one when 0it  .  The probability that 1itd   is given by the 

familiar logit expression:  
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Based on these probabilities, estimation of the model parameters is carried out via maximum 

likelihood. 

 The installed based is defined as: ( 1) ( 1)[ ]i t h th g i
y D 

 , where 
( 1) 1h tD    if individual 

h  in peer group [ ]g i  had acquired a groundwater right at or before year ( 1)t   ( [ ]g i  denotes 

the peer group to which i  belongs). The vector itx  can be decomposed into three sub-vectors 

 [ ] [ ],it l i t l i tx x x x     

where 
[ ]l ix  is a vector of time-invariant, location-specific controls ( [ ]l i  denotes the location 

of choice-maker i ), tx  is a vector of common, time-specific controls, and 
[ ],l i tx  is a vector of 

location and time specific factors. The 
[ ]l ix  include a rich set of soil and hydrology 

characteristics; the tx  include deflated corn and wheat prices; and the 
[ ],l i tx  include climate 
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and weather variables that potentially influence the profitability of irrigation. Further details 

on these variables are given in the Data section. 

 As noted, other potentially important unobserved factors are captured by various 

fixed effects and location specific trends, it . As with the itx , these factors can be categorized 

as either time-invariant, time-specific, or time and location specific. To capture unobserved 

time-invariant factors we include either groundwater management district (GMD) dummies 

or school district (SD) dummies. The former capture commonly shared groundwater 

characteristics that likely drive the initial acquisition of a water right.6 We also include SD 

effects to capture unobserved time-invariant heterogeneity at a finer level. To capture 

unobserved statewide effects, we include a linear trend in all specifications. In some 

specifications we also include GMD-specific linear trends. Finally, to capture non-linear 

temporal and locations specific shocks, we interact a statewide common correlated effect 

(CCE) with GMD dummies. The CCE is defined as ∑ 𝑑𝑖𝑡𝑖 /𝐼𝑡 , where 
tI  is the number of 

individuals at time t  that have still not adopted. Ultimately, our baseline results consist of 

five different specifications, each differing by the type of fixed effects, trends, and correlated 

effects.  

There are two important features in our data that warrant additional discussion.  The 

first feature is that once we observe a decision-maker obtain a groundwater right, we never 

observe that individual revert to the status of not owning a water right. In principle, an 

                                                            
6 GMDs are local units of government which provide water-use administration and planning 
subject to approval by the Chief Engineer of the Kansas Division of Water Resources. Five 
GMDs were formed between 1973 and 1976 following the 1972 Kansas Legislature. All 
districts correspond to major portions of the High Plains aquifer. Primary use of 
groundwater in the districts is for agricultural irrigation.     
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individual may relinquish their water right if it is not exercised for four or five consecutive 

years, but we do not observe this possibility. From a modeling standpoint, this presents the 

challenge of how to code the binary dependent variable in the years following the initial 

adoption event. One approach is to set 1itd   for all periods following the initial year of 

adoption. However, the problem with this approach is that it incorrectly assumes that the 

decision-maker actively renews the right each year. Alternatively, we could code all post-

adoption decisions with a zero, as in Rode and Muller (2016).  The problem with this 

approach is that an individual does not actually abstain from acquiring a right after they’ve 

obtained one. Our approach is to simply drop observations following the period a decision-

maker acquires a groundwater right.   As an example, if an individual acquired a water right 

in 1962, that individual would contribute 20 observations to the likelihood: 19 observations 

coded with a zero, and one observation coded with a one (recall that we observe the 72-year 

period (1943-2015)).  

The question that naturally arises in taking this approach is how it impacts our peer 

effect estimate. To answer this question, we constructed a Monte Carlo simulation of 

technology adoption that is closely analogous to the problem herein. We simulated a 

diffusion process in which an individual actively chooses whether to adopt the technology, 

even after the initial adoption decision. We then estimated a model in which post initial 

adoption decisions were omitted. Further details and code regarding this simulation are 

provided in the appendix. In short, we found that omitting post initial adoption decisions 

produces a peer effect estimate that is below the true estimate. Thus, to the extent that 

individuals actively renew, or occasionally discontinue, their water right, our approach 

under-estimates the true peer effect.       
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The second feature that presents a challenge is that we do not observe individuals 

whom never acquire a groundwater right from 1943-2015. Here again, we explored the 

impact of this problem using simulation.  We found that omitting individuals that never 

adopt from estimation does not bias the estimated peer effect coefficient.  

 

Data 

The data used for our estimation are drawn from multiple sources. Information about water 

rights identifications, points of diversion (i.e. wells), and priority dates are from the Water 

Information Management and Analysis System (WIMAS) maintained by the Kansas Division 

of Water Resources. For approximately 80% of the data, a single water right is associated 

with a single point of diversion. For water rights having multiple points of diversion (i.e. 

multiple wells), we determine a central location by calculating mean coordinates.  In total, 

there are 33,518 unique water right identifications and 45,732 points of diversion.  

 Spatially explicit soils characteristics are obtained from SSURGO soil survey on the 

website of the USDA Natural Resource Conservation Service. These characteristics include 

detailed information on soil slope, elevation, available water capacity, soil erodibility, soil 

chemistry and soil physics, soil organic carbon, productivity indices for major commodities, 

root zone depth and water storage, soil texture, and drought vulnerability. Spatially explicit 

hydrology characteristics including predevelopment depth to water, saturated thickness, 

conductivity, and specific yield are obtained from The Kansas Geological Survey. Climate 

data are obtained from Schlenker and Roberts (2009). Prices received for corn and wheat, 

averaged at the annual level for the state of Kansas, are obtained from National Agricultural 

Statistics Service of the USDA and are adjusted to 2016 dollars using the Consumer Price 



16 
 

Index. Palmer Drought Severity Index (PDSI) for Kansas is retrieved from the National 

Oceanic and Atmospheric Administration’s National Center for Environmental Information.  

 The well location and water right data obtained from WIMAS are matched by county 

to soil, hydrology, and weather data using spatial query functions in QGIS. Table 1 presents 

summary statistics of the variables used in model estimation.   

 

Results 

Tables 2-3 present our primary 13 and 25 nearest neighbor results, respectively. Standard 

errors are clustered at the SD level to account for model error correlation in all specifications. 

