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Abstract 28 

Several alternative fumigants have reached the market since the phase-out of methyl bromide 29 

(MBr). However, all of the MBr alternatives tend to provide inconsistent weed control. Weather 30 

variability during and immediately following application can result in significantly different 31 

efficacy. In this interdisciplinary study, we proposed a modeling framework for analyzing how 32 

weather factors affect fumigation efficacy in weed control, tomato yield and the overall 33 

economic performance of fumigants. We found that soil temperature reduced the efficacy of all 34 

fumigants against nutsedge, while rainfall only reduced the efficacy of a limited number of 35 

fumigants. Tomato yield is affected by weather conditions and by weed and other pest pressure 36 

under each treatment. We simulated fumigants' economic performance over a range of 37 

environmental conditions to identify the fumigant that is most effective under diverse weather 38 

conditions. We found that although 1,3-D:Pic:Kpam outperformed MBr over the experiment 39 

period, when accounting for weather variability, MBr is still the best treatment. In the post-MBr 40 

era, 1,3-D:Pic:Kpam was more effective than the current industry standard, 1,3-D:Pic, and was 41 

the best alternative to MBr. The results of this study highlight the impact of environmental 42 

conditions on fumigant efficacy. The proposed methodology can be adapted to other pest 43 

management problems and other crops to enhance our understanding of the interaction between 44 

environmental conditions and pest management, and identify management programs most likely 45 

to succeed under variable weather conditions.   46 

 47 

Keywords: Fumigation efficacy; Methyl Bromide alternatives; Tobit analysis; Monte Carlo 48 

simulation; Weather uncertainty  49 

  50 
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Highlights 51 

 Fumigant alternatives demonstrate inconsistent weed control over time. 52 

 An econometric model is developed to identify the effect of weather conditions on 53 

fumigation efficacy.  54 

 Monte Carlo simulation is used to evaluate economic performance of fumigants under 55 

weather variation. 56 

 Among fumigants considered, 1,3-D:Pic:Kpam was the best alternative to MBr. 57 

 When accounting for weather variability, MBr is still the best treatment.  58 

  59 
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1. Introduction  60 

Fresh tomatoes are an important crop in the US fruit and vegetable industry, with a national farm 61 

gate value of $1.2 billion in 2015. US growers historically relied on MBr to control and regulate 62 

soil-borne pests including fungi, nematodes, insects, mites, rodents, bacteria and weeds. Fresh 63 

tomatoes accounted for 50% of total MBr pre-plant usage in the U.S. before 2000 (Osteen, 64 

2000). It was the most effective, easy to use, odorless, and least expensive fumigant for over five 65 

decades (McCook, 2006). However, the Montreal Protocol treaty listed MBr as an ozone-66 

depleting substance in 1992 and the U.S. has since halted production and importation of MBr. To 67 

date, exemptions to the phase-out have only allowed for quarantine and pre-shipment, critical 68 

use, and chemical feedstock uses. The methyl bromide phase-out resulted in a broad 69 

technological shock for the fruit and vegetable industry. There has been an extensive search for 70 

alternative fumigants for fruit and vegetable production in the U.S.  71 

The USDA has supported research to develop MBr alternatives but no alternative 72 

fumigant with the same broad-spectrum efficacy and consistency as MBr has been identified. 73 

Many alternative fumigants have been identified that can be used in combinations, or in 74 

sequence (Gilreath et al., 2004; Gilreath et al., 2005; Santos and Gilreath, 2006; Gilreath and 75 

Santos, 2004), but it is generally acknowledged that these alternatives tend to provide 76 

inconsistent weed control (Freeman et al., 2016). For instance, Gilreath and Santos (2005) found 77 

that combination of MBr and chloropicrin (Pic) controlled purple nutsedge more effectively than 78 

1,3-dichloropropene (1,3-D) : Pic in combination with pebulate in the 1997/98 tomato season, 79 

while another experiments conducted by Gilreath et al. (2006) in 2000/2001 showed that there 80 

was no significant performance difference between them. Weed control with alternative 81 

fumigants has been variable with reports of both acceptable and poor control compared to MBr 82 
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(Hanson and Shrestha, 2006). Alternatives that have acceptable efficacy under favorable weather 83 

may fail in other years when the weather is less favorable. In consecutive field trials, 1,3-D:Pic 84 

had excellent performance in three tomato seasons but failed to improve weed control in a 85 

subsequent season (Gilreath et al., 2005).  Santos et al. (2006) indicated that 1,3-D:Pic in 86 

combination with drip-applied sodium azide were consistently equal to MBr:Pic for two out of 87 

three seasons.  88 

 Previous studies have suggested that variability in fumigation efficacy is due at least in 89 

part to soil conditions. An effective fumigant dosage is a combination of a specified 90 

concentration over an extended duration. Volatilization or the gaseous loss of fumigant from the 91 

soil can limit efficacy by either reducing the concentration in the soil around the pest or 92 

shortening the exposure duration or both. Soil moisture and temperature change rapidly in the 93 

first 5 cm of field soil in response to changes in the atmosphere (Gilreath et al., 2004). As a 94 

result, the rate of chemical conversion, distance moved, and the rate of movement are affected by 95 

rainfall or irrigation and temperature. To identify the most efficacious fumigant alternative, it is 96 

necessary to examine fumigation efficacy over multiple years with varying rainfall and 97 

temperature. Although it is well documented that fumigation efficacy is sensitive to weather 98 

conditions, no study has systematically shown how weather conditions affect efficacy. The 99 

current study is based on data from a four-year trial in Florida and identifies the effect of weather 100 

conditions such as soil temperature and rainfall on fumigant efficacy including MBr, the current 101 

industry standard and other promising MBr alternatives. The effects on both weed control and 102 

fruit yield are analyzed.  103 

 The economic performance of fumigants under variable weather conditions is further 104 

evaluated. An economic evaluation of fumigants based on limited-year trials is not reliable 105 
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because fumigation efficacy varies over time. Several studies have examined economic effects of 106 

fumigant alternatives on vegetable production in the U.S. using partial budgeting analysis 107 

