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1 Introduction

Food manufacturing is a major global industry, with approximately $3 trillion in revenues

(Hartman, 2015). Food and beverage manufacturing represented 14.7 percent of the total

value of shipments from all U.S. manufacturing facilities in 2011 (USDA, 2017), and large

manufacturing plants (those with 100 or more employees) accounted for 77 percent of total

shipments. Processed foods have become deeply integrated into the modern American diet.

Processed food firms face significant challenges in safety, traceability, regulations, consumer

preferences, and manufacturing. Our research addresses the challenges created by raw mate-

rial variability in food manufacturing. We partner with a large manufacturer of –flour based

snack foods to study their production processes and strategic options. Our research uses

variability, or uncertainty, in wheat-flour characteristics to study the operational and strate-

gic decisions of the firm. First, we characterize the operational decisions of the firm given

raw material variability. We then consider the firm’s supply chain choices, boundaries, and

technological investment options that allow for control of raw material variability, and we

characterize the strategic decisions available to the firm. Our work is important for several

reasons: it is the first work of which we are aware to conduct an economic analysis of raw

material variability in food manufacturing; we believe that there is economic opportunity for

improvement in food manufacturing e�ciency, including improvement in firm profits and the

reduction of manufacturing food waste. Our overarching goal is to provide managerial in-

sights into how firms facing raw material variability consider and select among their strategic

options.

Working with a firm whose primary raw material is wheat-flour provides insights into

a major component of the American diet. According to the United States Department of

Agriculture, Americans consumed approximately 135 pounds of wheat per capita in 2014

(Bond and Liefert, 2016). The standard American diet consists of significant grain con-

sumption (Grotto and Zied, 2010) as a portion of total caloric intake. The bread and baked

snack industry is comprised of several major segments: large commercial bakeries, specialty

bakeries, and local or retail bakeries, all of which compete for market share. They will

generate nearly $70 billion in revenues in 2016. Our research focuses on commercial and

specialty bakeries that are large enough to manage and plan their own supply chains and
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make strategic decisions that relate to their operational capabilities.

During informal interviews (Bourquard, 2016a, 2015), members of the baking and bread

manufacturing industry have expressed that there are costs and challenges associated with

flour variability and degradation prior to use. These are the costs manufacturers face above

their costs of production and procurement compared to firms in non-biological industries.

We believe these costs are a key di↵erentiator between the processed food and non-food

industries and that they are economically important.

We use a multi-stage process to analyze the operational and strategic decisions of a

processed food manufacturing firm. First, we apply an econometric analysis to the manu-

facturing controls and flour characteristics to determine their relationships to finished goods

quality outcomes. We then use the technical coe�cients from the econometric analysis to

parameterize an operations model to characterize the full set of operational decisions avail-

able to a firm. Finally, we use cost and price data to analyze the strategic options available

to the firm. This paper presents the econometric analyses as well as proposes the operations

model appropriate for the second stage.

2 Literature

We draw on several important threads of literature for our work. Primary research upon

which we build includes the fields of supply chain management, perishability, and operations

research. We also review briefly some research related to wheat-flour degradation.

Modern supply chain management can be traced to Industrial Dynamics by Jay W.

Forrester (Forrester, 1961), who stated:

Industrial dynamics is the study of the information-feedback characteristics of in-

dustrial activity to show how organizational structure, amplification (in policies),

and time delays (in decisions and actions) interact to influence the success of the

enterprise. It treats the interactions between the flows of information, money,

orders, materials, personnel, and capital equipment in a company, an industry,

or a national economy (p.13).

Forrester, according to John Mentzer et al. (2001), identified the key issues and dynamics

that comprise the modern field of supply chain management. The growth over the past
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several decades of the study of management science, particularly emphasizing the role of

strategically managing inputs and outputs of the firm, has proliferated an enormous number

of papers dealing with multitudinous aspects of the supply chain. This project draws from

several key texts, including The Logic of Logistics by Simchi-Levi, Chen, and Bramel (2005)

and Fundamentals of Supply Chain Theory by Snyder and Shen (2011).

Work in supply chain management emphasizes a system approach beyond minimizing

transportation costs or reduced inventories. Instead, it illuminates the trade-o↵s present in

the supply chain, the impacts decisions have on the system as a whole, and the decisions

to optimally match supply and demand. The supply chain literature focuses on a variety of

problem types, including network design, production and inventory planning, procurement,

and transportation. Each set of problems makes various assumptions regarding customer

demand, input availability, infrastructure, and product storage (Simchi-Levi et al., 2005).

The research question we propose is best viewed as an integrated production, inventory,

and procurement problem, but with added perishability and quality challenges. We focus

on single or multi-location manufacturers who’s primary input is an agricultural derivative,

wheat-flour, that presents variability challenges to the manufacturer.