Column 1 presents results with GMD dummies to account for the fact that only certain 

regions of Kansas overlay major portions of the High Plains aquifer and there may be 

heterogeneity between these regions (Fig. 3). Column 2 adds GMD-specific time trends. 

Column 3 adds a CCE. In particular, column 3 includes a panel average of the dependent 

variable to account for unobserved fluctuations in adoptions unrelated to peer effects. The 

GMD-specific coefficient on CCE allows for differential responses to these fluctuations. 

Column 4 adds SD dummies to control for socioeconomic factors that may cluster at the 

district level. Geophysical variation within SDs is limited, so specifying school district fixed 

effects precludes estimation of the geophysical variables. Column 5 uses SD dummies but 

uses GMD-specific linear time trends instead of GMD dummies.  

Looking across specifications, our results demonstrate robust evidence of peer effects 

in the adoption of groundwater. In Table 2, we present our primary results using the 13 

nearest neighbor by distance definition of a peer group. Coefficients report odds ratios. The 

coefficient of most interest, stock of adopters in the previous calendar year (i.e. “installed 
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base”), is positive and statistically and economically significant across all five specifications. 

This finding provides strong evidence that the cumulative number of adopters within a 

grower’s closest geographic neighbors increases the odds that the grower will adopt 

groundwater rights. For example, in column 5, the coefficient on the lagged number of 

adopters indicates that one additional adopter within a grower’s 13 nearest neighbors in the 

previous calendar year increases the odds of adoption by 10 percent on average. This point 

estimate is qualitatively unchanged by the inclusion of GMD effects and trends, CCE, and SD 

effects (e.g. columns 1-5 of Table 2).  

In Table 3, we present our primary results using the 25 nearest neighbor definition 

of a peer group. Similar to the 13 nearest neighbor peer group definition, the coefficient on 

the lagged number of adopters, is positive, statistically and economically significant, and of 

similar magnitudes across all five specifications. This finding provides corroboration that the 

cumulative number of adopters within a grower’s closest neighbors positively affects the 

odds that the grower will adopt ground water rights. For example, in column five, the 

coefficient on the lagged number of adopters indicates that one additional adopter within a 

grower’s 25 nearest neighbors in the previous calendar year increases the odds of adoption 

by 6 percent on average. This point estimate is qualitatively unchanged across the five 

specifications (e.g. columns 1-5 of Table 3). Note also that the slightly smaller estimate for 

25 nearest neighbor definition suggests that more distant neighbors have less of an effect on 

a potential adopter.  

In Table 4, we present predictive margins for different numbers of previous 

adoptions within the peer group, holding all other covariates at their means. At the 13 

nearest neighbor peer group definition, the probability of adoption is approximately 2 
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percent when there are zero previous adoptions within the peer group. With 12 previous 

adopters within the peer group, the probability of adoption increases to about 6 percent. At 

the 25 nearest neighbor peer group definition, the probability of adoption when there are 

zero previous adoptions is also about 2 percent. This probability increases to about 7 percent 

when the number of previous adopters increases to 24.  

Our results also highlight the important role of the commodity price and geophysical 

and climate variables. Corn prices and wheat prices are positively and negatively associated 

with groundwater adoption, respectively. These results are highly statistically significant, 

robust to a variety of different controls, and are qualitatively similar across the three 

definitions of the peer group. The signs on these two commodity prices are intuitive, as corn 

is the most water intensive crop in Kansas, with approximately 35 percent or more of total 

harvested acres being irrigated. On the other hand, wheat is a predominantly dryland crop, 

with approximately 5 percent of total harvested acres being irrigated.  

Model results in Tables 2-3 provide evidence of the impact of climate variables on the 

odds of adopting groundwater for irrigation. Reduced five-year average precipitation is 

associated with greater odds of adopting groundwater in the specifications in columns 1-2. 

However, this result is not robust to the CCE. Similarly, increased five-year averaged 

measures of degree days over 32 degrees Celsius is associated with greater odds of adopting 

groundwater. Again, this relationship is not robust to the CCE. Degree days between 8 and 

32 degrees Celsius, which are widely recognized as favorable growing conditions, are 

positively associated with increased odds of adopting groundwater. The point estimate on 

this variable is statistically significant for four of the five specifications and is similar in 

magnitude across peer group definitions.   
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We report estimates of time-invariant hydrologic and soil characteristics in columns 

1-3 and 7-9 of Tables 2-3. These variables are long-run averages and do not change over 

time. Additionally, geophysical variables are available for only a subset of the total water 

rights obtained from WIMAS. Greater predevelopment depth to water is found to negatively 

affect the odds of groundwater development, though the magnitude is small. This finding is 

consistent with irrigation costs increasing with pumping lift heights. Somewhat surprisingly, 

greater predevelopment saturated thickness and specific yield negatively affect the odds of 

groundwater development. This counterintuitive finding may result from the GMD fixed 

effects. Identification of the effects of predevelopment saturated thickness and specific yield 

comes from within-GMD variation, which is more limited than between-GMD variation 

(Buchanan, et al., 2015). Hydraulic conductivity, the ease with which water moves through 

porous media, is positive, statistically significant, and similar in magnitude across the 

different specifications and different peer group definitions. This is an interesting result in 

several ways. First, the relationship between hydraulic conductivity and groundwater 

adoption is intuitive because hydraulic conductivity determines the rate of groundwater 

movement into a production bore (e.g. water is more readily lifted). Second, drawdown at 

any given point in time is inversely proportional to hydraulic conductivity of the aquifer (e.g. 

transmission from surrounding water-bearing formations is “faster”). Lastly, because water 

is transmitted more easily across space when hydraulic conductivity is high, the gains from 

correcting common-pool extraction inefficiencies is highest (Edwards, 2016). Our results 

provide evidence that regions possessing aquifer characteristics that are beneficial to 

groundwater development are more likely to be adopted, but that this raises the possibility 

for inefficient spatial competition for groundwater over time.  
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The effect of slope is negative and statistically significant, a results which conforms to 

expectation as farms having high slope are likely to experience significant irrigation runoff. 

The coefficient on soil erodibility factor is negative but is only statistically significant for the 

specification in column 3. The sign of this coefficient is expected, as a greater erodibility 

factor implies greater soil losses from the erosive actions of water. The national commodity 

crop productivity index for corn and soybeans is positive but is not statistically significant. 