(Sydorovych et al., 2006, 2008) or stochastic dominance analysis (Byrd et al., 2007; Cao et al., 108 

2014). The recommended fumigant alternatives are not necessarily economically sustainable or 109 

viable given that experiments were only conducted under fixed or limited variation in weather 110 

conditions. Results on economic performance are more reliable when taking into account 111 

sufficient variation in weather conditions.  112 

 The objective of this study is to identify optimal fumigants that take account into weather 113 

impact and variability. To achieve the objective, we developed empirical models to quantify the 114 

effects of weather conditions on weed control and tomato yield. Based on the estimated effect 115 

and yield response, we simulated tomato yield under diverse weather conditions, and calculated 116 

growers' expected utility under diverse weather scenarios to identify optimal fumigants. The 117 

information generated from this analysis will illustrate the difference between accounting for 118 

weather variation and not accounting for it and will provide an important, economically 119 

sustainable perspective for horticulturalists, pest management experts, and growers.  120 

 121 

2. Experiment and Data 122 

Tomato field trials were conducted at the University of Florida Gulf Coast Research and 123 

Education Center in Balm, Florida, U.S. over a four-year period from the fall of 2008 through the 124 

fall of 2011. Treatments were arranged in a randomized complete block design with fumigation 125 

as the main plot and herbicide as a non-randomized subplot effect in four field sites. Treatments 126 

were assigned to three bed main plots and replicated three times, while each main plot consisted 127 

of herbicide and non-herbicide sub-plots. The trial sites and plot location were maintained 128 
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throughout the length of the study. Fumigant treatments included: a non-fumigated control; 129 

MBr:Pic 67:33 at 196 kg · ha−1; dimethyl disulfide plus Pic (DMDS:Pic 79:21) at 561 L· ha−1; 130 

1,3-D at 112 L · ha−1 plus Pic (1,3-D:Pic) at 168 kg · ha−1, collectively referred to as the two-131 

way system which is also the current industry standard; and the two-way system followed by 132 

metam potassium (Kpam) at 561 L· ha−1 (1,3-D:Pic:Kpam), collectively referred to as the three-133 

way system. The 1,3-D was applied below the bed top by using a Yetter
®
 coulter rig, while the 134 

remaining fumigants except for Kpam were injected via three shanks using a nitrogen-propelled  135 

fumigation rig. These applications occurred in late July to mid-August. Kpam was injected into 136 

the bed using drip tapes capable of delivering 950 ml per emitter per hour two weeks after laying 137 

the plastic. Tomato plants were transplanted about 40 days after fumigation when fumigant 138 

concentration in the bed was safe. During the growing season, the same amount of fertilizer, 139 

fungicides, and irrigation were applied to each trial field each year. In year one, the herbicides 140 

consisted of imazosulfuron (0.33 kg ∙ ha−1) and napropamide (2.24kg ∙ ha−1). In following 141 

years, imazosulfuron was replaced by fomesafen at 0.28 kg ∙ ha−1. The crop was grown using 142 

the University of Florida recommended production practices (Freeman et al., 2009).    143 

 Weed shoots that escaped the control of the fumigants and/or herbicides were assessed 144 

each cropping season. Within each plot, the number of purple and yellow nutsedge (Cyperus 145 

spp.) seedlings that emerged through the plastic and the number of annual grasses that emerged 146 

from the planting holes were counted. The tomato crop was harvested in December and graded 147 

according to USDA guidelines (USDA, 1997). To compare the means between fumigation 148 

treatments for weeds and yield, we used Tukey’s adjusted means comparisons for all pairwise 149 

differences. During the four seasons, nutsedge density tended to be higher in the non-fumigated 150 

treatment (Table 1). 1,3-D:Pic, the industry standard, did not perform better than the non-151 
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fumigated in three of the four seasons whereas 1,3-D:Pic:Kpam provided better control than the 152 

non-fumigated and were as effective as MBr:Pic in three of the four seasons. Also, DMDS:Pic 153 

and MBr:Pic worked equally well in three of the four seasons. Grass control was relatively more 154 

consistent. 1,3-D:Pic:Kpam was as effective as MBr: Pic and tended to provide the best grass 155 

control . Finally, all fumigants improved yield. Although 1,3-D:Pic:Kpam tended to be the 156 

highest yielding fumigant treatment, the yield difference among fumigant treatments was not 157 

always statistically significant. Our data illustrate the season-to-season variability typically 158 

observed in fumigant trials (Gilreath et al., 2005;Santos et al., 2006).  159 

 160 

3. Effect of Weather Factors 161 

The efficacy of soil fumigation is greatly affected by soil and environmental conditions during 162 

and immediately following fumigation application till transplanting. To effectively control 163 

weeds, fumigants must penetrate and diffuse into soil pores and be retained in the gas form for a 164 

period of time. Many weather factors positively or negatively affect the activity of fumigants. 165 