Early work in supply chain problems included work on optimal order quantities (Arrow

et al., 1951) wherein the policy maker only chose the order size, leaving price, demand, or

bargaining as exogenous. The work allowed comparisons between certain and uncertain de-

mand environments, as well as proving that optimal order quantities under static conditions

will be constant. Thus, the policy maker is determining what inventory to hold based on

their known depletion of stocks. This is a cost minimization program given some constraints

and known parameters for demand, and order and holding costs.

Our work accounts for the variability in the raw material used in manufacturing. Re-

lated to this is the literature around perishability. Significant work has been undertaken

around deterioration with known or predicted deterioration distributions, such as Covert

and Philip (1973), who use a Weibull distribution to demonstrate changes between dete-

riorating and non-deteriorating inventory ordering plans. Similar work was undertaken by

Tadikamalla (1978), who use a gamma distribution for deterioration. Both authors cite

Ghare and Schrader’s 1963 work “A model for exponentially decaying inventory,” in which

they demonstrate a relation for optimum cycle time using a standard procedure for eco-
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nomic order quantity determination. Significant work between the 1960s and 1980s was

conducted studying the blood bank problem. The research contributed to improved blood

distribution and storage, where demand is random, usage is unknown but less than demand,

and product lifetimes are limited. As stated by Prastacos (1984), contributions from blood

banking research include methodological improvements for perishable inventories, as well as

the application of the results to useful management rules and decision support systems.

The development of these lines of research into theory and applied perishability problems

led Nahmias in 1982 to note, “that although blood banking problems appear to have dom-

inated the interest of researchers and underlie most of the theoretical perishable inventory

models developed, one would think that food management problems would have a far greater

economic impact” (p.703). Indeed, more recent literature has looked at food manufacturing

problems with perishability issues.

Work in the 1960s, such as Brown, Lu, and Wolfson (1964) focused heavily on obsoles-

cence, of particular concern as technology products entered mass production. Additional

work from which perishability research developed studied fashion. Murray and Silver (1966)

note that most work relied on either deterministic or stochastic sales with known proba-

bilities. They introduce uncertainty with information updating (Bayesian updating) to the

model of how much a retailer purchases (or how much a producer should manufacture).

We address some challenges of intermediate raw material deterioration or variability,

by which we will assume final consumer demand is known or can be met through current

production. While a manufacturer knows with a high degree of certainty how much they

need to produce, they do not know the condition of the wheat-flour at the time it arrives.

There are two periods during which the flour deteriorates: transit and storage. Additionally,

creating exact specifications in flour is challenging, resulting in variability in initial blends.

Authors have addressed storage deterioration, one of the most known works from Fries

(1975), who addresses optimal ordering policy for perishable commodities. Fries includes a

fixed lifetime for inventory units, and treats the units as if they are waiting to be sold to

final customers, which has marginal application to our research.

Most of the work in food manufacturing focuses on perishability for products destined

for final sale. Entrup’s 2005 dissertation focused on integrating self-life into production

planning through an analysis of advanced planning systems, or firm level software. This

4



work developed di↵erences between firms producing fresh inventory versus traditional firms

without degradation problems. The research focused on yogurt, sausage, and poultry firms

making production decisions knowing that their outputs were perishable.

Perishable inputs can impose significant costs on wholesalers and retailers, who attempt

to balance the trade-o↵ between preservation e↵ort costs and benefits. Cai et al. (2010)

explore exactly this problem using a model in which a distributor determines optimal order

quantity, level of preservation-e↵ort, and sales price, while accounting for wholesale price,

preservation costs, spoilage, and demand. They explore decentralized and centralized sys-

tems, as well as incentive schemes to induce coordination in the supply chain. They find that

under decentralization, the distributor always orders less than they would for non-perishable

products, and that profits are generally higher under a coordinated supply chain. In the co-

ordinated case, the distributor and wholesaler share chain profits by adjusting the wholesale

price based on spoilage. Optimal wholesale prices set by producers can be characterized in

a Stackelberg game wherein the producer considers the reactions of the distributor. Thus,

in both coordinated and non-coordinated systems, the supply-buyer relationship involves

strategic decisions by both parties.