The coefficients on crop productivity indices for small grains and cotton are negative and 

statistically significant, which is consistent with these crops having a lower water 

requirement than irrigated corn.  

Root zone depth is positive and significant at 5 percent or better across specifications 

and peer group definitions. Root zone available water storage is positive but only statistically 

significant for the specification in column 1. Greater root zone depth and available water 

storage allows more irrigation water to be stored in the root zone, which is then gradually 

used by the plants. If large amounts of plant-available water can be stored in root zones then 

irrigation schedules can be designed over longer intervals, effectively lowering the variable 

costs of irrigation. The total silt per unit soil is positive, a finding that is intuitive because silt 

textures will generally have good amounts of plant available water (e.g. compared to clay 

textures). The coefficient on bulk density is expected. Bulk density and organic matter are 

inversely related and lesser bulk density will more readily infiltrate water to plant root 

zones. Lastly, the drought vulnerability dummy is positive and highly significant. Thus, 

growers facing soil conditions which are vulnerable to drought have greater odds of adopting 

groundwater. Our finding in this regard is consistent with groundwater irrigation as a 

measure to adapt to conditions of water shortages.   
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To summarize, we find strong evidence of peer effects in the adoption of groundwater 

for irrigation. We also find strong evidence that commodity prices, and hydrologic and soil 

characteristics most related to water storage and plant availability influence adoption. We 

find mixed evidence of climatic conditions influencing the adoption of groundwater.  

 

Additional Analyses and Robustness Checks 

Spatial competition  

While the previous literature has shown that hydraulic conductivity can lead to inefficient 

spatial competition over groundwater (Pfeiffer and Lin, 2012, Edwards, 2016), we 

hypothesize that the peer effect may intensify in regions where water moves rapidly across 

space. Table 5 demonstrates this intensifying effect of hydraulic conductivity as the number 

of adopters within the peer group increases. Column 1 reports estimates from the 13 nearest 

neighbor peer group and column 2 reports estimates from the 25 nearest neighbor peer 

group. Both peer group definitions are specified with GMD effects and trends and CCE.  

 Taken together, the results in columns 1 and 2 provide evidence that hydraulic 

conductivity influences the effects of previous peer group adopters on groundwater 

adoption. The results in columns 1 and 2 indicate that the effect of hydraulic conductivity on 

groundwater adoption is greater when there is a positive number of previous adopters 

within the peer group. Moreover, this effect is weakly increasing in the number of previous 

adopters. This finding is consistent with prevailing narratives of groundwater exploitation 

as spatial competition over a common pool resource (e.g. Pfeiffer and Lin, 2012, Edwards, 

2016).  
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Matching water rights ownership 

One potential concern in the spatial water rights data obtained from WIMAS is the possibility 

for one entity to hold multiple water rights. If a single entity serially adopts water rights 

within the same vicinity, then this could bias estimates of peer effects. We obtain the most 

recent correspondence list for water rights permits from the Kansas Division of Water 

Resources. This data provides names and addresses for 24,654 entities currently holding 

water rights. This is not the most ideal correspondence data, as there has been consolidation 

of water rights over time. However, insofar as water rights have been consolidated, this 

should result in a conservative estimate of ownership. This data reveal that approximately 

45 percent of water rights holders have a single water right. Approximately 90 percent of 

water rights holders have five or fewer water rights.  

 We spatially match the correspondence data to the point of diversion data obtained 

from WIMAS. We then find the nearest 13 and 25 neighbors by distance, omitting 

neighboring water rights that list the same name and address as the focal water right. We 

estimate the same specifications as columns 3-5 of Tables 2 and 3. The results are entirely 

consistent with the results in Tables 2 and 3 and we therefore do not report them here.  

 

Linear probability model and peer group definition 

We perform several robustness checks on our primary results in Tables 2-3. Columns 1 and 

2 of Table 6 show the results for the 13 and 25 nearest neighbor peer group estimated using 

a linear probability model (LPM) using year and water right fixed effects and CCE to control 

for idiosyncratic per-period shocks to adoption (the logit models did not converge with 

water right and year fixed effects). The LPM results are consistent with the logit results. The 
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coefficients on the lagged number of adopters are positive and highly statistically significant 

for both peer group definitions. Comparison of the size of the coefficients between LPM and 

logit is not straightforward, however. With the LPM, there is a constant impact of the lagged 

number of adopters within the peer group on the dependent variable. In particular, an 

increase in the number of adopters in the previous year increases the probability of adopting 

groundwater by 1.5 percent and 0.9 percent for the 13 nearest neighbors and 25 nearest 

neighbors, respectively. No such straightforward statements are possible for the logit results 

in Tables 2-3 because the impact of any variable is nonlinear. Viewing the LPM results in 

relation to the predicted margins in Table 4 reveals that the logit produces more 

conservative marginal effects than the LPM. These results can be viewed as corroborating 

our previous results, which we view as preferable due to the logit model’s better fitting 

nonlinearities for probabilities close to zero. 

Columns 3-4 of Table 6 repeat column 3 of Tables 2 and 3 but define the peer group 

at the 1.0 and 1.5 km spatial buffer around the water right, respectively. By comparison, the 

average distance of a water right’s 13 and 25 nearest neighbors is approximately 2.2 km and 

2.9 km with standard deviations of 2.3 km and 2.6 km, respectively. For both the 1.0 km and 

1.5 km peer group, coefficient estimates of peer effects are positive and statistically 

significant at 1 percent. Looking across columns 3-4, coefficient estimates are close to the 

estimates obtained from the 25 nearest neighbor peer group definition. The smaller 

magnitude point estimate on the 1.5 km peer group specification is consistent with our 

earlier finding that peer effects diminish with distance. The coefficients on the hydrological, 

climate, and price covariates are generally similar to our primary results in Tables 2 and 3. 

One exception is the coefficient on degree days over 32 Celsius, which is positive and 
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significant at the 10 percent level or better. This is consistent with irrigation being a form of 

climate adaptation. 