Here we tested the effect of soil temperature and rainfall on fumigant efficacy on weeds. Since a 166 

significant fraction of subplots had zero weeds, we adopted a Tobit model to estimate the effect 167 

of two factors on controlling nutsedge and grass. The Tobit model is appropriate when the 168 

modeled variable is censored below or above a certain value and may have multiple observations 169 

at the censoring limit (Wooldridge, 2002). In this case, the weed number has a lower bound of 170 

zero with a number of plots of zero weeds. The censored Tobit model of a certain weed 𝑊𝑘 is: 171 

𝑊𝑘 = max(0, 𝑦),              (1a)      172 

𝑦 = 𝑐𝑘 + ∑ 𝛽𝑘𝑖𝑋𝑖
5
𝑖=1 + ∑ ∑ 𝜃𝑘𝑖𝑗

2
𝑗=1

5
𝑖=1 𝑋𝑖𝑍𝑗 + 𝑢𝑘, 𝑢𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑘

2)     (1b) 173 
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where 𝑊𝑘 is the weed variable (nutsedge or grass for k=1,2), taking values y if y is positive or 174 

zero; 𝑐 is the constant term; 𝑋 includes five dummy variables representing four fumigants of 175 

MBr:Pic, DMDS:Pic, 1,3-D:Pic, 1,3-D:Pic:Kpam (the non-fumigated control is the default and is 176 

omitted), and herbicide (𝑋5); 𝑋𝑍 is the interaction terms of dummy variables with two weather 177 

factors in Z;  𝛽, 𝜃 is a vector of unknown coefficients to be estimated; and 𝑢𝑘 is an independently 178 

distributed error term assumed to be normal with zero mean and variance 𝜎𝑘
2. Soil temperature 179 

after fumigation (TAF) (𝑍1) is the average temperature during the plant-back interval, namely, 180 

from fumigation till transplanting, while rainfall after fumigation (RAF) (𝑍2) is the total 181 

precipitation during the same period. Table 2 shows the values of these two variables over the 182 

experiment period. 183 

 Signs of 𝛽 and 𝜃 determine the direction of change in weed population as the respective 184 

explanatory variables change. However, they do not directly give the marginal effects of the 185 

independent variables on the dependent variable. For dummy variables, the marginal effects are 186 

the difference when the respective dummy takes its two different values 0 and 1, respectively. 187 

Therefore, for any fumigant 𝑋𝑖 (i=1 to 4), its efficacy in controlling weed population is 188 

𝑀𝑊𝑘𝑖 = 𝐸( 𝑊𝑘|𝑋𝑖 = 1) − 𝐸( 𝑊𝑘|𝑋𝑖 = 0), 189 

= Φ (
𝑐𝑘+𝛽𝑘𝑖+𝜃𝑘𝑖𝑍

𝜎𝑘
) (𝑐𝑘 + 𝛽𝑘𝑖 + 𝜃𝑘𝑖𝑍) + 𝜎𝑘𝜙 (

𝑐𝑘+𝛽𝑘𝑖+𝜃𝑘𝑖𝑍

𝜎𝑘
) − Φ (

𝑐𝑘

𝜎𝑘
) 𝑐𝑘 − 𝜎𝑘𝜙 (

𝑐𝑘

𝜎𝑘
),       (2) 190 

where 𝜙(∙) and Φ(∙)  are the density function and cumulative distribution of a standard normal 191 

variable. Subsequently, the effect of any weather factor 𝑍𝑗(j=1, 2) on the efficacy of fumigant 𝑋𝑖 192 

can be derived as 193 

𝜕𝑀𝑊𝑘𝑖

𝜕𝑍𝑗
= Φ (

𝑐𝑘+𝛽𝑘𝑖+𝜃𝑘𝑖𝑍

𝜎𝑘
) 𝜃𝑘𝑖𝑗,            (3) 194 
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where Φ (
𝑐𝑘+𝛽𝑘𝑖+𝜃𝑘𝑖𝑍

𝜎𝑘
) is the probability of observing a positive weed population for fumigant 𝑋𝑖, 195 

which is strictly between zero and one. Therefore, the direction of weather factors' effect on 196 

fumigant efficacy is determined by 𝜃𝑘𝑖𝑗, whereas the magnitude is less than 𝜃𝑘𝑖𝑗. 197 

 After modeling the treatment and weather effects on weed, we further model tomato yield 198 

as a function of weather conditions (temperature and rainfall) and weed and non-weed pressure:  199 

𝑌 = 𝛾0 + ∑ 𝛾𝑖𝑋𝑖
4
𝑖=1 + 𝛾5𝑇𝐴𝑇 + 𝛾6𝑅𝐴𝑇 + ∑ 𝛾𝑘+6

2
𝑘=1 𝑊𝑘 + 𝜀,                    (4) 200 

where Y is the tomato yield; 𝑊𝑘 is weed;  𝑋𝑖 is dummy variables of fumigants, capturing 201 

additional, non-weed pest pressure associated with fumigant use that affects yield, such as 202 

nematodes; TAT is soil temperature after transplanting, measured as average soil temperature 203 

over the growing period from the middle of September to the beginning of December, while 204 

RAT is rainfall after transplanting, measured as the total precipitation over the same period (see 205 