Two recent literature reviews provide some context and updates regarding inventory

systems with deterioration and supply chains with perishability. Bakker, Riezebos, and Te-

unter (2012) provide an overview of the literature for inventory systems facing deterioration

challenges published between January 2001 and December 2011. Their sample includes 227

papers published across 38 journals. Using the classification system developed by Goyal and

Giri (2001), they identify three types of deterioration in the literature: (1) fixed lifetime,

or predetermined deterioration, (2) age dependent deterioration rate, using a probabilisti-

cally distributed lifetime (such as in Covert and Philips 1973), and (3) time or inventory

dependent deterioration rates, such as models with a constant deterioration rate per stocked

item. Bakker et al. (2012) also find that while stochastic demand is more realistic, only

20 percent of papers they review include it. This implies that the emphasis of much of the

literature over the decade they studied focused not only supply and demand conditions, but

on optimizing chain decisions to meet known demands. They have several findings of the

state of the literature: (1) most models assume deterministic settings, making them useful

for intuition but less realistic in a business setting; (2) price discounting based on perisha-
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bility is very common in the literature, which corresponds well with the ‘real world;’ (3)

most models account for stock-outs and backlogging, improving their realistic application;

(4) multi-echelon models are gaining importance due to the need for chain integration; (5)

few authors account for detailed inventory age data; (6) there is a need for more stochas-

tic modeling in perishable inventory systems; (7) and lastly, their is a need for modeling

substitutability in perishable inventory control.

Shukla and Jharkharia (2013) focus their literature review on fresh produce supply chain

management covering a 20 year period from 1991 to 2011. They find that while there

is an increasing interest in fresh produce supply chain management, there is no dedicated

journal for the topic. Most of the literature they review is primarily interested in maximizing

consumer satisfaction and producer revenue, while post-harvest losses are only secondarily

considered. They state that just over 50 percent of papers published on fresh produce supply

chains are from operations management (OM) journals, while almost 35 percent are from

agricultural journals. Importantly, OM journal publications focus on applying existing tools

and techniques to fresh produce problems, while agricultural journals typically place more

focus on product characteristics. They attribute an increase in publications in the last five

years of their study window to global issues of food and fuel price increases and disease

challenges, such as bird and swine flu.

The challenge, as noted by Blackburn (2009), is that most perishability models consider

inventory management problems. In his paper, Blackburn considers post-harvest losses of

fresh produce due to heat and time in transportation, although he does not consider post

harvest processing challenges. Whether or not Blackburn knew it, he was responding to

a call for further research into agricultural supply chains by Lowe and Preckel (2004), as

well as by Boehlje (2003), who indicate that management of the transport, distribution, and

storage of agricultural commodities is “essential to profitability.” While Lowe, Preckel, and

Boehlje do not address product degradation, they discuss supply chain challenges related to

product di↵erentiation and proliferation in commodity markets. They describe changes to

corn markets due to genetic engineering, bringing about the need for significant changes to

transportation and distribution systems. This is not dissimilar to what we observe in flour

markets: a variety of types with heterogeneous qualities and applications.

Wheat-flour transportation presents unique challenges in commodity transport. Moving
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and storing raw wheat is relatively easy, even under non-optimal conditions. Wheat is

estimated to have a shelf life of 20 years when stored appropriately (Wang and Flores, 1999).

Farmers are able to store the unmilled grain on-farm with very low storage losses. Once wheat

is turned into flour, the miller is faced with a challenge of transport or storage (Bourquard,

2016b). Flour is warm as it comes out of the milling process, and under many environmental

conditions, moisture condenses in the transport container. The moisture, which can also

build up during transport due to fluctuations in ambient temperatures, potentially invite

mold, bacteria, and fungus (Posner and Hibbs, 1997). Additionally, lipids and baking quality

are highly correlated with flour moisture content and storage temperature (Clayton and

Morrison, 1972). Lipid changes can have significant impacts on flour quality, including

inviting mold growth or impacting gluten characteristics (Wang and Flores, 1999). Higher

levels of lipids due to moisture content result in higher mold content and lower quality gluten.

Most studies conducted of wheat-flour changes under storage use various laboratory stor-

age techniques, such as bags or plastic containers, and leave flour for extended periods of

time at di↵erent temperatures. Changes can be detected in quality anywhere from 30 days

to 6 months. Some studies, cited by Wang (1999), indicate that there is an optimal aging

for wheat-flour to maximize baking performance. Newly milled flour presents some chal-

lenges to bakers, whereas flour aged longer than 4 years could result in total deterioration.

Prolonged storage of flour seriously damages baking qualities under most storage conditions.

Wang admits in his introduction that aging of flour “is an extremely complicated and poorly

understood phenomenon.”

Finally, the presence of high quality gluten is a key component of bread making. Gluten,

the protein found in wheat, is comprised on gliadins and glutenin, is key to loaf quality

(Huebner et al., 1997), and may degrade with time and temperature.

We believe that there are gaps in the literature that we are filling. Ahumada and Villalo-

bos (2009) indicate in their review of the literature that state of the art models in agri-food

supply chains are lagging their manufacturing counterparts. They also indicate there is

room for development in agricultural supply chains of internal logistics, which have been

more deeply explored in traditional manufacturing supply chain literature. There is also

a need for further research in the tactical planning of perishable and non-perishable agri-

cultural foods, including robustness to uncertainty (Ahumada and Villalobos (2009)). We
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intend to model raw materials for manufacturing firms facing uncertainty.