Lastly, we define the peer group at the level of the SD but reserve these results to an 

online appendix. The SD is a potentially significant source of socioeconomic interaction, 

especially in rural communities. At the SD level, coefficient estimates of peer effects are 

positive (though small in magnitude) and statistically significant at 5 percent or better when 

SD effects are excluded. Including SD effects results in the point estimate on the lagged 

number of adopters to not be statistically significant. This is not surprising given the large 

areal definition of a SD as the relevant peer group, especially in western Kansas where SD 

are large and groundwater is most prevalent (Fig. 2). As previously mentioned, estimates 

based on the SD may also be subject to some measurement error because of bias for growers 

on the boundary of a district (e.g. areal bias) (Fotheringham and Wong, 1991). Additionally, 

unobserved time-invariant factors at the SD level that are negatively (positively) correlated 

with the number of adopters would result in an estimate that is larger (smaller) in magnitude 

than the true causal effect because the installed base would proxy for the unobservables. 

This could be the case, for instance, if some SDs inherently have more proclivity to 

agricultural experimentation. Comparing columns 1-3 and 4-5 provides some evidence that 

this might in fact be the case. In sum, these results underscore the importance of exploiting 

individual-level panel data which allows for peer group fixed effects rather than aggregate 

or cross sectional data as there is tendency to mistake unobserved factors for peer effects. 

 

Conclusion  



25 
 

This paper studies the role of peer effects using unique and highly disaggregated data on 

groundwater rights for agricultural irrigation in Kansas. We find strong evidence for causal 

peer effects, indicating that an additional groundwater adopter within the peer group 

increases the relative odds of adoption by 9 percent on average. The relative odds estimates 

translate into an increase in the probability of adoption from 2 percent with zero 

neighboring adopters to 5 percent with 10 (of 13) neighboring adopters. These peer effects 

appear to diminish over distance. We find some evidence that climate is a factor in the 

adoption of groundwater, consistent with narratives that groundwater is a mechanism for 

climate adaptation. These findings have clear policy relevance for decision makers who 

strive to steer and accelerate adoption of social desirable technologies.   
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Tables 

Table 1. Summary statistics* 

Variable (units) Definition Mean Std.D Min Max 

Stream Distance (meters) Distance from location to nearest major stream 36,845.2 30,893.6 0.0 127,651.2 

Precipitation (mm) Five year moving average of annual rainfall 417.6 109.0 182.7 1,027.4 

Degree days over 32C 

(degrees*days) 

Five year moving average of annual count of time 

spent greater than 32C 42.6 13.5 5.8 105.3 

Degree days between 8 and 32C 

(degrees*days) 

Five year moving average of annual count of time 

spent greater than 8C and less than 32C 2,057.3 129.3 1,668.1 2,423.8 

Palmer Drought Severity Index 

(PDSI) 

Five year moving average of April-September 

PDSI 0.7 1.5 -4.4 3.1 

Corn Price ($/bu) Five year moving average of  cash received, 

Kansas 7.8 4.0 2.9 17.6 

Wheat Price ($/bu) Five year moving average of  cash received, 

Kansas 9.5 4.6 3.8 19.5 

Predevelopment depth to water (feet) Distance from surface to top of water table prior 

to groundwater development 80.5 56.2 0.0 277.0 

Predevelopment saturated thickness 

(feet) 

Extent of saturated portion of aquifer prior to 

groundwater development 186.5 118.6 0.0 619.7 

Specific Yield Aquifer yield ratio 16.6 3.5 5.0 25.0 

Hydraulic Conductivity (ft/day) Ease with which water moves through aquifer 277.8 95.1 45.9 476.3 

Slope (%) Soil slope 2.1 2.6 0.0 24.3 

Elevation (meters) Distance above sea level 786.4 273.3 202.7 1,631.0 

Available Water Capacity (cm/cm) Amount of water in soil available to plants 17.00 4.00 5.00 23.00 

Soil Erodibility Factor (%) Susceptibility of erosion by water 37.0 9.9 2.0 62.2 

Carbonate (%) Quantity of carbonate in soild 3.7 3.2 0.0 30.0 

Sodium Absorption Ration (%) Amount of sodium relative to calcium and 

magnesium 0.4 1.7 0.0 27.2 

Soil Reaction (pH) Soil pH level 7.5 0.5 5.2 8.5 
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Soil Organic Carbon (g/m2) Total organic carbon in soil 9,028.6 3,809.1 221.8 26,855.6 

National Commodity Crop 

Productivity Index - Corn/Soybeans 

(%) 

Soil productivity measure for corn/soybeans 

34.5 13.3 1.1 89.1 

National Commodity Crop 

Productivity Index - Small Grains 

(%) 

Soil productivity measure for small grains 

34.9 11.1 1.0 82.1 

National Commodity Crop 

Productivity Index - Cotton (%) 

Soil productivity measure for cotton 

11.6 14.8 0.0 67.6 

Root Zone Depth (cm) Depth to which crops can extract water/nutrients 149.5 7.3 2.3 151.0 

Root Zone Available Water Storage 

(mm) 

Volume of plant available storage in root zone 

254.2 50.7 4.7 335.0 

Wind Erodibility Index 

(tons/acre/year) 

Susceptibility of soil erosion from wind 

71.5 33.0 0.0 250.0 

Sand Total (%) Total sand per unit soil 31.1 23.5 2.0 97.4 

Silt Total (%)  Total silt per unit soil 45.3 18.3 0.6 71.8 

Organic Matter (%) Total organic matter per unit soil 0.8 0.3 0.1 2.8 

Bulk Density (g/cm3) Weight of soil per unit volume 1.4 0.1 1.2 1.8 

Drought Soil Landscape (in) Drought vulnerable soils, binary 0,1 0.1 0.2 0.0 1.0 

* The summary statistics are based on a balanced panel of 22,541 water right identifications over 64 years (1951-2014), resulting in a 

sample size of 1,442,624. 
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Table 2. Odds ratios for primary specifications for the 13 nearest neighbors by distance peer group. 