Table 2 for values of these two variables); 𝛾 is a vector of unknown coefficients, and 𝜀 is the 206 

error term. Combining equations 2-4, we estimate marginal effect of fumigant 𝑋𝑖(𝑖 = 1, … ,4) on 207 

tomato yield as 208 

𝑀𝑌𝑖 = 𝛾𝑖 + ∑ 𝛾𝑘+6
2
𝑘=1 𝑀𝑊𝑘𝑖.         (5) 209 

The marginal yield effect is a combination of weed impact and non-weed impact associated with 210 

the fumigant. Then the effect of weather factor 𝑍𝑗(𝑗 = 1,2) on fumigants' efficacy in tomato 211 

yield is 212 

𝜕𝑀𝑌𝑖

𝜕𝑍𝑗
= ∑ 𝛾𝑘+6

2
𝑘=1 𝜃𝑘𝑖𝑗  Φ (

𝑐𝑘+𝛽𝑘𝑖+𝜃𝑘𝑖𝑍

𝜎𝑘
).        (6) 213 

 214 

4. Estimation Results 215 
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Parameter estimates for the Tobit model of nutsedge shoots are presented in Table 3, and 216 

marginal effects of all fumigants are presented in Table 5. All parameter estimates of fumigant 217 

dummy variables are statistically significant, suggesting that applying fumigants changes 218 

nutsedge shoots compared to non-fumigated control. The magnitude of the effect is dependent on 219 

weather conditions.  With both weather variables (TAF and RAF) held constant at their sample 220 

means, 1,3-D:Pic:Kpam reduced nutsedge shoots the most by 7.282 shoots/m
2
, followed closely 221 

by MBr:Pic with 6.964 shoots/m
2
(Table 5). 1,3-D:Pic is the least effective and only reduced 222 

4.159 shoots relative to the non-fumigated. As expected, most interaction terms of fumigants 223 

with weather factors are significant. Our results suggest that the increased soil temperature 224 

significantly reduces the efficacy and increases nutsedge shoots in tomato production. MBr:Pic is 225 

the least affected, confirming its consistency, while 1,3-D:Pic is affected most, resulting in 3 226 

more shoots/m
2 

by one increased degree of soil temperature (Table 5). To maximize fumigant 227 

activity, soil temperatures should be at a minimum of 50°F. As soil temperature increases, the 228 

rate of fumigant conversion to the gas state increases. High soil temperature speeds the gaseous 229 

diffusion, thus shortening the exposure time of nutsedge tubers and resulting in lower efficacy. 230 

Rainfall also reduces fumigant efficacy, and its effect is significant for 1,3-D:Pic and 1,3-231 

D:Pic:Kpam. An increase of 2.54 cm (one inch) results in an increase nutsedge density of 0.946 232 

and 0.198/m
2
 for 1,3-D:Pic and 1,3-D:Pic:Kpam treatments. Note that fumigants move 10,000 to 233 

30,000 times slower in soil water than in soil air.  Water containing the fumigant will move deep 234 

into the soil or into the row middles where it will provide little pest control for the bed (MacRae 235 

et al., 2010).   236 

 The estimates for grass shoots are slightly different. First, 1,3-D:Pic:Kpam led the grass 237 

reduction with 0.748 shoots/m
2
, followed by MBr:Pic (0.695). DMDS:Pic resulted in higher 238 
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grass shoots relative to the non-fumigated. Second, few coefficient estimates of interaction terms 239 

are statistically significant, suggesting the efficacy of fumigants in controlling grass shoots are 240 

less affected by weather condition. Third, in contrast to nutsedge, increasing soil temperature 241 

reduces grass shoots for both DMDS:Pic and 1,3-D:Pic treatments. The reason may be that grass 242 

seeds are more concentrated on the upper level of the bed and expose to the toxic fumes longer in 243 

a high soil temperature condition. Finally, more rainfall increased grass shoots for 1,3-D:Pic.   244 

The estimation results for the tomato yield equation are presented in Table 4. Most 245 

estimates of variables in the equation are significant at conventional significance levels, and their 246 

signs are consistent with expectations.  The positive estimates of fumigant dummy variables 247 

imply that applying fumigants would cause a yield increase compared to the non-fumigated.  248 

Among them, 1,3-D:Pic:Kpam contributes most to the yield increase. The coefficient estimate of 249 

soil temperature after transplanting (TAT) is positive and significant, suggesting a positive 250 

correlation with yield. Adams et al. (2001) found that high temperatures increase fruit absolute 251 

volume growth rates. The effect of rainfall after transplanting (RAT) on yield is small and 252 

insignificant, which is likely associated with the fact that tomato production in the experiment 253 

used drip irrigation. Finally, more nutsedge and grass shoots result in lower yield.  Increasing 254 

nutsedge by 1 shoot/m
2
 will lead to a decrease in tomato yield of 0.327 tons/ha, while the effect 255 

of an increase of 1 grass shoot/m
2
 causes yield a decrease of 1.398 tons/ha.    256 

The aggregated yield effects of fumigants on yield are shown in Table 5. 1,3-D:Pic:Kpam 257 

is the leading fumigant in increasing tomato yield, with 10.537 tons/ha. However, the efficacy 258 

varies with weather condition after fumigation (TAF and RAF). One degree increase in soil 259 

temperature can reduce tomato yield by 0.807 tons/ha while one additional inch of rainfall 260 

reduce yield by 0.065tons/ha. The second largest yield increase is from MBr:Pic, with 7.599 261 
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tons/ha. It is responsive only to soil temperature and the magnitude is smaller. The least effective 262 

and most unstable fumigant is 1,3-D:Pic.  263 

 264 

5. Economic Performance Analysis 265 

This section presents results of short-term economic performance of fumigants for each season in 266 

the trial period as well as the results of simulated, long-run economic performance, taking into 267 

account weather variability.  268 

 269 

5.1Whole Farm Budgeting Analysis 270 

The whole farm budgeting summarizes the financial features of the entire farm business (Riggs 271 

et. al., 2012). It considers the level of business performance (e.g. profit) after treatment. Besides 272 

the costs of fumigation, harvesting and marketing, it also accounts for other expenses, which are 273 

unchanged across treatments, including fertilizers, transplants, fixed costs and other costs. 274 