3 Problem Description and Models

Processed food manufacturing firms take agricultural raw materials, such as wheat-flour, and

transform them into finished goods for consumption. The manufacturing process involves

the application of additional inputs, such as non-biological raw materials, energy, labor, and

capital. The labor-capital interface is through the controls of the manufacturing process,

which are used in response to variability in the primary raw material ingredient. In many non-

food manufacturing environments, where firms assemble intermediate goods into final goods,

the formula for assembly does not change. Similarly, to manufacture intermediate goods

from non-biological raw materials, such as steel manufacturing, firms typically need fewer

adjustments to the controls to produce intermediate goods within the required specification

range. Processed food manufacturing firms need to adjust their manufacturing controls

frequently to accommodate changes in the characteristics of the raw materials. This can

result in higher scrap and waste for food manufacturers than non-food manufacturers. For

example, steel manufacturers who use scrap as their primary inputs, such as mini-mills in

the US, are able to put out-of-specification finished product back through the manufacturing

process, resulting in lost time and revenue but minimizing scrap and waste. Many food

products, once produced, are not reusable if they are out-of-specification after manufacture.

Instead, the firm must discard or dispose of the non-premium product through alternative

marketing channels at lower price levels. This results in lost revenue, time, and product.

For many manufacturers, this cost can be significant, resulting in millions of dollars of lost

revenues each year.

Working with data from our industry partner, our research will develop and apply two

methods. First, we develop an econometric model to determine the technical coe�cients

for the controls in the manufacturing process relative to finished goods quality outcomes.

Second, we characterize the entire optimal set of control settings for all possible raw material

characteristics. We use price and cost data in the second step to analyze the strategic options

facing a processed food manufacturer.

We address two very broad questions in our methodology. The econometric step aims
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to answer the question: What process controls and flour characteristics are important to

the quality outcomes of manufactured goods, and what is their relative magnitude? The

mathematical optimization model is used to answer the question: What are the strategic

implications of raw material variability in food manufacturing?

This paper presents preliminary results from the first model, in which we determine and

discuss the technical coe�cients. We then present our proposed model for the second stage

and discuss its application. Our goal is to use the models to characterize the entire set of

optimal choices for the firm, both operationally and strategically.

3.1 Our Industry Partner

We collect our primary data at a large snack-food manufacturing facility in the US. The

facility manufactures hundreds of millions of dollars of finished goods each year and is owned

by a national, publicly traded, food manufacturing firm. The primary ingredient at the

facility with which we partner is wheat-flour (flour), which is also their largest cost-center.

In addition to wheat-flour, they use a variety of non-agricultural inputs, such as water and

salt, for which variability is not a concern.

The facility procures flour from three separately owned millers. The procurement process

is complex, but can be summarized simply: the manufacturing firm purchases wheat-futures

and takes delivery to the millers; the millers manufacture the flour according to a set of

minimum or maximum specifications for the protein, moisture, and ash characteristics. The

millers then deliver the flour to the manufacturing facility by truck, multiple times per day.

The manufacturer pays for the wheat-futures, as well as pays the miller’s costs of production.

They also have the opportunity to negotiate a ‘milling margin’ with the miller, which is the

miller’s basic profit margin. In this way, the costs of the miller are relatively transparent to

the manufacturer. In addition, the manufacturer has full information about the quality of

the flour delivered by each miller.

At the time the manufacturer orders flour from each miller, they also know the demand

they are facing for each product line. In practice there is some minor uncertainty regarding

late orders, but the uncertainty is small and for this paper we take demand as known.

In future research we will allow for stochastic demand, however, the snack-food industry’s

demand is generally known in the short-term and is not typically economically cyclical.
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Short-term mismatches in demand can be managed through safety stock, which we will also

consider in future research.

Once flour is delivered and the characteristics are revealed, the production manager

matches flour batches to product lines. Flour is used typically within 24 hours of arriving at

the manufacturing facility. Production is undertaken, the control decisions are made, and

the results are revealed. Figure 1 in the Appendix provides an overview of the manufacturing

process. The following section details the flour, control, and quality variables of interest in

our analysis.

3.2 The Datasets

We use three primary datasets for our analysis:

• Flour reports: details of each flour batch, including moisture, protein, and ash mea-

surements taken by both the flour millers and the manufacturing firm, as well as the

mixing tolerance index, flour supplier, and delivery date.

• Production data: details the flour batch, control settings, and intermediate quality test

results for production of a particular batch of finished goods

• Finished goods quality: details the final quality measurements, taken directly before

packaging, that determine the disposal of the finished good as either premium product,

second-tier product, or trash.