 GMD FE GMD FE and time 

trends 

GMD FE and time 

trends, cce 

GMD and SD 

FE, cce 

SD FE, GMD time 

trends, cce 

  (1) (2) (3) (4) (5) 

Lagged number of adopters 1.091*** 1.091*** 1.084*** 1.102*** 1.100*** 

 (0.0099) (0.0096) (0.0108) (0.0079) (0.0073) 

State time trend 1.099*** 1.080*** 1.009 1.032*** 1.029*** 

 (0.0047) (0.0070) (0.0090) (0.0046) (0.0050) 

Stream distance 1.000 1.000 1.000 1.000 1.000 

 (1.01E-06) (9.48E-07) (8.84E-07) (1.72E-06) (1.78E-06) 

Average distance to neighbors 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 

 (1.93E-05) (1.89E-05) (1.92E-05) (1.57E-05) (1.50E-05) 

Palmer drought severity index 1.012 1.031 0.964 0.969 0.972 

 (0.0244) (0.0281) (0.0291) (0.0208) (0.0218) 

Precipitation 0.998** 0.998*** 1.000 1.001 1.001 

 (0.0007) (0.0007) (0.0008) (0.0006) (0.0006) 

Degree days over 32C 0.981*** 0.981*** 1.004 1.004 1.004 

 (0.0030) (0.0031) (0.0033) (0.0025) (0.0026) 

Degree days between 8C and 32C 1.002*** 1.002*** 0.999 1.002*** 1.002*** 

 (0.0005) (0.0005) (0.0005) (0.0006) (0.0005) 

Corn price 1.768*** 1.783*** 1.238*** 1.330*** 1.335*** 

 (0.0908) (0.0933) (0.0757) (0.0584) (0.0549) 

Wheat price 0.846*** 0.839*** 0.859*** 0.861*** 0.862*** 

 (0.0236) (0.0242) (0.0241) (0.0191) (0.0186) 

Predevelopment depth to water 0.999** 0.999** 0.999*   

 (4.63E-04) (4.76E-04) (4.67E-04)   

Predevelopment saturated thickness 0.999*** 0.999*** 0.999***   

(2.93E-04) (3.25E-04) -(3.21E-04)   

Specific yield 0.991* 0.991** 0.991**   
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 (0.0048) (0.0048) (0.0047)   

Hydraulic conductivity 1.001*** 1.001*** 1.000**   

 (0.0002) (0.0002) (0.0002)   

Slope 0.978** 0.981** 0.975***   

 (0.0090) (0.0093) (0.0091)   

Elevation 1.000 1.000 1.000   

 (1.16E-04) (1.17E-04) (1.12E-04)   

Available water capacity 0.791 0.792 0.481   

 (1.396) (1.355) (0.807)   

Soil erodibility factor  0.988 0.989 0.987*   

 (0.0076) (0.0076) (0.0076)   

Carbonate 0.974*** 0.969*** 0.975***   

 (0.0090) (0.0096) (0.0093)   

Sodium absorption ratio 0.996 0.995 0.994   

 (0.0092) (0.0092) (0.0093)   

Soil reaction 1.027 1.027 0.993   

 (0.0818) (0.0841) (0.0853)   

Soil organic carbon 1.000 1.000 1.000   

 (1.37E-05) (1.34E-05) (1.27E-05)   

National commodity crop productivity index 

- corn/soybeans 

1.01 1.01 1.007   

(0.0073) (0.0071) (0.0070)   

National commodity crop productivity index 

- small grains 
0.970*** 0.969*** 0.974***   

(0.0082) (0.0082) (0.0081)   

National commodity crop productivity index 

- cotton 
0.993*** 0.993*** 0.994***   

(0.0015) (0.0016) (0.0015)   

Root zone depth 1.006** 1.005** 1.005**   

 (0.0024) (0.0024) (0.0022)   

Root zone available water storage 1.002* 1.002 1.002   

 (0.0013) (0.0013) (0.0012)   
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Wind erodibility index 1.000 1.000 0.999   

 (0.0009) (0.0009) (0.0009)   

Sand total 1.001 1.001 1.000   

 (0.0042) (0.0043) (0.0040)   

Silt total 1.017** 1.016** 1.014**   

 (0.0070) (0.0069) (0.0066)   

Organic matter 1.196 1.193 1.16   

 (0.1840) (0.1850) (0.1700)   

Bulk density 0.168*** 0.173*** 0.163***   

 (0.0510) (0.0579) (0.0566)   

Drought soil landscape  1.747*** 1.693*** 1.601***   

 (0.176) (0.179) (0.165)   

Statewide adoption    107,665*** 395.3*** 737.0*** 

   (147,049) (194.9) (390.5) 

GMD 1 adoption   50.89** 18.05*** 46.26*** 

   (90.9) (16.60) (46.97) 

GMD 2 adoption   6.179  5.584* 2.9  

   (9.33) (5.23) (3.66) 

GMD 3 adoption   84.33*** 454.4*** 105.8*** 

   (123.10) (335.2) (91.5) 

GMD 4 adoption   33.47*** 79.73*** 47.14*** 

   (40.78) (64.73) (37.64) 

GMD 5 adoption   21.60** 634.1*** 47.34*** 

   (30.19) (618.3) (43.9) 

Constant 
6.94e-

05*** 
0.000136*** 1.026 1.77e-05*** 7.25e-06*** 

 (1.21E-04) (2.22E-04) (1.84) (2.98E-05) (8.60E-06) 

R2 0.14  0.14  0.15  0.14  0.14  

Observations 399,919 399,919 399,919 746,719 746,719 
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Standard errors clustered at SD in parentheses 

*** p<0.01, ** p<0.05, * p<0.1     
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Table 3. Odds ratios for primary specifications for the 25 nearest neighbors by distance peer group. 

 GMD FE GMD FE and time 

trends 

GMD FE and time 

trends, cce 

GMD and SD 

FE, cce 

SD FE, GMD time 

trends, cce 

  (1) (2) (3) (4) (5) 

Lagged number of adopters 1.052*** 1.052*** 1.048*** 1.059*** 1.058*** 

 (0.0059) (0.0058) (0.0066) (0.0049) (0.0045) 

State time trend 1.095*** 1.075*** 1.005 1.028*** 1.025*** 

 (0.0051) (0.0073) (0.0094) (0.0049) (0.0052) 

Stream distance 1.000 1.000 1.000 1.000 1.000 

 (1.01E-06) (9.36E-07) (8.69E-07) (1.56E-06) (1.63E-06) 

Average distance to neighbors 1.000*** 1.000*** 1.000*** 1.000*** 1.000*** 

 (1.90E-05) (1.89E-05) (1.84E-05) (1.35E-05) (1.28E-05) 

Palmer drought severity index 1.009 1.029 0.963 0.966 0.97 

 (0.0241) (0.0280) (0.0290) (0.0207) (0.0219) 