Combining the total revenue with total cost information, the average net profit per acre of each 275 

treatment is estimated. 276 

 First, fumigation costs were estimated, including material, machinery, and labor costs. 277 

The market prices of Pic, DMDS, 1,3-D and Kpam and their usage amounts were used to 278 

calculate material costs. As with MBr, the original price of MBr before the ban in 1997 was used 279 

and adjusted up for inflation. This is because restrictions on MBr production, import, and 280 

consumption under the Montreal Protocol have distorted the market and driven the market price 281 

of MBr up in the U.S. in recent years. This calculation represents a hypothetical case if methyl 282 

bromide had not been banned. For all four seasons, we adjusted fumigant prices with the 283 

Producer Price Index (PPI) released by the United States Bureau of Labor Statistics and used the 284 
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average prices over the four seasons to calculate material costs. Fumigation machinery costs 285 

included fuel costs, depreciation, and other noncash overhead while labor costs were calculated 286 

based on the farm labor rate and working hours of fumigation on an average farm. Two-way and 287 

three-way fumigation treatments involve applying fumigants twice and correspondingly incur 288 

double labor and machinery costs. In sum, 1,3-D:Pic:Kpam fumigation cost is the highest at 289 

$3,480/ha, followed by DMDS:Pic with the expense of $3,033/ha. MBr:Pic is the least expensive 290 

fumigation treatment. Second, harvest & marketing costs, which are in direct proportion to 291 

tomato yield, include picking, packing, and hauling costs, container cost, selling cost and 292 

organization fee. Similarly, costs for four seasons were adjusted for inflation using 1982-based 293 

PPI data. Third, other cost categories, which are fixed across treatments, were from production 294 

budget for tomato in Southwest Florida (VanSickle, 2009). Finally, the revenue was estimated 295 

using tomato market prices and yields. The price was an average of Jan and Feb prices at the 296 

Florida shipping point over the four seasons.    297 

 Net profits of each treatment over the years are presented in Table 6. The results show 298 

that except in 2009, most treatments had negative net profits. This finding is consistent with the 299 

reality that the industry is struggling due to both production and market challenges such as the 300 

rapidly growing imports from Mexico. The net profits in 2008 for DMDS:Pic and 1,3-301 

D:Pic:Kpam were positive while those of all other treatments were negative. However, the 302 

difference was not statistically significant, suggesting no any treatment performs economically 303 

better than others. In 2009 all treatments produced positive net profits.  MBr:Pic, 1,3-D:Pic, and 304 

1,3-D:Pic:Kpam worked equally well and generated higher net profits than all other treatments. 305 

All fumigant treatments resulted in losses in 2010 and worked equally well and outperformed the 306 

non-fumigated.  The same trend was observed in 2011. It can be concluded that unlike the results 307 
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for weed control and yield, 1,3-D:Pic:Kpam and 1,3-D:Pic performed as well as MBr:Pic in 308 

some years. However, they also performed as poorly as the nonfumiganted for other years. The 309 

variation in weather conditions affects fumigation efficacy and increases the variability of their 310 

economic performance. 311 

 312 

5.2 Expected Utility Simulation Analysis 313 

Means comparison method was not able to provide an unambiguous ranking for all treatments, 314 

due in part to the high variability around the treatment means. Even if the outcome of the test 315 

indicates a statistically significant difference has been observed, the fumigation treatment that 316 

brings in the highest average economic return may not necessarily be the most beneficial 317 

treatment for a grower as it might be too risky if the results vary too much across replications or 318 

seasons. Therefore, we used the expected utility method, which incorporates risk factors to 319 

explicitly account for the variation of net profits of treatments. The expected utility analysis 320 

quantified the role of the variation of treatments’ net profits in the utility model to determine the 321 

economic performance.  In a way, the utility model “discounts” the net profits taking into 322 

account the variability (risk) as well as growers’ risk attitudes (i.e., degree of risk aversion). The 323 

role variability plays varies depending on the growers’ degree of risk aversion. Generally, net 324 

profits are discounted more when the variability is higher, or growers’ risk aversion is higher. In 325 

this study, we use the power utility function, the most widely used utility function in empirical 326 

analysis, to evaluate the treatment under a certain weather condition, that is, 327 

 𝑈(𝑊𝑡) =
𝑊𝑡

1−𝑟−1

1−𝑟
,          (7) 328 

where r is the risk-averse coefficient. The range of r is set from 1 to 3, representing “normal risk 329 

aversion” to “high risk aversion” (Anderson and Dillon, 1992). When r=1, the power utility 330 



