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1. Introduction  

During the last few decades, rising concerns about the negative impacts of climate change on 

agriculture, the environment, health, and the economy as a whole have led several developed 

countries to put the reduction and mitigation of Greenhouse Gases Emissions (GHGEs) on their 

political agenda. In 2015, the United States reported to the United Nations Framework Convention 

on Climate Change (UNFCCC) its target of reducing total emissions by 26-28% below 2005 levels 

by 2025 (The White House 2015). While recognizing the essential role of agriculture in sustaining 

human life, it is important to also acknowledge that this sector contributes directly and indirectly 

to about 20% of global GHGEs (IPCC - Intergovernmental Panel on Climate Change).     

The U.S. may choose among several policy alternatives to get agriculture to contribute towards its 

desired emissions target, such as price-based approaches, cap and trade policies, as well as tax 

exemptions or direct subsidies. According to the conventional economic wisdom, taxing emissions 

would be optimal to address the discrepancy between the private and social cost of production due 

to the negative externalities associated with GHGEs. However, taxes on output are preferable when 

the monitoring costs are high, the potential for technological advances in emissions control is 

limited and output can be easily substituted by consumers. These conditions typically hold in the 

case of GHGEs from food production in developed countries (Wirsenius, Hedenus, and Mohlin 

2011).  

As a consequence, in this paper, we focus on analyzing the use of a tax on consumer food purchases 

to reduce carbon emissions from the production and distribution of food in the U.S. Taxing 

consumers rather than producers is preferable to avoid the so called “carbon leakage”, that is, the 

increase in GHGEs in foreign countries due to the U.S. effort to reduce its own GHGEs. More 

specifically, a carbon tax on production may lead to “emission leakage” as it would become more 

profitable for the U.S. producers to move production abroad to avoid the tax. Moreover, this kind 

of policy may harm domestic producers, as consumers would have more incentives to buy 

relatively cheaper foreign products (Edjabou and Smed 2013). So, taxing food consumption rather 

than production would be more cost-effective in this situation. To avoid trade distortions, we 

assume that an export tariff is also charged on domestic agricultural production which is equivalent 

to the carbon tax for each food product. In the absence of the export tariff, producers would be 

incentivized to increase their export, therefore leaving the domestic market underserved.  
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As indicated, our primary goal is to investigate how a carbon tax on food purchases would 

contribute to the achievement of the 2025 U.S. GHGEs reduction target. To accomplish this goal, 

we first estimate the demand for and the GHGEs from the main food product categories purchased 

by U.S. consumers (milk, milk substitutes and yogurt; cheese; meat; poultry; fish; eggs; rice, pasta, 

bread and cereals; sweets; fruit; vegetables and plant based protein foods; fats, oils and 

condiments; mixed dishes; non-alcoholic beverages and alcoholic beverages). Food demand is 

specified according to the Almost Ideal Demand System (AIDS) model developed by Deaton and 

Muellabuer (1980) and is estimated using the USDA’s National Household Food Acquisition and 

Purchase Survey (FoodAPS) data1. Following the approach by Boehm et al. (2016), GHGEs for 

each food group are estimated using the “Economic Input-Output Life Cycle Assessment” (EIO-

LCA) method (Carnegie Mellon University). The economic data required for the EIO-LCA 

implementation are derived from the 2007 input-output tables for 389 industries provided by the 

Bureau of Economic Analysis (BEA), augmented with the Environmentally Extended Input 

Output model of the U.S. Economy (USEEIO) elementary flows developed by the Environmental 

Protection Agency (EPA) 2.  

Next, we compute a suitable carbon tax for each food category, proportional to the social cost of 

GHGEs generated across the product’s entire life cycle. We use the U.S. Environmental Protection 

Agency (EPA)’s social cost per metric ton of carbon dioxide emissions estimated with a 3% 

discount rate (US EPA) as our base case. We also conduct a sensitivity analysis to see how our 

results vary with different discount rates. Using the own-price and cross-price elasticity values 

recovered from the estimated demand parameter and the post-tax prices, we then simulate the new 

market equilibrium under the scenario of carbon taxes implemented simultaneously on domestic 

purchases and on exports of food products. This allows us to evaluate changes in U.S. consumer 

purchasing behavior as well as in the total GHGEs from food acquisition.  