Precipitation 0.998*** 0.998*** 1.000 1.001 1.001 

 (0.0007) (0.0007) (0.0008) (0.0006) (0.0006) 

Degree days over 32C 0.980*** 0.980*** 1.003 1.003 1.003 

 (0.0030) (0.0031) (0.0033) (0.0026) (0.0026) 

Degree days between 8C and 32C 1.002*** 1.002*** 0.999 1.002*** 1.002*** 

 (0.0005) (0.0005) (0.0005) (0.0006) (0.0005) 

Corn price 1.756*** 1.773*** 1.233*** 1.322*** 1.329*** 

 (0.0911) (0.0937) (0.0761) (0.0588) (0.0554) 

Wheat price 0.849*** 0.840*** 0.861*** 0.863*** 0.864*** 

 (0.0240) (0.0245) (0.0243) (0.0194) (0.0189) 

Predevelopment depth to water 0.999* 0.999* 0.999   

 (4.33E-04) (4.45E-04) (4.41E-04)   

Predevelopment saturated thickness 0.999*** 0.999*** 0.999***   

(2.82E-04) (3.16E-04) (3.15E-04)   

Specific yield 0.993 0.992* 0.992*   
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 (0.0044) (0.0045) (0.0044)   

Hydraulic conductivity 1.000** 1.000** 1.000*   

 (0.0002) (0.0002) (0.0002)   

Slope 0.976*** 0.979** 0.973***   

 (0.0087) (0.0089) (0.0088)   

Elevation 1.000 1.000 1.000   

 (1.13E-04) (1.14E-04) (1.10E-04)   

Available water capacity 0.949 0.936 0.565   

 (1.6780) (1.6130) (0.9520)   

Soil erodibility factor  0.988 0.989 0.987*   

 (0.0077) (0.0077) (0.0077)   

Carbonate 0.975*** 0.970*** 0.976***   

 (0.0089) (0.0094) (0.0093)   

Sodium absorption ratio 0.995 0.994 0.993   

 (0.0091) (0.0092) (0.0092)   

Soil reaction 1.060 1.061 1.025   

 (0.0846) (0.0871) (0.0885)   

Soil organic carbon 1.000 1.000 1.000   

 (1.32E-05) (1.31E-05) (1.24E-05)   

National commodity crop productivity index 

- corn/soybeans 

1.009 1.01 1.007   

(0.0069) (0.0067) (0.0067)   

National commodity crop productivity index 

- small grains 
0.972*** 0.971*** 0.975***   

(0.0079) (0.0079) (0.0078)   

National commodity crop productivity index 

- cotton 
0.993*** 0.993*** 0.994***   

(0.0014) (0.0016) (0.0015)   

Root zone depth 1.006** 1.005** 1.004*   

 (0.0024) (0.0024) (0.0022)   

Root zone available water storage 1.002* 1.002 1.002   

 (0.0012) (0.0012) (0.0012)   
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Wind erodibility index 1.001 1.000 1.000   

 (0.0009) (0.0009) (0.0009)   

Sand total 1.001 1.000 0.999   

 (0.0041) (0.0042) (0.0039)   

Silt total 1.017** 1.016** 1.014**   

 (0.0070) (0.0069) (0.0066)   

Organic matter 1.136 1.133 1.105   

 (0.1740) (0.1760) (0.1620)   

Bulk density 0.192*** 0.198*** 0.186***   

 (0.0583) (0.0664) (0.0647)   

Drought soil landscape  1.711*** 1.662*** 1.575***   

 (0.168) (0.170) (0.156)   

Statewide adoption    139,246*** 451.5*** 820.4*** 

   (189,322) (224.1) (438.5) 

GMD 1 adoption   35.42** 11.40*** 37.51*** 

   (63.27) (10.24) (38.73) 

GMD 2 adoption   5.32 5.708* 2.880  

   (8.045) (5.404) (3.73) 

GMD 3 adoption   55.22*** 324.5*** 79.69*** 

   (80.18) (237.0) (69.50) 

GMD 4 adoption   23.04*** 57.21*** 37.77*** 

   (27.82) (46.50) (30.13) 

GMD 5 adoption   17.17** 554.1*** 46.46*** 

   (23.70) (534) (42.40) 

Constant 
6.68e-

05*** 
0.000133*** 0.943 2.40e-05*** 9.93e-06*** 

 (1.18E-04) (2.21E-04) (1.72) (4.10E-05) (1.20E-05) 

R2 0.14  0.14  0.15  0.14  0.14  

Observations 399,919 399,919 399,919 746,719 746,719 
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Standard errors clustered at SD in parentheses  

*** p<0.01, ** p<0.05, * p<0.1     
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Table 4. Response margins for adoption evaluated at different numbers of lagged adopters in the peer group. *  

 13 Nearest Neighbors  25 Nearest Neighbors 

 

GMD FE and time 

trends, cce 

GMD and SD FE, 

cce 

SD FE, GMD time 

trends, cce 

 GMD FE and time 

trends, cce 

GMD and SD FE, 

cce 

SD FE, GMD time 

trends, cce 

Lagged 

number 

of 

adopters Margin Std. Err Margin Std. Err Margin Std. Err  Margin Std. Err Margin Std. Err Margin Std. Err 

0 0.0219 1.07E-03 0.0192 5.89E-04 0.0193 5.46E-04  0.0212 1.14E-03 0.0185 6.88E-04 0.0186 6.35E-04 

1 0.0239 9.93E-04 0.0213 5.28E-04 0.0213 4.95E-04  0.0223 1.08E-03 0.0196 6.50E-04 0.0197 0.00E+00 

5 0.0334 1.08E-03 0.0316 6.31E-04 0.0313 6.28E-04  0.0273 8.83E-04 0.0246 4.86E-04 0.0247 4.61E-04 

10 0.0507 3.31E-03 0.0514 2.46E-03 0.0503 2.32E-03  0.0351 1.18E-03 0.0330 6.84E-04 0.0326 6.78E-04 

12 0.0597 4.89E-03 0.0622 3.75E-03 0.0607 3.51E-03  0.0388 1.58E-03 0.0370 9.99E-04 0.0365 9.70E-04 

15        0.0450 2.47E-03 0.0440 1.68E-03 0.0431 1.59E-03 

20        0.0576 4.67E-03 0.0582 3.40E-03 0.0566 3.15E-03 

24        0.0699 7.16E-03 0.0728 5.40E-03 0.0703 4.94E-03 

* Calculated at the means of all covariates.  
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Table 5. Intensifying peer effect with hydraulic conductivity. 