16 
 

function is degenerated to the logarithmic utility function 𝑙𝑛(𝑊𝑡). The grower’s end-of-season 331 

wealth is random and is the grower's initial wealth (𝑊0) plus random farm profit from a 332 

fumigation treatment, i.e., 𝑊𝑡 = 𝑊0 + 𝑃𝑡. Utility 𝑈(𝑊𝑡) are random because yield (hence farm 333 

profit) follows a random distribution. The grower is assumed to choose the treatment that brings 334 

him the highest expected utility 𝐸[𝑈(𝑊𝑡)]= 𝐸 (
(𝑊0+𝑃𝑡)1−𝑟−1

1−𝑟
) . The expected utility under N sets 335 

of profit is: 336 

𝐸[𝑈(𝑊𝑡𝑖)] =
1

𝑁
∑

(𝑊0+𝑃𝑡𝑖)1−𝑟−1

1−𝑟

𝑁
𝑖=1 ,        (8) 337 

where E(∙) is the expectation operator. Following Cao et al. (2014), we assume a representative 338 

tomato grower in Florida with 28 ha land and $3,420,056 farm equity (𝑊0). We simulate the 339 

farm profit from each treatment based Equation (4).  Each simulation generates a risky outcome 340 

of yield, profit, and utility. The expected utility of N replicates under a specific weather scenario 341 

t could be calculated with Eq. (8).  342 

To further simulate weather impact on treatment effect, we allow weather conditions to 343 

vary, with T sets of weather scenarios. Under each set of weather scenario, N sets of replications 344 

are simulated. To calculate the expected utility, we compute the sample mean on a given set of 345 

profits (N×T), that is, 346 

1

𝑇
∑ 𝐸[𝑈(𝑊𝑡𝑖)]𝑇

𝑡=1 =
1

𝑇
∑ (

1

𝑁
∑

(𝑊0+𝑃𝑡𝑖)1−𝑟−1

1−𝑟

𝑁
𝑖=1 )𝑇

𝑡=1 ,      (9) 347 

where 𝑃𝑡𝑖 is the net profit of each treatment at replicate i in the t-th weather scenario (or season). 348 

The expected utility of each treatment is then ranked to determine the performance of fumigants. 349 

We first calculated the average expected utility of fumigation treatments with r = 2 under 350 

weather conditions during the trial period (2008-2011), which will demonstrate treatment 351 

ranking with limited weather variability observed over 2008-2011. The calculation of the 352 
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expected utility uses the observed data points for each treatment, which is used to compare the 353 

performance of fumigants.   354 

Then, we further calculated the expected utility under T sets of simulated weather 355 

scenarios.  We started with calibration of random variables, which include random shocks in 356 

weeds and yields  (𝑢1, 𝑢2, 𝜀), as well as random weather variables (TAF, RAF,TAT, and RAT). 357 

The vector of weed shocks (𝑢1 𝑢2) in equation 1 is assumed to be normally distributed with 358 

mean zero and variance-covariance matrix estimated in equation 1.  The yield shock 𝜀 is 359 

assumed to be a zero-mean normally distributed random variable with estimated variance in 360 

equation 4. Random weather variables (TAF, RAF, TAT, and RAT) are assumed to have a 361 

multivariate lognormal distribution, accounting for the covariance between variables, and the 362 

levels of uncertainty (variance and covariance ) of weather variables employed for the simulation 363 

are representative of historical weather risks over 1998-2015 in Florida. Based on the above 364 

calibration, we next used the estimated models (equations 1 and 4) to simulate weed and yield. 365 

First, one set of weather values are randomly drawn from the above estimated lognormal 366 

distribution. Under such predetermined weather condition, shocks to weed populations 367 

(𝑢1 and 𝑢2) are randomly drawn 300 times (N=300) from their respective distributions and 368 

placed into equation (1) to generate 300 weed values for each weed (netsedge and grass). Based 369 

on equation 1, if the value is negative, the forecast shoot is zero; when it is positive, the forecast 370 

shoot is the value itself. Second, yield shocks (𝜀) are randomly drawn 300 times form its 371 

respective distribution and placed together with shoot forecasts into equation (4) to generate 300 372 

yields. The net profit corresponding to each yield is calculated based on tomato market prices 373 

and production costs. The procedure is replicated again when a new (t-th) set of weather values 374 

is drawn. To allow for enough variability of weather, 100 weather scenarios are drawn (T=100). 375 
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These 100 sets of weather scenarios and 300 sets of profit under each weather scenario are used 376 

to calculate the expected utility with equation 9 for each treatment. In total, 30,000 data points 377 

are simulated for each treatment. The treatment with the highest total expected utility values 378 

represents the best performance under weather uncertainty. To generate realistic weather 379 

scenarios and avoid extreme weather values, we set an upper and lower bound for weather 380 

variables and only considered those drawn values within the upper and lower bounds, which are 381 

set at 30% higher and lower than the historical highest and lowest values observed over 1998-382 

2015. The 30%-higher upper bound covers approximately 99% of the assumed distribution. In 383 

the computation of expected utility, we assumed the farmer’ risk attitude (or degree of risk 384 

aversion) is represented by r = 2. Yet, the magnitude of risk penalty varies with farmers' risk 385 

attitude. In order to investigate the robustness of our findings with respect to risk attitude, we re-386 

calculated the total expected utility with two additional risk aversion levels, r = 1 and r = 3, 387 

respectively.  388 

 The expected utilities of observed trials and simulated values with weather variation are 389 

presented in Table 7. The first column shows the expected utility of the trials over 2008-2011. 390 

The ranking results illustrate that the most cost-effective treatment over the trial period is 1,3-391 