We combine these datasets with price and cost information provided by the manufacturing

facility at which we collect data. The production data are captured on the manufacturing

floor by the sta↵. We have approximately 725 observations across all products between

January and March 2017. This work uses approximately 110 observations from a specific

product line. Flour intake reports are captured electronically; our dataset includes observa-

tions from August 1, 2016 through March 31, 2017. Finished goods quality data are matched

to the production sheets. These are captured electronically by the firm.

We continue to work with the firm to capture and record data, and intend to collect 12

months worth of production data to observe an entire calendar year, as well as a crop year

change over. This paper relies on production data collected between January and March

2017 and flour data collected between August 1, 2016 and March 31, 2017.

10



3.2.1 Variables and Flour Characteristics

Table 3 in the appendix provides a list of variables and their descriptions used in the analysis.

The variables can be divided into three categories: raw material characteristics, manufactur-

ing controls, and quality outcomes. The raw material characteristics and quality outcomes

are random variables. Manufacturing controls are those variables over which the firm exer-

cises control. When we elaborate the model in future research, the manufacturing firm will

also select the miller by treating the supply chain as a control in the manufacturing process.

We focus on four flour characteristics: protein content, moisture content, ash content,

and mixing tolerance index. Figure 3 in the appendix (Section A)provides a graph of the

variation in flour protein and moisture between August 1, 2016 (point 0) and December 31,

2016 (point 900).1 The area between the red lines represents the crop-year changeover faced

by the manufacturing firm.

Protein and moisture content data are provided as percentages of weight. Ash content,

also provided as a percentage of weight, is the mineral material of flour, derived primarily

from the wheat from which the flour was manufactured. The mixing tolerance index (MTI)

is the di↵erence in Brabender Units from when dough has reached its maximum viscosity

prior to gluten’s breakdown, and 5 minutes after peak time. MTI measures a flour’s tolerance

to mixing, with high numbers indicating intolerance to mixing, particularly over-mixing.2

According to industrial bakers, all four characteristics are important to the manufacturing

process.

3.3 The Manufacturing Process

Figure 1 in the appendix o↵ers an overview of the vertical supply and manufacturing chain

of interest, and Figure 2 provides an overview of the manufacturing process. Here, we detail

the manufacturing process to help contextualize the models in the following sections. The

process is roughly divided into two components: supply chain decisions and manufacturing

decisions.

Supply chain decisions involve supplier and quantity selections - from whom to purchase

1We have removed the graph’s vertical axis label to comply with a non-disclosure agreement.
2See North Dakota State University’s Wheat Quality and Carbohydrate Research Lab for further infor-

mation.
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flour, and how much from each miller. The supplier selection process is a strategic question

from Section 4.2 that we intend to address after characterizing the optimal set of controls

for all flour inputs, Section 3.5. We will characterize the trade-o↵s in supplier selection and

the strategic decisions to purchase from more than one supplier.

Manufacturing decisions are those controls available to the bakers to turn flour (and

other ingredients) into finished goods. This stage is after the flour characteristics have been

revealed and the baking team is determining how to set the controls to produce high quality

finished goods.

The manufacturing process starts at the mixing stage, where the operator determines

how much water (measured in pounds) to combine with the flour and additional ingredients

to make the dough. The flour and additional ingredients quantities are fixed by the recipe

for any given product on a given production line. The facility operates several production

lines, some of which are configured for only one product, while others can produce multiple

products. After adding the water, the operator determines how long in minutes to mix the

dough; the mix time is categorical and based on the mixing tolerance index (see Section

3.2.1).

Once the dough is made it is extruded and cut. The extruder, measured in pounds

per square inch of pressure, shapes the snack product and the cutter, measured in cuts

per minute, separates one product from another. The product then proofs on a conveyor

belt before traveling under a salter. At the proofing stage, the ”piece weight” intermediate

quality measurement is taken, measured in grams. Once salted (measured in pounds of salt),

it travels through various oven zones. The oven zone temperatures, measured in degrees

Fahrenheit, are adjustable by the operator. Depending on the product and production line,

there are di↵ering numbers of oven zones. The final oven zones are configured for drying, and

the speed at which the products are sent through (the kiln speed) is also adjusted. After this,

the finished product is sent to the packaging line. There is a moisture check taken prior to

drying, and a final moisture check taken directly before packaging. Table 3 in the appendix

provides a summary of the variables in the system and their units. For some products, the

measurements are invariant - for example, the cooker speeds are never adjusted through the

oven, instead, the temperature is adjusted. For others, adjustments are made frequently.

We focus on isolating the controls in the manufacturing process for one product on one
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production line at a time in order to hold constant the di↵erences between products and

production lines.