 13 nearest 

neighbors 

25 nearest 

neighbors 

  (1) (2) 

Lagged number of adopters 1.063** 1.035** 

 (0.0300) (0.0170) 

1 lagged adopters # hydraulic conductivity  1.001*** 1.002*** 

(2.32E-04) (2.61E-04) 

2 lagged adopters # hydraulic conductivity  1.002*** 1.002*** 

(3.05E-04) (3.07E-04) 

3 lagged adopters # hydraulic conductivity  1.002*** 1.002*** 

(3.78E-04) (3.27E-04) 

4 lagged adopters # hydraulic conductivity  1.002*** 1.002*** 

(4.42E-04) (4.16E-04) 

5 lagged adopters # hydraulic conductivity  1.002*** 1.002*** 

(4.94E-04) (4.50E-04) 

6 lagged adopters # hydraulic conductivity  1.002*** 1.002*** 

(5.26E-04) (4.42E-04) 

7 lagged adopters # hydraulic conductivity  1.002*** 1.003*** 

(6.54E-04) (5.19E-04) 

8 lagged adopters # hydraulic conductivity  1.002*** 1.003*** 

(7.05E-04) (5.10E-04) 

9 lagged adopters # hydraulic conductivity  1.002** 1.003*** 

(7.52E-04) (5.73E-04) 

10 lagged adopters # hydraulic conductivity  1.002** 1.003*** 

(8.01E-04) (5.71E-04) 

11 lagged adopters # hydraulic conductivity  1.002** 1.003*** 

(8.64E-04) (6.46E-04) 

12 lagged adopters # hydraulic conductivity  1.002* 1.003*** 

(1.02E-03) (6.71E-04) 

13 lagged adopters # hydraulic conductivity  1.001 1.003*** 

(1.06E-03) (7.02E-04) 

14 lagged adopters # hydraulic conductivity   1.003*** 

 (7.58E-04) 

15 lagged adopters # hydraulic conductivity   1.002*** 

 (7.74E-04) 

16 lagged adopters # hydraulic conductivity   1.003*** 

 (7.69E-04) 

17 lagged adopters # hydraulic conductivity   1.003*** 

 (8.53E-04) 
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18 lagged adopters # hydraulic conductivity   1.003*** 

 (8.89E-04) 

19 lagged adopters # hydraulic conductivity   1.003*** 

 (9.11E-04) 

20 lagged adopters # hydraulic conductivity   1.003*** 

 (8.94E-04) 

21 lagged adopters # hydraulic conductivity   1.003*** 

 (9.92E-04) 

22 lagged adopters # hydraulic conductivity   1.003*** 

 (0.0010) 

23 lagged adopters # hydraulic conductivity   1.002** 

 (0.0010) 

24 lagged adopters # hydraulic conductivity   1.002* 

 (0.0012) 

25 lagged adopters # hydraulic conductivity   1.002 

 (0.0013) 

State time trend 1.012 1.008 

 (0.0082) (0.0084) 

Stream distance 1.000 1.000 

 (8.76E-07) (8.73E-07) 

Average distance to neighbors 1.000*** 1.000*** 

 (1.99E-05) (1.87E-05) 

Palmer drought severity index 0.949* 0.943* 

 (0.0285) (0.0284) 

Precipitation 1.000 1.000 

 (7.94E-04) (7.83E-04) 

Degree days over 32C 1.005 1.006* 

 (0.0033) (0.0033) 

Degree days between 8C and 32C 0.999** 0.999** 

 (4.65E-04) (4.65E-04) 

Corn price 1.221*** 1.216*** 

 (0.0753) (0.0762) 

Wheat price 0.876*** 0.882*** 

 (0.0240) (0.0244) 

Predevelopment depth to water 0.999* 1.000 

 (4.54E-04) (4.28E-04) 

Predevelopment saturated thickness 0.999*** 0.999*** 

(3.25E-04) (3.22E-04) 

Specific yield 0.990** 0.991* 

 (0.0047) (0.0046) 
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Hydraulic conductivity 0.999 0.998*** 

 (6.80E-04) (7.36E-04) 

Slope 0.978** 0.975*** 

 (0.0096) (0.0095) 

Elevation 1.000 1.000 

 (1.14E-04) (1.11E-04) 

Available water capacity 0.491 0.566 

 (0.8320) (0.9600) 

Soil erodibility factor  0.987* 0.987* 

 (0.0076) (0.0077) 

Carbonate 0.975*** 0.977** 

 (0.0092) (0.0091) 

Sodium absorption ratio 0.996 0.996 

 (0.009) (0.009) 

Soil reaction 0.971 0.983 

 (0.0836) (0.0869) 

Soil organic carbon 1.000 1.000 

 (1.28E-05) (1.26E-05) 

National commodity crop productivity index - 

corn/soybeans 

1.008 1.008 

(7.07E-03) (6.88E-03) 

National commodity crop productivity index - small 

grains 
0.973*** 0.974*** 

(0.0081) (0.0080) 

National commodity crop productivity index - cotton 0.994*** 0.995*** 

(0.0015) (0.0015) 

Root zone depth 1.005** 1.005** 

 (0.0023) (0.0023) 

Root zone available water storage 1.002 1.002 

 (0.0012) (0.0011) 

Wind erodibility index 0.999 1.000 

 (0.0009) (0.0009) 

Sand total 1.000 0.999 

 (0.0040) (0.0039) 

Silt total 1.015** 1.014** 

 (0.0066) (0.0064) 

Organic matter 1.157  1.114  

 (0.170) (0.162) 

Bulk density 0.162*** 0.188*** 

 (0.0556) (0.0659) 

Drought soil landscape  1.659*** 1.636*** 

 (0.181) (0.171) 

Constant 1.404 1.666 
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 (2.404) (2.941) 

R2 0.15  0.15  

Observations 399,919 399,918 

Standard errors clustered at SD in parentheses 

*** p<0.01, ** p<0.05, * p<0.1  
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Table 6. Linear probability model and 1.0 and 1.5 km estimates. 