D:Pic:Kpam, followed by MBr:Pic and the industry standard, 1,3-D:Pic. DMDS:Pic was the 392 

poorest fumigant. However, the ranking is significantly different if accounting for weather 393 

variability. First, MBr:Pic outperformed 1,3-D:Pic:Kpam, showing the consistency of MBr:Pic 394 

efficacy under diverse weather conditions. Nevertheless, 1,3-D:Pic:Kpam produced a utility 395 

closest to MBr:Pic, and is the best alternative to MBr. Second, the industry standard, 1,3-D:Pic, 396 

was now worse than DMDS:Pic. Although 1,3-D:Pic generated higher yields than DMDS:Pic, its 397 

yield variation is larger across years, so it is less stable under variable weather conditions, 398 
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resulting in a lower utility ranking for growers. Finally, the corresponding results with different 399 

risk aversion levels, reported in the last two columns in Table 7, show that utility increases when 400 

growers are less risk averse (r = 1) and decreases when they become more risk averse (r = 3), but 401 

the rankings are all unaffected.  402 

 403 

6. Conclusions 404 

The U.S. tomato industry was significantly impacted by the MBr phase-out. Several alternative 405 

fumigants have reached the market which include Pic, DMDS, 1,3-D and Kpam. Although most 406 

small fruit and vegetable growers in Florida have settled on them as alternatives to MBr, their 407 

reliability in terms of pest management and crop yield is questionable given that all of the MBr 408 

alternatives are more prone to adverse weather conditions. This study presents an econometric 409 

analysis of the fumigants' efficacy under variable weather conditions. We specified and 410 

estimated a Tobit model using data from trials over 2008-2011 to identify the effects of weather 411 

conditions on fumigants' efficacy in weed control and tomato yield. We found strong empirical 412 

evidence of soil temperature and rainfall influencing fumigation efficacy. First, high soil 413 

temperature reduces fumigation efficacy in controlling nutsedge while increases efficacy in 414 

controlling grass. Second, the sensitivity of fumigants' efficacy to weather conditions is different 415 

across fumigants. All fumigants studied respond to soil temperature, but they are not particularly 416 

sensitive to rainfall.  417 

 Given the inconsistency of fumigants efficacy under different weather conditions, it is 418 

important to take into account weather uncertainty when evaluating the economic performance of 419 

fumigants. The study further simulated yields under various weather scenarios randomly drawn 420 

from the estimated weather distribution. Monte Carlo simulation in the expected utility model is 421 



20 
 

used to allow risk to be penalized in the analysis. We found that fumigant ranking is significantly 422 

different when accounting for weather variability. MBr:Pic performed the best, while 1,3-423 

D:Pic:Kpam was the closest alternative to MBr. In addition, the current industry standard, 1,3-424 

D:Pic was least effective among fumigants studied due to its inconsistency, raising concerns 425 

about the industry choice. The discrepancy highlight the critical importance of accounting for 426 

weather variability in fumigant performance evaluation, which also presents a challenging 427 

request for scientists to implement much longer trials.    428 

 The results of this study illustrate the sensitivity of fumigant efficacy and the importance 429 

of achieving consistent efficacy to identify long-standing fumigant alternatives. Scientists have 430 

been called to address and remediate weather factors causing significant performance 431 

inconsistency. Various fumigation application technology, injection depth, mulch type, and 432 

application sites and others have been attempted to improve the consistency. This study fills a 433 

knowledge gap by quantifying the effect of weather conditions on fumigation efficacy. Together, 434 

the econometric model and the expected utility model, along with simulation techniques, form a 435 

useful tool that can be practically applied across many areas. One more direct application is to 436 

further identifying the effect of weather conditions on fumigant efficacy in controlling other 437 

specific pests, such as nematode.  438 

  439 
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Table 1 499 

Weed shoots and tomato yields in plots treated with different fumigants  500 

Treatment 2008 2009 2010 2011 

Nutsedge Shoots (shoots/m
2
) 

Control        0.234 a       4.281 a     11.808 a       7.195 a 

MBr:Pic        0.028 ab       0.021 b      1.525 b       1.433 b 

DMDS:Pic         0.117 a       0.217 b       2.551 b       5.584 a 

1,3-D:Pic       0.100 a       0.178 b       7.489 a        5.247 a 

1,3-D:Pic:Kpam       0.004 b       0.013 b       1.009 b       3.748 a 

Grass Shoots (shoots/m
2
) 

Control        0.305 a       0.847 a       0.158 a  

MBr:Pic       0.015 b       0.012 b       0.013 b  

DMDS:Pic       0.322 a       1.402 a       0.283 a  

1,3-D:Pic       0.028 b       0.314 a       0.087 a  

1,3-D:Pic:Kpam       0.004 b       0.012 b       0.014 b  

Tomato Yields (Tons/ha) 

Control 26.103 a 30.351 a 22.904 a 21.229 a 

MBr:Pic  29.882 bc  40.771 bc 28.356 b 28.308 b 

DMDS:Pic 32.431 bc  38.042 b 27.654 ab 24.502 a 

1,3-D:Pic 29.474 ab 39.466 bc 27.187 ab 27.875 b 

1,3-D:Pic:Kpam 33.226 c 42.624 c 31.633 b 30.071 b 

 501 

Note that the means followed by the same letter are not significantly different based on Tukey 502 

adjusted mean comparisons at p<0.05.  503 
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Table 2 504 

Weather conditions during the experiment period 505 

 2008 2009 2010 2011 

TAF 81.239 79.627 81.624 81.849 

TAT 72.284 74.772 71.926 73.597 

RAF  3.365 9.009 10.977 6.475 

RAT 4.765 5.627 2.247 6.544 

 506 

Note that TAF and TAT are average soil temperatures (°F) after fumigation and transplanting, 507 

while RAF and RAT are total rainfalls (inch) after fumigation and transplanting, respectively.  508 
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Table 3 

Tobit model estimates for nutsedge and grass shoots in tomato 

 

Variables  

Nutsedge  Grass  

Variables  

Nutsedge  Grass 

Coeff. Std. Err.  Coeff. Std. Err. Coeff. Std. Err.  Coeff. Std. Err. 