The rising concerns about GHGEs has prompted empirical studies that evaluate carbon taxes on 

food purchases and their impact on social welfare (Edjabou and Smed 2013; Briggs et al. 2013; 

                                                      
1 Data last accessed on October 14, 2016. For more information about FoodAPS, please see the USDA, ERS website 

at: https://www.ers.usda.gov/data-products/foodaps-national-household-food-acquisition-and-purchase-survey/ 
2 Data last accessed on May 10, 2017. For more information about USEEIO data, please see the EPA website at: 

https://catalog.data.gov/dataset/useeio-elementary-flows-and-life-cycle-impact-assessment-lcia-characterization-

factors 
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Caillavet, Fadhuile, and Nichèle 2016). Our research builds on them by integrating them in a 

unique framework. To the best of our knowledge, this represents the first attempt to evaluate the 

deployment of such a carbon tax to reduce GHGEs from the U.S. Moreover, the use of FoodAPS 

data allows for the analysis of Food-Away-From-Home (FAH) purchases, which have been not 

been accounted for in previous studies evaluating the use of carbon taxes on food purchases. 

Finally, unlike previous surveys, FoodAPS emphasizes SNAP and low-income non-SNAP 

households, allowing for a more thorough analysis on the potential recursive effect of the carbon 

tax.  

The rest of the paper is organized as follows. In section 2 we describe the food purchases and 

GHGEs data we employed in this study. Section 3 presents the demand model and the estimation 

method. Our simulation approach is introduced in section 4, while preliminary results are reported 

in section 5. 

 

2. Data 

2.1 Food purchases data 

Food purchases data are obtained from the USDA’s National Household Food Acquisition and 

Purchase Survey (FoodAPS) Public Use Files (PUF)3. FoodAPS is a nationally representative 

survey which collects detailed information on food at home (FAH) and food away from home 

(FAFH) acquisition for 4,826 households over a seven-day period from April 2012 to January 

2013. The households are grouped into four strata: household receiving Supplemental Nutrition 

Assistance Program (SNAP) benefits (n=1,581), non-SNAP households with incomes below 100% 

of the U.S. Federal poverty threshold (FPT) (n=434), non-SNAP households with income between 

100% and 185% of FPT (n=878), and non-SNAP households with income above 185% of FPT 

(n=1,933) (USDA ERS 2016).  

During the survey, participants were asked to report their food acquisitions into two books. The 

first book collects all the purchases of foods and drinks for consumption at home (FAH), while the 

second one reports information on foods and drinks consumed away from home or prepared foods 

                                                      
3 Data last accessed on October 14, 2016. For more information about FoodAPS, please see the USDA, ERS website 

at: https://www.ers.usda.gov/data-products/foodaps-national-household-food-acquisition-and-purchase-survey/ 
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brought to their homes (FAFH). For each shopping trip or FAFH meal, information was collected 

regarding the outlet category, the household’s expenditure on each item as well as the total 

expenditure, the number of items which were bought, the package size and the grams per item.   

Unlike previous surveys, SNAP and low-income non-SNAP households were oversampled in 

FoodAPS, allowing for the analysis of their food purchasing behavior with a sufficiently large 

sample size. Another important attribute of the FoodAPS dataset is that it includes detailed 

household sociodemographic and economic characteristics, as well as the nutrient content of each 

food. 

 

Food group designations  

We allocate foods to the following 14 groups: milk, milk substitutes and yogurt; cheese; meat; 

poultry; fish; eggs; rice, pasta, bread and cereals; sweets; fruit; vegetables and plant based protein 

foods; fats, oils and condiments; mixed dishes; non-alcoholic beverages and alcoholic beverages. 

A detailed description of the groups is reported in Table 1, while Table 2 shows the average market 

share and average price per kilogram for each group. 