 

13 nearest 

neighbors 

 25 nearest 

neighbors 

 1.0 km  1.5 km 

  (1)  (2)  (3)  (4) 

Lagged number of adopters 0.0150***  0.00935***  1.061***  1.051*** 

 (0.0007)  (0.0004)  (0.0203)  (0.0162) 

State time trend 0.00550***  0.00475***  1.025***  1.022** 

 (0.0008)  (0.0008)  (0.0092)  (0.0090) 

Stream distance     1.000  1.000 

     
(1.13E-

06) 
 

(1.10E-

06) 

Palmer drought severity index 0.0201***  0.0201***  0.97  0.97 

 (0.0029)  (0.0029)  (0.0303)  (0.0297) 

Precipitation 1.590E-05  7.210E-06  1.000  1.000 

 (3.21E-05)  (2.81E-05)  (0.0009)  (0.0008) 

Degree days over 32C 0.00112***  0.000979***  1.008**  1.006* 

 (2.16E-04)  (2.01E-04)  (0.0035)  (0.0035) 

Degree days between 8C and 32C -9.82e-05**  -6.86e-05*  0.999**  0.999* 

 (4.24E-05)  (3.97E-05)  (0.0005)  (0.0005) 

Corn price 0.0384***  0.0384***  1.271***  1.267*** 

 (0.0057)  (0.0058)  (0.0760)  (0.0758) 

Wheat price -0.00447***  -0.00461***  0.850***  0.852*** 

 (0.0011)  (0.0011)  (0.0238)  (0.0236) 

Predevelopment depth to water -0.00447***    0.998***  0.998*** 

 (0.0011)    
(5.94E-

04) 
 

(5.74E-

04) 

Predevelopment saturated thickness     0.999**  0.999** 
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(4.14E-

04) 
 

(4.15E-

04) 

Specific yield     0.990*  0.989* 

     (0.0060)  (0.0057) 

Hydraulic conductivity     1.001**  1.001*** 

     (0.0003)  (0.0003) 

Slope     0.958***  0.963*** 

     (0.0103)  (0.0102) 

Elevation     1.000  1.000 

     
(1.39E-

04) 
 

(1.32E-

04) 

Available water capacity     0.121  0.184 

     (0.2250)  (0.3330) 

Soil erodibility factor      0.985  0.984* 

     (0.0096)  (0.0087) 

Carbonate     0.973**  0.975** 

     (0.0112)  (0.0107) 

Sodium absorption ratio     0.987  0.989 

     (0.0109)  (0.0102) 

Soil reaction     0.926  0.931 

     (0.0932)  (0.0931) 

Soil organic carbon     1.000  1.000* 

     
(1.35E-

05) 
 

(1.38E-

05) 

National commodity crop productivity index - 

corn/soybeans 

    1.008  1.007 

    (0.0085)  (0.0083) 

National commodity crop productivity index - small 

grains 
    0.969***  0.970*** 

    (0.0098)  (0.0095) 

National commodity crop productivity index - cotton     0.993***  0.994*** 

    (0.0018)  (0.0017) 
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Root zone depth     1.006*  1.005 

     (0.0030)  (0.0028) 

Root zone available water storage     1.002  1.002* 

     (0.0015)  (0.0014) 

Wind erodibility index     0.999  0.999 

     (0.0011)  (0.0010) 

Sand total     1.002  1.002 

     (0.0049)  (0.0047) 

Silt total     1.020**  1.020*** 

     (0.0080)  (0.0074) 

Organic matter     1.287  1.302 

     (0.2090)  (0.2120) 

Bulk density     0.0731***  0.0772*** 

     (0.0272)  (0.0302) 

Drought soil landscape      1.642***  1.602*** 

     (0.185)  (0.180) 

Statewide adoption     51,464***  60,108*** 

     (69,555)  (82,155) 

GMD 1 adoption     162.8***  94.30*** 

     (270.9)  (163.3) 

GMD 2 adoption     7.231  7.074 

     (10.78)  (10.62) 

GMD 3 adoption     221.6***  221.7*** 

     (318.9)  (330.7) 

GMD 4 adoption     78.80***  78.18*** 

     (94.72)  (97.20) 

GMD 5 adoption     35.05***  32.84** 

     (47.68)  (45.56) 

Constant -0.298***  -0.337***  3.841  2.801 
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 (0.107)  (0.103)  (7.524)  (5.525) 

R2 0.11   0.11   0.14   0.15  

Observations 746,780   741,829   351,461  387,549 

Standard errors clustered at SD in parentheses 

*** p<0.01, ** p<0.05, * p<0.1       
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Figures 

 

Figure 1. New groundwater adoptions per year (left) and cumulative adoptions over time 
(right).  
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Figure 2. Spatial pattern of groundwater adoption. Clockwise from top-left: 1950, 1960, 
1970, 2000.  
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Figure 3. Location of GMDs and groundwater wells.  
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Monte Carlo Simulation 

In order to investigate the impacts of omitting individuals that never adopt and omitting 

observations subsequent to the first time an individual acquired a right, we generated 

returns according to 

( 1)it it g t i t itx z z y           

where i  denotes the individual, t  the time period, and g  the group. We simulated returns 

for 50 groups, each with 50 individuals, and each individual with 50 observations (i.e., 50t 

), giving a total of 125,000 observations across 2,500 individuals. We drew each of the 

variables as follows: ~ (0,6)itx N , ~ (0,4)gz N , 15 0.2tz t   , and ~it IID Gumbel .  We set 

1  , 1  , 1  , and 0.5  . Adoption occurred when 0it  . Table A1 reports the 

average estimates for   from 100 simulations when all observations are used, when 

observations for non-adopters are omitted, when post-adoption observations are omitted, 

and when both are omitted. The first thing to note is that even when all of the data is included, 

the peer effect estimate is slightly below the true value (column 1). We found that whenever 

there are individuals that never adopt, the peer effect estimate is attenuated downward, even 

when the observations for those individuals are included in estimation. Columns 2-4 show 

that omitting non-adopters observations and/or post-adoption observations only attenuates 

the estimate slight more downward.  
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Table A1. Simulation Results 

True Value All Observations 
Omit non-

Adopters 

Omit post-adoption 

observations 

Omit non-

adopters and 

post-adoption 

observations 

0.5 0.4626 0.4615 0.4402 0.4434 

  (0.0064) (0.0065) (0.0116) (0.0120) 
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