𝑀𝑒𝐵𝑟 -263.884***
 

80.586  -3.661 9.499 𝑀𝑒𝐵𝑟_𝑅 0.296 0.248  -0.001 0.030 

𝐷𝑀𝐷𝑆 -303.823****
 

70.690  51.574*** 7.204 𝐷𝑀𝐷𝑆_𝑅 0.150 0.228  0.027 0.024 

𝑇𝑤𝑜𝑤 -417.768***
 

71.133  16.185** 7.417 𝑇𝑤𝑜𝑤_𝑅 1.308***
 

0.246  0.057** 0.027 

𝑇ℎ𝑟𝑒𝑒𝑤 -454.736***
 

95.919  5.500 9.325 𝑇ℎ𝑟𝑒𝑒𝑤_𝑅 0.437*
 

0.261  0.030 0.035 

𝐻𝑒𝑟 -159.797***
 

57.145  -8.315 5.751 𝐻𝑒𝑟_𝑅 0.006 0.175  0.005 0.020 

𝑀𝑒𝐵𝑟_𝑇 3.126***
 

0.989  0.034 0.117 Constant 7.950***
 

0.643  0.558*** 0.079 

𝐷𝑀𝐷𝑆_𝑇 3.670***
 

0.868  -0.638*** 0.089   
    

𝑇𝑤𝑜𝑤_𝑇 4.974*** 0.872  -0.211** 0.092   
    

𝑇ℎ𝑟𝑒𝑒𝑤_𝑇 5.462*** 1.176  -0.084 0.115   
    

𝐻𝑒𝑟_𝑇 1.899*** 0.701  0.098 0.071   
    

 

Note that MBr is MBr:Pic, DMDS is DMDS:Pic, Twow is 1,3-D:Pic, Threew is 1,3-D:Pic:Kpam, Her is herbicide; the letters “T” and 

“R” indicate soil temperature and rainfall after fumigation, respectively; *, **, and *** indicate significance at 0.1, 0.05, and 0.01 

levels. 
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Table 4 

Coefficient estimates with standard errors for tomato yield model  

Variables Coeff. Std. Err. Variables Coeff. Std. Err. 

MBr:Pic 4.353*** 1.070 TAT 3.604*** 0.371 

DMDS:Pic 5.118*** 1.035 RAT -0.519 0.332 

1,3-D:Pic 4.248*** 1.022 Nutsedge -0.327***
 

0.061 

1,3-D:Pic:Kpam 7.113*** 1.074 Grass -1.398**
 

0.626 

Constant -232.060*** 25.906  
 

 

 

Note that *, **, and *** indicate significance at 0.1, 0.05, and 0.01 levels. 
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Table 5 

Marginal effects of fumigants and herbicide on weed population and tomato yield and their 

variation along with weather variables  

 

Fumigants MBr:Pic DMDS:Pic 1,3-D:Pic 1,3-D:Pic:Kamp 

𝑀𝑊1 -6.964 -4.531 -4.159 -7.282 

𝜕𝑀𝑊1 𝜕𝑍1⁄  1.510 2.554 3.597 2.472 

𝜕𝑀𝑊1 𝜕𝑍2⁄  -- -- 0.946 0.198 

𝑀𝑊2 -0.695 0.200 -0.359 -0.748 

𝜕𝑀𝑊2 𝜕𝑍1⁄  -- -0.580 -0.120 -- 

𝜕𝑀𝑊2 𝜕𝑍2⁄  -- -- 0.032 -- 

𝑀𝑌 7.599 6.318 6.108 10.537 

𝑀𝑌 𝜕𝑍1⁄  -0.493 -0.023 -1.007 -0.807 

𝑀𝑌 𝜕𝑍2⁄  -- -- -0.141 -0.065 

 

 

Note that 𝑍1, 𝑍2 are soil temperature and rainfall fumigation (TAF and RAT); 𝑀𝑊1is the 

marginal effect of fumigants on nutesdge control, 𝑀𝑊2 is the marginal effect of fumigants on 

grass control, 𝑀𝑌 is the marginal effect of fumigants on tomato yield. Only statistically 

significant effects are reported.  
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Table 6 

Net profits of treatments through the whole farm budgeting method ($/ha)  

Treatments 2008 2009 2010 2011 

Control -1,634 2,252 a -4,559 a -6,091 a 

MBr:Pic  -297   9,661 b -1,693 ab -1,737 b 

DMDS:Pic 1,120   6,252 c -3,247 ab -6,130 a 

1,3-D:Pic -748  8,390 bc -2,840 ab -2,211 b 

1,3-D:Pic:Kpam 1,400  9,995 b -56 b -1,485 b 

 

Note that means followed by the same letter are not significantly different based on Tukey 

adjusted mean comparisons at p<0.05.  
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Table 7 

Expected utility under different scenarios  

Treatments Trial Period  

r=2 

 Simulated Weather Scenarios 

 𝑟 = 2 𝑟 = 1 𝑟 = 3 

Control  0.70075  0.70846 1.23615 0.45723 

MBr:Pic  0.71025  0.71384 1.25564 0.45871 

DMDS:Pic 0.70525  0.70914 1.23912 0.45737 

1,3-D:Pic 0.70975  0.70906 1.23863 0.45736 

1,3-D:Pic:Kpam 0.71275  0.71377 1.25561 0.45867 

 

 