At each stage of the production process, the operator knows what came before: when

adding water, they know the characteristics of the flour; when setting the extruder and cutter

controls, they know the water and salt quantities; when setting the oven controls, they know

the extruder and cutter settings.

The manufacturing process is an engineering process designed (tuned) to produce a par-

ticular product. We are not analyzing behaviors, we are analyzing a system in which each of

the controls is relevant to the outcome. Our goal is to figure out the relationships between

controls and flour attributes and to apply them in a model of the manufacturing system.

3.4 Determining the Relationships Between Inputs and Controls

Broadly, the econometric models help address the question: What process controls and flour

characteristics are important to the quality outcomes of manufactured goods, and what is their

relative magnitude? However, their primary purpose is to generate the technical coe�cients

to be used in the mathematical optimization model, described in Section 3.5, Characterizing

the Optimal Control Sets for All Potential Inputs.

We fit an ordinary least squares model to test the manufacturing system and establish

technical coe�cients for an operations model. Equation 1 provides the econometric model:
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i

+ ✏

i,k

(1)

Where:

g(·) = dependent quality variable given the control settings and flour characteristics

b = intercept

i = product disposal category, i.e. premium versus non-premium

k = product lines

a = flour attributes vector

x = production process controls

y = interaction terms, a function of production controls (x) and flour attributes (a)

↵ = flour attribute coe�cients, ↵
i2 for squared attributes
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� = production control coe�cients, �
i2 for squared controls

� = interaction terms coe�cients, and

✏ = error term

t = transpose operator

We discuss the specific application and results the model in Section 4.1, Technical Coef-

ficients for Inputs and Controls. Our technical coe�cients for the mathematical model are

taken from ↵, � and �, the coe�cients from the regression in equation 1. The result of this

equation, g
i,k

(a
k

, x

k

) represents the observed outcome per batch of the production process

given the observed raw material characteristics, a
k

, and the observed production control

settings, x
k

, for the product line k and finished goods quality i. We include squared terms

for both the flour characteristics and process controls vectors. We also include an interaction

term, y
k

, for interactions within controls and characteristics.3

We believe ordinary least squares is an appropriate choice for our purposes. We meet

the assumptions of linear regression (Greene, 2012): 1. the model is linear in parameters,

2. the is no exact linear correlation between the independent variables, 3. the independent

variables are exogenous, 4. a test for heteroskedasticity indicates its possibility, for which

we correct using White standard errors, 5. our data generation process is well known and

independent, and 6. our disturbances are normally distributed as indicated by their quantile

plots.

We are aware of other methods, such as Huang and Liu (1994) and Aigner et al. (1977),

who broadly apply maximum-likelihood methods to the problem of estimating production

functions. However, we di↵er from them in our goals; while many authors seek to establish

e�ciency frontiers for industries or firms (see Battese and Coelli (1988)), we seek to charac-

terize the production function of a single firm without concern for technical e�ciency at this

stage. Future research may address technical e�ciency. We also do not account for labor

or capital inputs in our current model, as they are held fixed for any given level of output

quality. We believe additional e�ciency is unlikely to be gained through alternative methods

at this time.
3We do not at this time interact the terms between controls and flour attributes.
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3.5 Characterizing the Optimal Control Sets for All Potential In-

puts

The mathematical optimization model is used to answer the broad question: What are the

strategic implications of raw material variability in food manufacturing? Here, we define

a profit function for each product line based on whether or not the finished goods quality

is within the “premium” or “non-premium” outcome ranges, and can therefore be sold at

full or reduce prices. We then determine the probability that a production run, based on

the revealed raw material characteristics, can be made premium or non-premium given the

available control settings. We use this to establish the expected profit function.

⇡
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(3)

Where:

i = product disposal category

k = product lines

ea = random flour attributes variable

x = production process controls

↵ = flour attribute coe�cient

� = production control coe�cient

� = Interaction term coe�cient

g = lower boundary of acceptable finished goods quality outcome

g = upper boundary of acceptable finished goods quality outcome

r = value of product in disposition i per production batch

c = cost of control x

t = the time period of interest

Equation 2 uses g
i,k

(a
k

, x

k

|↵
i

, �

i

,↵

i2, �i2, �i) from equation 2. Here, we are characterizing

g(·) contingent on our already established technical coe�cients, ↵
i

, �
i

, and �

i

. We multiply

g(·) by the appropriate revenue, or product value, r for the product’s disposition. We use
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equation 2 in equation 3 by establishing the probability Pr

i

of a production batch being in

“premium” or “non-premium” ranges given the random flour characteristics ea
k

. Equation 3 is

the expected profit function we intend to maximize with respect to the controls x
k

. Equation

3 characterizes the entire set of control options available to the firm for all potential raw

material characteristics.