 

Household cohorts 

Following Caillavet et al. (2016), we group households with similar demographic characteristics 

into cohorts. Specifically, we define 96 cohorts based on the household’s income relative to the 

FPT (below or above 100% of FPT), participation to the SNAP program, size (1,2,3,4,5 or above 

5 members) and number of children (1, 2 or above 2). This allows us to control for consumers’ 

heterogeneity in food consumption and to evaluate the differential impact of the carbon tax on 

diverse socio-economic classes. Food at home (FAH) acquisitions are observed for 36 weeks, 

resulting in an unbalanced panel of 1,547 observations. 
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Table 1. Food groups definition. 

Name Description 

Milk, milk substitutes and yogurt 
Milk, flavored milk, dairy drinks and substitutes, 

yogurt 

Cheese Cheese, cottage/ricotta cheese 

Beef and Pork meat Meats and cold cuts and cured meats 

Poultry Chicken, turkey, duck and other poultry 

Fish Fish and shellfish 

Eggs Eggs and omelets 

Rice, pasta, bread and cereals Rice, pasta, cooked grains, breads, rolls, tortillas, quick 

breads, bread products, ready-to-eat cereals, cooked 

cereals, savory snacks, crackers 

Sweets 
Snack, meal bars, sweet bakery products, candy and 

chocolates, ice cream, pudding, other desserts, sugar, 

jams, syrups 

Fruits Fresh, canned and frozen fruits 

Vegetables and plant-based protein foods  Fresh, canned and frozen vegetables, potatoes, plant 

based protein foods 

Fats, oils and condiments Fats and oils, condiments and sauces 

Non-alcoholic beverages 100% juice, diet beverages, sweetened beverages, 

coffee and tea, plain water, flavored or enhanced water 

Alcoholic beverages Beer, wine, liquor and cocktails 

Mixed dishes Meat, poultry and seafood mixed dishes, pizza, 

sandwiches, soups, grain-based mixed dishes 
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Table 2. Average market share and price per kilogram by food group. 

  Market share Price 

Milk 0.063 1.536 

 (0.090) (2.450) 

Cheese 0.034 9.274 

 (0.048) (3.609) 

Meat 0.093 9.745 

 (0.108) (6.452) 

Poultry 0.084 8.195 

 (0.093) (4.325) 

Fish  0.020 12.565 

 (0.046) (12.154) 

Eggs 0.013 3.477 

 (0.024) (1.409) 

Pasta 0.139 5.026 

 (0.113) (2.605) 

Sweets 0.114 6.546 

 (0.122) (6.397) 

Fruits 0.056 4.268 

 (0.066) (3.751) 

Vegetables 0.090 3.972 

 (0.085) (3.579) 

Fats 0.066 5.060 

 (0.067) (5.786) 

Beverages 0.135 1.900 

 (0.134) (6.822) 

Alcohol 0.021 5.849 

 (0.070) (6.945) 

Mixed  0.074 6.524 

  (0.093) (4.590) 
                               Standard errors are reported in parentheses below each estimated market share 

 

2.2 Greenhouse gases emissions data 

To estimate the greenhouse gases emissions (GHGEs) from food acquisition we use the Economic 

Input-Output Life Cycle Assessment (EIO-LCA) method (Carnegie Mellon University). 

According to the EIO approach, the relationship between the total industry output (X) and the final 

demand of a good (y) can be expressed as follows:  
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                                                                 X=(I-A)-1 y                                                                              (1) 

Where X is a n by 1 vector of the total suppliers output for the n industry in the economy, I is an 

n by n identity matrix, A is the n by n direct requirements matrix and y is an n by 1 vector of the 

final demand for the n goods in the market. The matrix (I-A)-1 is also known as the total 

requirements matrix. One of the advantages of the EIO approach is that all the matrices and vectors 

are expressed in dollar terms, allowing for comparison across industries. 

As originally suggested by Leontif, the EIO model can be expanded to include non-economic 

impacts as follows: 

                                                            B= RX=R(I-A)-1 y                                                                        (2) 

Where R is an n by n diagonal matrix with the external output per dollar of economic activity of 

the nth industry along the diagonal, while B is n by 1 vector representing the total (direct and 

indirect) external impact per dollar for the industries in the economy.  In our analysis, the R matrix 

reports the direct emission intensity factor (EIF) for each industry which is defined as the kilogram 

of carbon dioxide equivalents (CO2e) per dollar of output.  