4 Results

Table 1 provides correlations between each of the flour characteristics of interest in this paper.

Table 2 provides the results of the regression analysis. There are a set of relationships

in the correlation table that are important in our determination of the variables used in

the regression analyses. Protein and moisture have a positive and statistically significant

relationship with each other. MTI has a negative and statistically significant relationship

with both moisture and protein. For the current regressions, we use only MTI and ash

content as explanatory variables, leaving out moisture and protein.

Pearson Correlation Coe�cients

Moisture Protein Ash MTI

Moisture
1.00
(——)

0.40***

(0.0001)
-0.08
(0.3375)

-0.29***

(0.0009)

Protein
0.40***

(0.0001)
1.00
(——)

0.06
(0.4592)

-0.45***

(0.0001)

Ash
-0.08
(0.3375)

0.06
(0.4592)

1.00
(——)

0.05
(0.5407)

MTI
-0.29***

(0.0009)
-0.45***

(0.0001)
0.05
(0.5407)

1.00
(——)

Table 1: Correlations between Flour Characteristics, p-values in parentheses
*** Indicates significance at 1% level

At this time, our regression has 108 observations for a specific product line. As we are able

to add further data to the regression, we believe that the correlations will be less important in

determining the outcomes of the analyses, but potential multi-collinearity means we include
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only MTI and ash. MTI, an index from 1 to 600 (potentially but unrealistically)4 has a

relationship to protein and moisture quantity, although it is more closely related to protein

quality. Baking operators use MTI to determine the mix time for the dough. It provides a

good proxy for flour quality. Section 4.1 provides the technical coe�cients and regression

results. Section 4.2 provides a qualitative description of the strategic options of the firm,

with some context of our ultimate research goals.

4.1 Technical Coe�cients for Inputs and Controls

Table 2 provides the results of our linear regression, using Bake Moisture as the dependent

variable. Bake moisture is a quality measure taken after the product comes out of the oven,

and is measured as a percentage of product weight. There are ten explanatory variables:

MTI, ash content, extruder pressure, added water, added salt, oven temperatures for zones

1-4 and kiln speed (not time). The “kiln speed” is the belt speed through oven zone 4, which

is often changed to accommodate moisture needs.

Most of the results are not surprising. An increase in MTI (which can naturally denote

higher absorbency and higher quality protein) increases the bake moisture at a decreasing

rate. The negative coe�cients on oven zones 1 and 3 are expected - an increase in the

temperature reduces the bake moisture. Speeding up the kiln results in higher bake moisture,

intuitive as the product goes through the final oven zone faster. We find the interaction

between the kiln speed and final oven zone as significant, which is also expected given their

close relationship to bake moisture. Lastly, the relationship between the extruder and added

water is slightly significant, which is reasonable as the two decisions follow one another in

the manufacturing process.

The biggest surprise is the sign on oven zones 2 and 4, which are positive. Oven zone

2 is not necessarily purposed to drying the product (di↵erent oven zones are for di↵erent

purposes), but oven zone 4 is the final stage and is to extract final moisture. The sign

and the magnitude are surprising. Further investigation may reveal whether oven zone 4

is “set” ex-ante or ex-post some knowledge by the baking operator. It may be used in

4In our data, MTI ranges from approximately 50 to 115.
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response to information about the flour and dough characteristics.5 We add the caveat when

interpreting these coe�cients in isolation that this is a complex manufacturing system with

many components.

Overall, we believe that this regression reasonably specifies the technical coe�cients

required by the optimization problem. We continue to refine the production function while

working with our industry partner to understand the food science interactions revealed by

our results. We address the connections between the results from this section and the firm’s

strategy in the following section, The Strategic Options of the Firm.

4.2 The Strategic Options of the Firm

Our goal is to provide a link between the firm’s operational and strategic activities. We look

at raw material variability as an important operational component of food manufacturing

firms, and interviews with food manufacturers have demonstrated that the industry is inter-

ested in our work as well. Raw material variability is particularly important in food versus

non-food industries. Not only is there daily biological variability in food manufacturing,

there is annual variation related to crop year changes (see Figure 3), and vagaries related to

weather and terroir.

We are in the process of numerically analyzing this section of our research. Equations 2

and 3 provide some insights into our work. We maximize revenue with respect to the controls

available to the baker, such as added water or salt, machine speeds, and oven temperatures,

given the random flour attributes vector. Once we develop a firm level operational model

with several product lines, we can then answer strategic questions related to the costs of

managing raw material variability.

Our strategic questions include vertical integration - would it be better for firms facing

variability to control the variability inside the firm through their controls or outside the firm

by ownership - or technology - at what point do technological investments in automation (for

example) become economically feasible. Comparative statics across the decisions and raw

material characteristics can provide insights into the managerial decisions faced by firms.