The economic data for this study are derived from the 2007 total requirements table, (I-A)-1, from 

the input-output (IO) tables for 389 industries provided by the Bureau of Economic Analysis 

(BEA), while the emissions intensity factors (EIFs) included in the R matrix are obtained from the 

USEEIO model satellite tables developed by the EPA4. Specifically, the EPA EIFs are computed 

utilizing the 2013 industry output instead of the 2007 industry output, therefore reflecting the 

economic conditions of 2013, when the FoodAPS survey took place. 

As the USEEIO EIFs reflects the amount of external output (i.e. CO2e) generated per dollar of the 

industry activity evaluated at the producers’ price level, we convert them into the corresponding 

EIFs at the purchasers’ price level. Following Suh (2005), we transform the producers’ values into 

purchasers’ values by accounting for the transportation costs and the retail and wholesale margins 

for each industry. In details, this is done using the 2007 margins table provided by the BEA. The 

EIFs for the industries involved in food and beverages production are reported in Table 3.  

                                                      
4 Data last accessed on May 10, 2017. For more information about USEEIO data, please see the EPA website at: 

https://catalog.data.gov/dataset/useeio-elementary-flows-and-life-cycle-impact-assessment-lcia-characterization-

factors 
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Following the approach developed by Boehm et al. (2016) food items are matched to the 

corresponding BEA industry using the USDA Food and Nutrient Database for Dietary Studies 

(FNDDS) and the 4-digit Food Pattern Equivalents Ingredients (FPID) food codes and 

descriptions. As each of the 14 food categories we defined includes foods produced by different 

industry with different EIFs, we derive an average EIF for each food group as the mean over the 

EIFs of the foods included in it. 
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Table 3. Average emissions intensity factor (EIF) by food industry. 

Industry name Industry code EIF 

Beef cattle ranching and farming, including feedlots and 

dual-purpose ranching and farming 

1121A0 2.749 

Dairy cattle and milk production 112120 2.295 

Grain farming 1111B0 1.318 

Animal production, except cattle and poultry and eggs 112A00 0.991 

Other crop farming 111900 0.895 

Wet corn milling 311221 0.769 

Greenhouse, nursery, and floriculture production 111400 0.547 

Oilseed farming 1111A0 0.407 

Vegetable and melon farming 111200 0.310 

Poultry and egg production 112300 0.271 

Fruit and tree nut farming 111300 0.226 

Sugar and confectionery product manufacturing 311300 0.129 

Breakfast cereal manufacturing 311230 0.113 

Fruit and vegetable canning, pickling, and drying 311420 0.107 

Flour milling and malt manufacturing 311210 0.080 

Seafood product preparation and packaging 311700 0.062 

Frozen food manufacturing 311410 0.056 

Dry, condensed, and evaporated dairy product 

manufacturing 311514 0.053 

Snack food manufacturing 311910 0.051 

Fats and oils refining and blending 311225 0.051 

Bread and bakery product manufacturing 311810 0.048 

Cookie, cracker, pasta, and tortilla manufacturing 3118A0 0.039 

Soybean and other oilseed processing 31122A 0.037 

Poultry processing 311615 0.037 

Ice cream and frozen dessert manufacturing 311520 0.034 

All other food manufacturing 311990 0.033 

Animal (except poultry) slaughtering, rendering, and 

processing 31161A 0.031 

Coffee and tea manufacturing 311920 0.030 

Fluid milk and butter manufacturing 31151A 0.028 

Breweries 312120 0.027 

Cheese manufacturing 311513 0.025 

Soft drink and ice manufacturing 312110 0.023 

Flavoring syrup and concentrate manufacturing 311930 0.022 

Seasoning and dressing manufacturing 311940 0.015 

Distilleries 312140 0.013 

Wineries 312130 0.011 
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3. Model and Methods 

In our empirical application, food demand is modeled according to the Almost Ideal Demand 

System (AIDS) model (Deaton and Muellbauer 1980) in its linear approximation (LA-AIDS) 

(Moschini 1995). The AIDS model has been widely employed in scientific literature as it provides 

with a first order approximation to any demand system functional form and it allows perfect 

aggregation over consumers (Deaton and Muellbauer 1980).    

Under the weak separability assumption, the market share of each food category i at each time 

period t for each cohort c is defined as follows: 

                                                      wict = αi + ∑
j
 γijlnpjct + βiln(xct/Pct)                                           (1)                                                                

where wict is the budget share of food i over the households belonging to cohort c at time t, pjct are 

the market prices for all the jth products included in the demand system, xct is total expenditure, 

and Pct is the Stone Price index defined as: 

                                                                    lnPct= ∑
j
 wjctln(pjct)                                                    (2)                                                                                          

An additional advantage of the AIDS mode is that the properties of direct demand functions, that 

is, adding up (3), homogeneity (4) and symmetry (5), can be imposed through some parameters 

restrictions, as follows: 

                                                         ∑
i αi=1     

∑
I γij=0      

∑
i βi=0                                                     (3) 

                                                                         ∑
j γij=0                                                                   (4) 

                                                                          γij= γji                                                                      (5) 

The expenditure (εi) and the uncompensated (εi,j) and compensated (ηi,j) price elasticity are derived 

as follows : 

                                                                       εi  =  
βi
wi

 + 1                                                                (6) 

                                                                εi,j =  
γij
wi

   βi 
wj
wi

  δij                                                                                    (7) 

                                                                   ηi,j =  
γij
wi

  + wj  δij                                                         (8) 

where δij is the Kronecker delta and is equal to 1 when i is equal to j and 0 otherwise. 
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The demand system in (1) is estimated for (j-1) equations in STATA 14 by seemingly unrelated 

regression (SUR). Homogeneity and symmetry constraints are imposed in the system as in (4) and 

(5). The parameters of the jth omitted equation can be computed using the theoretical constraints 

of demand as in (3) and (5). Standard errors are clustered at the cohort level.  

To carry out our estimate, we need to impute the missing prices due to zero consumption in some 

time periods. Following Heien et al. (1990), missing prices are estimated through a regression 

approach on observed prices. Specifically, prices are specified as a function of the cohort’s 

demographic characteristics (average household size, number of children), income and 

participation in food assistance programs (e.g. SNAP), time and cohort specific dummies. 

 

4. Carbon tax simulation 

In our simulation, we apply a carbon tax on each food group proportional to the GHGEs generated 

across the product’s entire life cycle. The optimal tax rate has to be equivalent to the monetary 

value of the externality generated to society by GHGEs. We therefore set our baseline carbon tax 

to $36 per metric ton of carbon dioxide equivalents emissions, which corresponds to the social 

cost per metric ton of carbon estimated with 3% discount rate by the EPA (US EPA). We also 

conduct a sensitivity analysis to see how our results vary with different discount rate.  

We then use the own-price and cross-price elasticity values recovered from the estimated demand 

parameter and the post-tax prices to simulate the new market equilibrium under the scenario of 

carbon taxes implemented simultaneously on domestic purchases and on exports of foods. To 

evaluate the potential contribution of the tax to the 2025 GHGEs reduction target, we compute the 

GHGEs generated under the simulated scenario and we compare those with the ones obtained from 

the pre-tax equilibrium. We also calculate the change in consumers’ surplus as follows: 

                                                    ∆CS = ∑ 0.5(pt − po) ∙ (qt − qo)C
c                                                    (9) 

where pt and p0 and qt and q0 are the equilibrium prices and quantities under the tax scenario and 

the baseline scenario respectively (Diewert 1992). 
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5. Preliminary results  

Table 4 and table 5 report the AIDS estimate results and the relative elasticity values for FAH 

acquisitions respectively 

 

Discussion 

Our study has some limitations that need to be addressed in subsequent research. For example, we 

assume that all food purchased is consumed by a household, which is probably not the case. 

Moreover, we assume no reactions from the supply side to the tax, while it is likely that producers 

will adopt more efficient technology to reduce their GHGEs, and, in turn, the negative impact on 

their sales. This means that our current approach is likely to underestimate the potential impact of 

the carbon tax on U.S. GHGEs from food purchases. Despite its shortcomings, we feel that our 

paper makes significant contribution towards understanding the role of carbon taxes on food 

purchases in reducing agriculture related GHGEs. This line of inquiry is particularly important for 

the case of the U.S. where control of GHGEs us urgently needed. 
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