5A regression of oven zone 4’s temperature on the preceding variables about which an operator has
knowledge reveals that MTI, ash, added water, and added salt are all statistically significant in determining
zone 4’s temperature. We continue to define the nature of these relationships to ensure our production
function is correctly specified.
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5 Discussion and Conclusions

Our work is in its preliminary stages. We are still collecting and organizing data and working

toward refining our econometric approach to the technical coe�cients. We plan to generate

numerical results to the mathematical model over summer 2017, with preliminary results in

late summer and early fall. A challenge we face at this time is the availability of quality

data. As we add observations across product lines we will have greater insights into the

manufacturing process.

We believe our work is unique, insightful, and economically meaningful. Firms with which

we have spoken express multi-million dollar opportunities to more fully understand their op-

erational and strategic options, particularly related to managing raw material variability.

We also believe there is significant academic interest in looking inside the firm at the daily

operations and resulting revenue outcomes. In the future, our “mapping” of the system, in-

cluding the supply chain, may provide some information about food waste in manufacturing,

food safety, transparency, supplier selection processes, and supply chain management. We

also believe that providing a link between operations and strategy is of itself an interesting

and interdisciplinary activity.
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Dep. Variable: Bake Moisture R-squared: 0.3581
Method: Least Squares Adj. R-squared: 0.2122
No. Observations: 108 F-statistic: 2.45
Df Model: 20 Prob (F-statistic): 0.0022
Df Residuals: 88

coef std err P>|t|
Intercept �939.4009 751.5922 0.2147
MTI 0.2577** 0.1234 0.0397
MTI2 �0.0004** 0.00015 0.0283
Ash 51.7878 178.0365 0.7718
Ash2 �12.5936 191.5007 0.9477
Extruder �2.0420* 1.1809 0.0873
Extruder2 �0.0001 0.0011 0.9153
Water 8.1249 8.9168 0.3647
Water2 �0.0250 0.0270 0.3574
Salt 4.9663 2.9898 0.1003
Salt2 �0.0145*** 0.0054 0.0082
Oven 1 �0.1867*** 0.0652 0.0053
Oven 2 0.0823*** 0.0301 0.0075
Oven 3 �0.0413 0.0257 0.1119
Oven 4 0.6650*** 0.1785 0.0003
Kiln Speed 0.3882*** 0.0961 0.0001
Kiln Speed2 0.000007** 0.000003 0.0248
MTI & Ash �0.4227 0.2673 0.1173
Water & Salt 0.0221 0.0190 0.2476
Kiln & Oven 4 �0.0009*** 0.0002 < 0.0001
Extruder & Water 0.0127* 0.0076 0.0966

Table 2: Quality Outcome Regression: Bake Moisture. White standard errors are provided.
Results are rounded to four decimal places where possible. *** 1% level, **5% level, *10%
level
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A Tables and Figures

Figure 1: Diagram of the modeling process.
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Production Data

Variable Units Description

date Discrete Year, month, and day of manufacture
product Discrete Product being manufactured

oven Discrete
Production line on which product was
manufactured

coamoist Percent Certificate of analysis flour moisture level
coaprotein Percent Certificate of analysis flour protein level
lbswater Pounds Pounds of water added to the dough
lbssalt Pounds Pounds of salt added to the dough
supplier Discrete Flour miller
zone1-7 Degrees F Oven zones 1 through 7 in baking line
proof Proof belt speed
cooker Cooker speed
bake Baking speed through the oven
kiln Speed through the drying kiln
pieceweight Grams Weight of pre-baked products
bakemoist Percent Product moisture after baking prior to kiln
doughmoist Percent Dough moisture prior to baking
doughtemp Degrees F Dough temperature prior to baking
watertemp Degrees F Temperature of water added to dough
extruder PSI Pressure of extruder used to shape dough
cutter Cuts/minute Cutter speed use to separate product
lbsflour Pounds Flour added to the dough
mixtime Minutes Minutes of mixtime for dough

Flour Data

Variable Units Description

date Discrete Date of flour delivery
supplier Discrete Flour miller
coaash Percent Certificate of analysis ash level in flour
sohmoist Percent Firm measurement of moisture level in flour
sohprotein Percent Firm measurement of protein level in flour
sohash Percent Firm measurement of ash level in flour

mti
Percent over
time

Mixing tolerance index of dough softening

Finished Goods Quality Data

Variable Units Description

product Discrete Product line
date Discrete Date of manufacture
moisture Percent Moisture of finished good

Table 3: Summary of data collection.
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Figure 2: Diagram of the manufacturing process.

Figure 3: Moisture and protein measurements over time for delivered flour. The space
between the red lines is the crop year changeover. We block the scale from view at this stage
of the research for compliance with a non-disclosure agreement.
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